• Aucun résultat trouvé

A natural neighbours method based on Fraeijs de Veubeke variational principle

N/A
N/A
Protected

Academic year: 2022

Partager "A natural neighbours method based on Fraeijs de Veubeke variational principle"

Copied!
18
0
0

Texte intégral

(1)

A natural neighbours method based on Fraeijs de Veubeke variational principle

by

LI Xiang

PhD Thesis co-organized by Liège University, Belgium

and

Dalian University of Technology, P.R. China in the domain of

Applied Sciences - Computational Solid Mechanics

December 2009

(2)
(3)

Acknowledgement

I have been working on this thesis for five years. During these years, Professor Serge Cescotto gave me amazing generous help not only on the work but also on many other aspects. His great personality, earnest work attitude and creative spirit had an important influence on me. I would like to thank him gratefully.

I also would like to thank to the following people:

Professor Gu Yuanxian, who devoted a lot to make the joint PHD agreement as my supervisor at Dalian University of Technology. Unfortunately, he passed away 4 years ago. I still feel sad.

Professor Li Xikui, who accepted to be my supervisor at Dalian University of Technology.

This is important for me.

Mrs. Anne Marie Habraken, Mr. Laurent Duchene, Mrs. Barbara Rossi, Mr. Christophe Henrard, Mr. Leo Studer, Mrs. Zhang Lihong and many other colleagues in the ArGEnCO department, for the help on my work during these years.

The members of the jury for accepting to read this thesis.

Finally, I am grateful to my parents for the constant and generous care they gave me all the time.

致谢

本文的工作在Serge Cescotto教授的悉心指导下完成。

过去的五年里,Serge Cescotto教授在工作和生活上都不遗余力地给予了我很大的帮助。

Serge Cescotto 教授严谨的治学态度,充满创造性的科研精神,诚实,正直的品格以及在艺 术,历史等方面的文化修养都给了我很大的影响,必将使我受益终生。

顾元宪教授是我的第一任大连理工大学的指导老师。他和Serge Cescotto教授共同为我的博 士联合培养计划奔波良多。不幸的是他在2005年因为心脏病发去世。他是一个优秀的学者 和一个好人。至今想起,我仍感到悲伤。

感谢李锡夔教授担任我的大连理工大学方面的指导老师,这对我很重要,谢谢您。

感谢Mrs. Anne Marie Habraken, Mr. Laurent Duchene, Mrs. Barbara Rossi, Mr. Christophe Henrard, Mr. Leo Studer, Mrs. Zhang LiHong 以及其他列日大学的同事们,在日常的工作上 给我的帮助。

感谢评审委员会的老师们阅读我的论文。

最后,感谢父母给了我生命,抚养我成长,29年来为我默默地奉献。你们是最辛苦的人。

(4)
(5)

Content

Summary Résumé 摘要

Abbreviations and Notations

I. Introduction 1

I.1. Scope and objectives of the study 2

I.2. Outline of the thesis 3

I.3. Original contributions 7

I.3.1. Papers published in peer reviewed journals 7

I.3.2. Chapter of a book 7

I.3.3. Papers in International Conference Proceedings 7

II. Background notions and state of the art Summary 10

II.1. The tools of the Natural Neighbours Method (NEM) 11

II.1.1. Delaunay tessellation, Voronoi cells and natural neighbours 11

II.1.2. Laplace interpolation 19

II.2. The classical Natural Element Method 30

II.2.1. Virtual work principle 30

II.2.2. Approximation of the displacement field 30

II.2.3. Discretized virtual work principle 31

II.2.4. Conclusion 32

II.3. The Fraeijs de Veubeke (FdV) variational principle 33

II.3.1 Historical note 33

II.3.2. The Fraeijs de Veubeke variational principle 34

II.4. Linear Elastic Fracture Mechanics (LEFM) 36

II.4.1. Introduction 36

II.4.2. Total potential energy 36 

II.4.3. Energy release rate 36

(6)

