• Aucun résultat trouvé

Gas hydrates, fluid venting and slope stability on the upper Amazon deep-sea fan

N/A
N/A
Protected

Academic year: 2021

Partager "Gas hydrates, fluid venting and slope stability on the upper Amazon deep-sea fan"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02156661

https://hal.archives-ouvertes.fr/hal-02156661

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gas hydrates, fluid venting and slope stability on the upper Amazon deep-sea fan

D. Praeg, C Silva, A Reis, J-M Ketzer, S Migeon, Vikram Unnithan, Rodrigo Perovano, Alberto Cruz, Christian Gorini

To cite this version:

D. Praeg, C Silva, A Reis, J-M Ketzer, S Migeon, et al.. Gas hydrates, fluid venting and slope stability on the upper Amazon deep-sea fan. I Simpósio Brasileiro �de Geologia e Geofísica Marinha (I SBGGM), Nov 2018, Rio de Janeiro, Brazil. P2GM Projetos e Produções, Rio de Janeiro, Brasil, 31, pp.217-218, Anais do I Simpósio Brasileiro�de Geologia e Geofísica Marinha (I SBGGM). �hal-02156661�

(2)

Gebco 2008, 250 m contours   5˚N   4˚N   3˚N   50˚W   49˚W   48˚W   47˚W  

References

Carlson RL et al. (1986). Empirical reflection travel time versus depth and velocity versus depth functions for the deep-sea sediment column. Journal of Geophysical Research 91 (B8), 8249-8266.

Ketzer JM et al. (2018) Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Marine Letters 38 (5), 429-438

Maslin M et al. (1998) Sea-level and gas-hydrate–controlled catastrophic sediment failures of the Amazon Fan. Geology 26:1107-1110. Perovano R (2012) Análise estrutural da tectônica gravitacional na bacia da Foz do Amazonas a partir da interpretação de dados

sísmicos e de modelagem experimental. PhD thesis, Universidade Federal Fluminense, Niterói, pp. 296.

Reis AT et al. (2016) Effects of a regional décollement level for gravity tectonics on late Neogene to recent large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Marine and Petroleum Geology 75:29-52.

Riedel M et al. (2010) Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom-simulating reflector distributions, heat-probe measurements and borehole temperature data. Marine Geophysical Research 31 : 1-16.

Gas Hydrates, Fluid Venting and Slope Stability on the Upper Amazon Deep-Sea Fan

Praeg D (

daniel.praeg@geoazur.unice.fr

)

1-3

; Silva C

1

; Reis AT

4

; Ketzer JM

5

; Migeon S

3

; Unnithan V

6

; Perovano R

4

; Cruz A

7

; Gorini C

7

1

Universidade Federal Fluminense (UFF), Niterói RJ;

2

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS),

Porto Alegre RS;

3

Géoazur, Valbonne, France;

4

Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro

(UERJ);

5

Linnéuniversitetet, Sweden;

6

Jacobs University Bremen, Germany;

7

Sorbonne Université, Paris, France

0   20   40   60   80   100   0   2   4   6   8   10   12   T g ra d ie n t (˚C /k m )

BSR

?   1500 T W T (ms) vents

Evidence of

upward flux of

warm gas-rich

fluids through

thrust-folds

(rooted on

detachments at

depths of kms)

TWT ( ms ) fluid vents vents 10 0 KM 3 0 KM 2000 Te m p er atu re g ra d ie n t B SR -s ea fl o o r (˚C /k m ) 100 80 60 40

A

B

A

A

1170 m WD

Gradients 1.5-10 x

background

1-BP-1A-APS (projected 1.5 km) 30.4˚C/km

4. BSR patches à spatially variable temperature gradients + seafloor fluid vents

 

BSR

base MHSZ@ 20˚C/km  

5. Bottom-up gas hydrate & slope dynamics

 

•  Changes in upward flux of fluid (heat) will modify gas hydrate stability from below

•  Increased flux during thrust episodes will thin hydrate-rich zone over wide areas

•  Reduced sediment strength at base of stability zone may trigger large landslides

≈ 1 km

 

≈ 10 km

 

①  thrust-faulting

② 

③ 

④ 

⑤ 

②  upward flux of

fluids & heat

③  thinning of

hydrate-rich

stability zone

④  enhanced

fluid venting

⑤  upper fan slope

failure

past

failures

 

potential failure

volume

 

