• Aucun résultat trouvé

Erratum: Fast simulation of Gaussian random fields[Monte Carlo Methods Appl. 17 (2011), 195-214]

N/A
N/A
Protected

Academic year: 2021

Partager "Erratum: Fast simulation of Gaussian random fields[Monte Carlo Methods Appl. 17 (2011), 195-214]"

Copied!
3
0
0

Texte intégral

(1)

Monte Carlo Methods Appl. 19 (2013), 73 – 75

DOI 10.1515 / mcma-2013-0003 © de Gruyter 2013

Erratum

Fast simulation of Gaussian random fields

[Monte Carlo Methods Appl. 17 (2011), 195–214]

Annika Lang and Jürgen Potthoff

Abstract. In the paper “Fast simulation of Gaussian random fields”, a typo occurred. In-stead of .pk1kd/i D ki= li it should read .pk1kd/i D .ki Ni=2/= liin Algorithm 3.1,

Remark d). For convenience of the reader we reproduce below the complete corrected algorithms.

Keywords. Gaussian random fields, fast Fourier transform, simulation. 2010 Mathematics Subject Classification. 65C05, 65C50, 60G60, 60H40.

Algorithm 3.1. Remarks

a) The functions FFT and FFT 1include all necessary rescaling depending on the used FFT algorithm and the integers Ni.

b) A is a d -dimensional complex-valued array, B is real-valued.

c) xk1kd denotes the grid point corresponding to the integers .k1; : : : ; kd/.

The grid points are distributed equidistantly in each direction, i.e., the dis-tance of two arbitrary neighbor grid points in direction ei is given by a con-stant xi.

d) The points pk1kd in the Fourier domain are given by

.pk1kd/i D .ki Ni=2/= li for i D 1; : : : ; d .

Input

a) D a d -dimensional rectangular region with l1; : : : ; ld lengths of the edges, b) N1; : : : ; Nd the numbers of discretization points in each direction, all even, c) 1=2a symmetric, positive function on Rd,

d) R. / a function that generates independentN .0;jNj 1/-distributed random numbers.

(2)

74 A. Lang and J. Potthoff

Output

GRF B on D, where the covariance is given by the Fourier transform of . forki D 0; : : : ; Ni 1; i D 1; : : : ; d do B.k1; : : : ; kd/ R. /I end for A FFT BI forki D 0; : : : ; Ni 1; i D 1; : : : ; d do A.k1; : : : ; kd/ A.k1; : : : ; kd/ .pk1kd/ 1=2 jDj 1I end for B FFT 1AI Algorithm 3.2.

Remarks Same as in Algorithm 3.1.

All calculations have to be done modulo Ni in the i -th direction. Input Same as in Algorithm 3.1.

Output Same as in Algorithm 3.1.

forki D 0; : : : ; Ni 1, i D 1; : : : ; d 1, kd D 0; : : : ; Nd=2 do ifki 2 ¹0; Ni=2º, for all i D 1; : : : ; d then

Re A.k1; : : : ; kd/ R. /  .pk1kd/ 1=2 jDj 1I Im A.k1; : : : ; kd/ 0I else Re A.k1; : : : ; kd/ 2 1=2R. / .pk1kd/ 1=2 jDj 1I Im A.k1; : : : ; kd/ 2 1=2R. / .pk1kd/ 1=2 jDj 1I Re A.N1 k1; : : : ; Nd kd/ Re A.k1; : : : ; kd/I Im A.N1 k1; : : : ; Nd kd/ Im A.k1; : : : ; kd/I end if end for B FFT 1AI Algorithm 3.3.

Remarks Same as in Algorithm 3.2. Input Same as in Algorithm 3.2. Output Same as in Algorithm 3.2.

function create_random_field(D; N1; : : : ; Nd) A complex_array.N1; : : : ; Nd/;

(3)

Erratum: Fast simulation of Gaussian random fields 75 set_array(¹N1; : : : ; Ndº, ¹ º, A); B FFT 1AI end function function set_array(¹N1; : : : ; Njº, ¹kj C1; : : : ; kdº, A) forki D 0; : : : ; Ni; i D 1; : : : ; j 1, kj D 1; : : : ; Nj=2 1 do Re A.k1; : : : ; kd/ 2 1=2R. / .pk1kd/ 1=2 jDj 1I Im A.k1; : : : ; kd/ 2 1=2R. / .pk1kd/ 1=2 jDj 1I Re A.N1 k1; : : : ; Nd kd/ Re A.k1; : : : ; kd/I Im A.N1 k1; : : : ; Nd kd/ Im A.k1; : : : ; kd/I if (j¹N1; : : : ; Njºj D 1) then Re A.0; : : : ; kd/ R. /  .p0 k2kd/ 1=2 jDj 1I Im A.0; : : : ; kd/ 0I Re A.N1=2; : : : ; kd/ R. /  .pN1=2 k2kd/ 1=2 jDj 1I Im A.N1=2; : : : ; kd/ 0I else set_array(¹N1; : : : ; Nj 1º, ¹0; kj C1; : : : ; kdº, A); set_array(¹N1; : : : ; Nj 1º, ¹Nj=2; kj C1; : : : ; kdº, A); end if end for end function

Received February 2, 2013; accepted February 18, 2013. Author information

Annika Lang, Seminar für Angewandte Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.

E-mail: annika.lang@sam.math.ethz.ch

Jürgen Potthoff, Institut für Mathematik, Universität Mannheim, 68131 Mannheim, Germany.

Références

Documents relatifs

To tackle large dimensions, other methods have been devised that are based on a non-independent sampling: Markov chain Monte Carlo methods (MCMC).. The prototype of MCMC methods is

VisGenome supports QTL analysis by showing QTLs and the genes within each QTL in two species in one display, along with the supporting experimental data.. It also shows data for

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

It is of course possible to generalize the little example from a probability λ = 1/6 to a general value of λ, and from a single spin to a general statistical mechanics problem

A Markov chain satisfying the detailed balance condition admits f ν as an invariant

Stochastic Simulation and Monte Carlo Methods:.. Exercise

Stochastic Simulation and Monte Carlo Methods:.. Exercise

Distributed Control and Stochastic Analysis of Hybrid Systems Supporting Safety Critical Real-Time Systems Design. WP8: Accident