II.4.4. Fracture modes 37

II.4.5. Stress intensity factors 38

II.4.6. The J integral 40

II.5. Conclusion 41

III. A natural neighbours method for linear elastic problems on Fraeijs de Veubeke variational principle Summary 44

III.1 Introduction 45

III.2. Domain decomposition 46

III.3. Discretization 48

III.4. Equations deduced from the FdV variational principle 51

III.5. Matrix notation 53

III.6. Numerical integration 58

III.7. Applications 58

III.7.1. Patch tests 58

III.7.2. Pure bending 63

III.7.3. Square membrane with a circular hole 67

III.8. Conclusion 72

IV. Extension to materially non linear problems Summary 74

IV.1. Introduction 76

IV.2. Nonlinear theory 77

IV.3. Domain decomposition 79

IV.4. Discretization 80

IV.5. Equations deduced from the FdV variational principle 83

IV.6. Matrix notation 84

IV.7. Solution to the equations 87

IV.8. Applications 91

IV.8.1. Plasticity and strain hardening in solids 91

IV.8.2. Elasto-plastic material with von Mises linear hardening 92

IV.8.3. Patch tests 94

IV.8.4. Pure bending of a beam 98

(7)

IV.8.5. Square membrane with a circular hole 102

IV.9. Conclusion 106

V. Extension to Linear Elastic Fracture Mechanics Summary 110

V.1 Introduction                       112

V.2. State of the art                       113

V.2.1. Finite element method 113

V.2.2. Boundary element method 113

V.2.3. Meshless method 113

V.2.4. Extended finite element method 114

V.3. Domain decomposition                     114

V.4. Discretization                       116

V.5. Solution of the equation system 124

V.6. Applications 127

V.6.1. Patch tests 127

V.6.2. Translation tests 132

V.6.3. Mode 1 tests 135

V.6.4. Mode 2 tests 137

V.6.5. Bar with a single edge crack 139

V.6.6. Nearly incompressible material 141

V.7. Remark 141

V.8. Conclusion 142

VI. Extended Natural Neighbours Method Summary 144

VI.1. Introduction                146 

VI.2. Domain decomposition 148

VI.3. Discretization 150

VI.3.1. Discretization of εij,Σij,ri in cells of type O 150

VI.3.2. Discretization of εij,Σij,ri in cells of type H 150

VI.3.3. Discretization of εij,Σij,ri in cells of type C 151

VI.3.4. Discretization of the displacements 153

VI.3.5. Definition of the crack function C(X) 154 

(8)

VI.4. Discretization of the FdV variational principle 156

VI.5. Solution of the equations 159

VI.5.1. Stresses in terms of displacement discretization parameters 159

VI.5.2. Equilibrium equations in terms of displacement discretization parameters 160

VI.5.3. Summary of the equations 165

VI.5.4. Final equation system 171

VI.6. Applications 172

VI.6.1. Mode 1 tests 172

VI.6.2. Mode 2 tests 180

VI.6.3 Single edge crack 182

VI.6.4 Nearly incompressible case 186

VI.7. Conclusion 187

VII. Conclusions and perspectives 189

VIII. References 193

Annex 1: Laplace function for a regular grid of nodes 200

Annex 2: Discretization of the FdV variational principle for LEFM 210

Annex 3: Analytical calculation of

[ ] V

and

[ ] IH

218

Annex 4: Details for the calculation of C(X) 228

Annex 5: Discretization of the FdV variational principle for XNEM 236

Annex 6: Introduction to the software 256

(9)

Summary

A Natural nEighbours Method (NEM) based on the FRAEIJS de VEUBEKE (FdV) variational principle is developed in the domain of 2D infinitesimal transformations.

This method is firstly applied to linear elastic problems and then is extended to materially nonlinear problems and problems of linear elastic fracture mechanics (LEFM).

In all these developments, thanks to the FdV variational principle, the displacement field, the stress field, the strain field and the support reaction field are discretized independently.

In the spirit of the NEM, nodes are distributed in the domain and on its contour and the corresponding Voronoi cells are constructed.