Ø  Elongate BSR patches on the upper Amazon fan linked to upward flux of gas-rich

fluids through thrust-folds recording collapse above deep detachments

Ø  Tectonically-driven changes in fluid flux will thin gas hydrate-rich zones from below

and may trigger recurrent giant slope failures from the upper fan

Ø  Bottom-up mechanism independent of climate-driven changes in hydrate stability

6. Conclusions

3. BSR depth inversion to temperatures

 

Inversion method (after Riedel et al. 2010)

•  BSR TWT à depth (velocity profile from Carlson et al. 1986)

•  Depth of BSR à hydrostatic pressure

•  Pressure at BSR à temperature at phase boundary (MHSZ*)

•  Bottom water temperatures (WOD) à geothermal gradients

y  =  -­‐6.246E-­‐04x2  +  5.751E+00x  -­‐  

7.604E+03   0   200   400   600   800   1000   1200   1500   1750   2000   Dep th  b sf  ( m)   Interval  Velocity  bsf  (m/s)   Carlson  et   al.  1986   Riedel   2001   0   10   20   30   40   50   60   70   80   90   0   20   40   Pr es su re  (MP a)   Temperature  (˚C)   Methane hydrate in seawater 3.5% salinity) from Sloan 1998)

Bottom water

temperatures

Temperature  (˚C)  

Velocity-depth

profiles

Hydrate phase

boundary*

DSDP global correlation to seismic (Carlson et al. 1986) To compare, seismic stack velocities Cascadia

(Riedel 2001) Amazon fan

data in World Ocean Database Wa ter  d ep th  (m)  

2. Mapping bottom simulating reflections (BSRs)

 

Thrust-fold axes (this study)   Normal faults (Perovano 2012)   Multichannel seismic lines (ANP)  

Results :

•  linear BSR

‘patches’

•  water depths

700-2250 m

•  aligned with

thrust-folds

•  total area

>6800 km

2

1. Amazon fan & slope instabilities

 

R ei s et a l. (2 01 6)

2D/3D BSR inversion (250 m grid)

Spatial variation at

two wavelengths :

•  22-50˚C/km

(10

3

-10

4

m areas)

- mainly >30˚C/km

•  50-100˚C/km

(10

1

-10

2

m – vents)

3D seismic area

Multibeam survey area

(Ketzer et al. 2018)

From Ketzer et al. (2018) :

gas hydrate sample water column gas flare

3D seismic BSR inversion

(25 m grid)

B

A

C

C’

fluid vents 1-BP-1A-APS Te m p er atu re g ra d ie n t B SR -s ea fl o o r (˚C /k m ) 22 30 40 50 60 70 80 90 200

*

C’

B

750-900 m WD Mud volcanoes + pockmarks

Mud

volcanoes

3D seismic bathymetry (12.5 m)

Te

m

p

er

atu

re

g

ra

d

ie

n

t

B

SR

-s

ea

fl

o

o

r

(˚C

/k

m

)

22 30 40 50 60 70 80 90 95

① 

Acknowledgement : This work is funded in part by CAPES-IODP (PVE, UFF 2018-2019) and in part by

the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 656821 (project SEAGAS, PUCRS 2016-2018, Géazur 2019-2020).

C

base MHSZ@ 30˚C/km   550 m contour (≈ upper limit MHSZ*)  

*MHSZ = Methane hydrate stability zone

 

Possible triggers of recurrent upper slope failures :

•  Changes in gas hydrate stability (Maslin et al. 1998)

•  Syn-sedimentary collapse tectonics (Reis et al. 2016)

Large-scale slope

failures :

•  gravity-driven

tectonic collapse

•  giant landslide

complexes

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Mais cela ne doit pas nous faire oublier que nous sommes très souvent dans la situation inverse où ce sont les données qui sont là, et que l'on cherche une théorie qui

However, our PCA analysis showed a closer genetic proximity between maize landraces from the Eastern part of SWF and Northern Flint landraces located in the North of Europe

The increase of pressure drop that occurs when hydrates are formed in pipelines is controlled by the friction factor under turbulent flow conditions or by apparent viscosity of

We propose an alternating direction method of multiplier (ADMM) for the uni- lateral (frictionless) contact problem with an optimal parameter selection.. We first introduce an

The development of mass spectrometry (MS) binding assays by several teams attempts to circumvent some of these limitations by directly measuring the binding kinetics of a

Si on représente sur la Figure 49 la quantité d’énergie du rayonnement solaire cumulée à la surface de la chaussée entre l’heure de début de prévision (15H00) et de coucher

At scales much larger than the river width, relation (3.6) is a boundary condition for the Poisson equation controlling the water table elevation around the streams, since it imposes