In linear elastic problems the following discretization hypotheses are used:

1. The assumed displacements are interpolated between the nodes with Laplace functions.

2. The assumed support reactions are constant over each edge of Voronoi cells on which displacements are imposed.

3. The assumed stresses are constant over each Voronoi cell.

4. The assumed strains are constant over each Voronoi cell.

The degrees of freedom linked with the assumed stresses and strains can be eliminated at the level of the Voronoi cells so that the final equation system only involves the nodal displacements and the assumed support reactions.

The support reactions can be further eliminated from the equation system if the imposed support conditions only involve constant imposed displacements (in particular displacements imposed to zero) on a part of the solid contour, finally leading to a system of equations of the same size as in a classical displacement-based method.

For the extension to materially non linear problems, similar hypotheses are used. In particular, the velocities are interpolated by Laplace functions and the strain rates are assumed to be constant in each Voronoi cell.

The final equations system only involves the nodal velocities. It can be solved step by step by time integration and Newton-Raphson iterations at the level of the different time steps.

In the extension of this method for LEFM, a node is located on each crack tip. In the Voronoi cells containing the crack tip, the stress and the strain discretization includes not only a constant term but also additional terms corresponding to the solutions of LEFM for modes 1 and 2.

In this approach, the stress intensity coefficients are obtained as primary variables of the solution.

The final equations system only involves the nodal displacements and the stress intensity coefficients.

Finally, an eXtended Natural nEighbours Method (XNEM) is proposed in which the crack is represented by a line that does not conform to the nodes or the edges of the cells.

Based on the hypotheses used in linear elastic domain, the discretization of the displacement field is enriched with Heaviside functions allowing a displacement discontinuity at the level of the crack.

In the cells containing a crack tip, the stress and strain fields are also enriched with additional terms corresponding to the solutions of LEFM for modes 1 and 2.

The stress intensity coefficients are also obtained as primary variables of the solution.

A set of applications are performed to evaluate these developments.

The following conclusions can be drawn for all cases (linear elastic, nonlinear, fracture mechanics).

In the absence of body forces, the numerical calculation of integrals over the area of the domain is avoided: only integrations on the edges of the Voronoi cells are required, for

(10)

which classical Gauss numerical integration with 2 integration points is sufficient to pass the patch test.

The derivatives of the nodal shape functions are not required in the resulting formulation.

The patch test can be successfully passed.

Problems involving nearly incompressible materials can be solved without incompressibility locking in all cases.

The numerical applications show that the solutions provided by the present approach converge to the exact solutions and compare favourably with the classical finite element method.

(11)

Résumé

Une méthode des éléments naturels (NEM) basée sur le principe variationnel de FRAEIJS de VEUBEKE (FdV) est développée dans le domaine des transformations infinitésimales 2D.

Cette méthode est d’abord appliquée aux problèmes élastiques linéaires puis est étendue aux problèmes matériellement non linéaires ainsi qu’à ceux de la mécanique de la rupture élastique linéaire (LEFM).

Dans tous ces développements, grâce au principe variationnel de FdV, les champs de déplacements, contraintes, réformations et réactions d’appui sont discrétisés de façon indépendante.

Dans l’esprit de la NEM, des nœuds sont distribués dans le domaine et sur son contour et les cellules de Voronoi associées sont construites.

En domaine élastique linéaire, les hypothèses de discrétisation sont les suivantes : 1. Les déplacements sont interpolés entre les nœuds par des fonctions de Laplace.

2. Les réactions d’appui sont supposées constantes sur chaque côté des polygones de Voronoi le long desquels des déplacements sont imposés.

3. Les contraintes sont supposées constantes sur chaque cellule de Voronoi.

4. Les déformations sont supposées constantes sur chaque cellule de Voronoi.

Les degrés de liberté associés aux hypothèses sur les contraintes et les déformations peuvent être éliminées au niveau des cellules de Voronoi de sorte que le système d’équations final n’implique que les déplacement nodaux et les réactions d’appui supposées.

Ces dernières peuvent également être éliminées de ce système d’équations si les conditions d’appui n’imposent que des déplacements constants (en particulier égaux à zéro) sur une partie du contour du domaine étudié, ce qui conduit à un système d’équations de même taille que dans une approche basée sur la discrétisation des seuls déplacements.

Pour l’extension aux problèmes matériellement non linéaires, des hypothèses similaires sont utilisées. En particulier, les vitesses sont interpolées par des fonctions de Laplace et déformations sont supposées constantes sur chaque cellule de Voronoi.

Le système d’équations final n’implique que les vitesses nodales. Il peut être résolu pas à pas par intégration temporelle et itérations de Newton-Raphson à chaque pas de temps.

Pour l’extension de cette méthode aux problèmes de LEFM, un nœud est localisé à chaque pointe de fissure. Dans les cellules de Voronoi correspondantes, la discrétisation des contraintes et des déformations contient non seulement un terme constant mais aussi des termes additionnels correspondant aux solutions de la LEFM pour les modes 1 et 2.

Avec cette approche, les coefficients d’intensité de contraintes constituent des variables primaires de la solution. Le système d’équations final ne contient que les déplacements nodaux et les coefficients d’intensité de contraintes.

Finalement, une méthode des éléments naturels étendue (XNEM) est proposée dans laquelle la fissure est représentée par une ligne indépendante des nœuds ou des côtés des cellules de Voronoi.

La discrétisation utilisée en domaine élastique linéaire est enrichie par des fonctions de Heaviside qui autorisent une discontinuité des déplacements au niveau de la fissure.

Dans les cellules contenant une pointe de fissure, les contraintes et les déformations sont aussi enrichies par des termes additionnels correspondant aux solutions de la LEFM pour les modes 1 et 2.

Ici aussi, les coefficients d’intensité de contraintes constituent des variables primaires de la solution.

Une série d’applications numériques sont réalisées afin d’évaluer ces développements.

(12)

Les conclusions suivantes peuvent être tirées. Elles s’appliquent à tous les cas (élastique linéaire, non linéaire, mécanique de la rupture) :

En l’absence de force volumique, le calcul numérique d’intégrales sur l’aire du domaine est évité : seules sont nécessaires des intégrales numériques sur les côtés des cellules de Voronoi. L’utilisation de 2 points de Gauss suffit pour passer le patch test.

Les dérivées des fonctions d’interpolation nodales ne sont pas nécessaires dans cette formulation.

La formulation passe le patch test.

Les problèmes impliquant des matériaux quasi incompressibles sont résolus sans verrouillage.

Les applications numériques montrent que les solutions fournies par l’approche développée convergent vers les solutions exactes et se comparent favorablement avec celles de la méthode des éléments finis.

(13)

摘要

本论文在2D极小变形领域内发展了一种基于FRAEIJS de VEUBEKE (FdV) 变分原理的自 然邻点法。

自然邻点法是众多无网格方法的一种。传统的无网格方法都是基于虚功原理。对一定范围 内的一系列节点利用插值函数进行离散化(在节点之间而不是基于有限单元的概念)。

在无网格方法中有两点值得注意:面积分的数值计算以及边界条件ui =u~i的施加。

本文的创新点在于把自然邻点法和FdV变分原理结合起来。

FdV变分原理提供了对位移域,应力域,应变域以及支撑反力域进行独立离散化的可能。

本文中,该方法首先应用于线弹性问题,随后延伸至材料非线性以及线弹性断裂力学问 题。

在所有的这些应用中,根据自然邻点法,对应于分布在力学模型内(包括边界)的N个节 点,建立NVoronoi单元。

对线弹性问题进行如下离散化假设:

1. 假设在节点之间对位移进行拉普拉斯插值。

2. 假设在施加位移边界条件的Voronoi单元的每条边上产生的支撑反力为常数。

3. 假设每个Voronoi单元的应力为常数。

4. 假设每个Voronoi单元的应变为常数。

由应力和应变的离散化假设引起的多余的自由度可以消除,从而最终的方程系统只包含位 移和支撑反力。

如果对模型施加的边界条件中,施加的位移为常数,那么支撑反力也可以从方程系统中消 除。最后,得到一个和经典位移域方法完全相同的方程系统。

在材料非线性问题中使用了相似的离散化假设。不同之处在于对速率进行拉普拉斯插值,

并且假设每个Voronoi单元的应变率为常数。

最终的方程系统只包含速率。使用时间积分和牛顿-拉斐逊迭代法可以对方程求解。

在该方法对线弹性断裂力学问题的应用中,将裂纹端点作为一个节点。在包含该节点的单 元内,应力域和应变域的离散化包括一个常数部分和一个基于线弹性断裂力学的模式1 模式2的部分。

在该方法中,应力强度系数转化为求解中的一个主要变量。最终的方程系统只包含节点位 移和应力强度系数。

最后,在线弹性断裂力学问题中发展了一种扩展自然邻点法。该方法中,使用一条线代表 裂纹,这条线不必和裂纹端点以及单元的边重合。

扩展自然邻点法在线弹性问题中使用的离散化假设条件的基础上,引用Heaviside函数对位 移的离散化进行了加强,从而允许了裂纹附近可以存在不连续位移。

在包含了裂纹端点的单元中,应力域和应变域的离散化同样包括一个常数部分和一个基于 线弹性断裂力学的模式1和模式2的部分。并且应力强度系数同样转变为求解中的主要变 量。

在本方法对这些力学问题(线弹性,非线性,线弹性断裂力学)的应用中,有两种施加位 移边界条件的方式:

(14)

根据FdV变分原理,位移边界条件ui =u~i可以施加平均值。所以本方法可以兼容任 何位移函数 u~i =u~i(s)

根据自然邻点法,在边界上两个相邻节点之间的位移插值函数是线性的。所以,如 果施加的位移 u~i 在两个相邻节点之间是线性的,那么对该位移可以施加准确值。

u~i =0。这种情况等同于对这两个相邻节点施加准确值为零的位移。

本论文给出了一系列的算例和应用,验证了该方法的有效性,并得出下列结论:

1. 在没有体积力的条件下,本方法避免了面积分的数值计算,只进行了线积分的数值 计算。(在对线弹性断裂力学的应用中,包含裂纹端点的单元内需要一些面积分,

但这些积分可以求得解析解。)

2. 避免了对节点形函数的求导。

3. 成功通过分片试验。

4. 避免了不可压缩材料的locking

5. 本方法得到的数值结果收敛于理论精确解,并且:

本方法和“the direct integration of the equation”方法对弹塑性梁弯曲的计算 有很好的收敛性。

本方法对正方形带孔膜的计算结果优于有限元法。

(15)

Abbreviations and Notations Abbreviations

FdV Fraeijs de Veubeke FEM Finite Element Method

LEFM Linear Elastic Fracture Mechanics LFMVC Linear Fracture Mechanics Voronoi cell

NEM Natural Elements Method (or Natural nEighbours Method) OVC Ordinary Voronoi Cell

XNEM eXtended Natural nEighbours Method

2D Two dimensional

3D Three dimensional

Roman Letters

a Length of a crack

A Area of the domain AC Cracked area

AI Area of the Voronoi cell I

a Additional degrees of freedom attached to the nodes belonging to the set Λ expressed in global reference system

b Additional degrees of freedom attached to the nodes belonging to the set Λ expressed in local reference system

C Domain contour

C A condition parameter CI Contour of the Voronoi cell I Cijkl Hooke’s tensor

( )

X

C A function labeled as the crack function

(AB)

d , Distance between 2 points A and B

E Young’s modulus

Et Tangent modulus

f max Maximum theoretical displacement of the beam axis

F Body force

) (X

Fk a set of 4 functions inspired by the displacement field near a crack tip for fracture mode 1 and fracture mode 2

G Energy release rate in LEFM

G Shear modulus

h Height of a beam

hp Plastic modulus

(16)

( )X

H Heaviside function

I Moment of inertia of a beam

KI,KII Stress intensity parameters of the LFMVC

Σ1

K ,KΣ2 Generalized stress parameters associated with the LFMVC

2 1,K

K Stress intensity factors of fracture modes 1 and 2 respectively in LEFM L Length of a beam

M Number of Voronoi cell edges composing the domain contour M Bending moment in a beam

Mi Outward normal to a Voronoi cell in the local reference system attached to a crack tip

Mt Number of Voronoi cell edges on which surface tractions are imposed Mu Number of Voronoi cell edges on which displacements are imposed N Number of Voronoi cells

Ni Outward normal to a Voronoi cell in the global reference system NC Number of cells of type C in the XNEM method

Nel Number of nodes used for finite element analysis NH Number of cells of type H in the XNEM method NO Number of cells of type O in the XNEM method NP Number of integration points

Pij Assumed stresses in a local reference system attached to a crack tip θ

,

r Polar coordinates

ri Support reactions on the part of the solid boundary submitted to imposed displacements

K

Ri Out of balance force at node K Re Initial yield limit

SK Edge n°K of a Voronoi cell

St Part of the solid boundary where surface tractions are applied Su Part of the solid boundary where displacements are imposed t Thickness of a 2D solid

Ti Surface tractions

ui Displacement field in the global reference system

analy

u Analytical value of the nodal displacement unum Numerical value of the nodal displacement u~i Imposed displacements on the solid boundary

vi Displacement field in the local reference system attached to a crack tip V Potential energy of the applied forces

w Width

(17)

W Strain energy num

W_ Numerical result of strain energy theory

W_ Theoretical result of strain energy )

(

W εij Strain energy density function in the constitutive equation of a solid )

(IP

W Weight of the integration point IP

Y0 Initial yield limit of an elasto-plastic material

Greek Letters

α Angle between the local reference system attached to a crack tip and the global reference system

β Material parameter γ Deformed configuration

γij Strain field near the crack tip expressed in the local reference system attached to the crack tip

εij Cauchy strain tensor

ˆεij Deviatoric part of Cauchy strain tensor

e

εij Elastic strain tensor

p

εij Plastic strain tensor εm Mean strain

) (K

ΦJ the Laplace interpolation function associated with node J ν Poisson’s ratio

λH Set of nodes the shape function support of which is cut by the crack λC Set of nodes the shape function support of which contains the crack tips σij Cauchy stress tensor

ˆij

σ Deviatoric part of Cauchy stress tensor

e

ˆij

σ Elastic trial stress tensor σm Mean stress

exact

σ Exact stress σmin Minimum stress σmax Maximum stress

Σij Assumed stresses in the solid

τij Stress field near the crack tip expressed in the local reference system attached to the crack tip

χ Bulk modulus

)

χ(t Curvature of a deformed beam (function of time) Λ Union of the sets λH and λC

Domain

(18)

Γ Initial configuration

ξ Intrinsic coordinate along an edge of a Voronoi cell

Références

Documents relatifs

It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the

(1986) Variational principles and two-fluid hydrodynamics of bubbly liquid / gas mixtures. (1990) Variational theory of mixtures in

A natural neighbour method for linear elastic problems based on Fraeijs de Veubeke variational principle, Serge Cescotto and Xiang Li, Int.

With the present approach, in the absence of body forces, the calculation of integrals over the area of the domain is avoided: only integrations on the edges of the Voronoi cells

The Fraeijs de Veubeke variational principle has been used to develop a natural neighbours method in which the displacements, stresses, strains and surface support reactions can

The additional degrees of freedom linked with the assumed stresses and strains can be eliminated at the level of the Voronoi cells, finally leading to a system of equations of the

In the following we address these questions and we present a variational principle which satisfies the following properties: provided that the involved structure Lie group is

- We show that the equilibrium state of an infinite system of interacting hard spheres can be obtained in the grand canonical formalism by means of a variational