• Aucun résultat trouvé

Unwrapping microcomputed tomographic images for measuring cortical osteolytic lesions in the 5T2 murine model of myeloma treated by bisphosphonate

N/A
N/A
Protected

Academic year: 2022

Partager "Unwrapping microcomputed tomographic images for measuring cortical osteolytic lesions in the 5T2 murine model of myeloma treated by bisphosphonate"

Copied!
8
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Micron

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r o n

Unwrapping microcomputed tomographic images for measuring cortical osteolytic lesions in the 5T2 murine model of myeloma treated by bisphosphonate

Mambaye N’Diaye

a

, Hélène Libouban

a

, Eric Aguado

a,b

, Béatrice Bouvard

a,c

, Maurice Audran

a,c

, Daniel Chappard

a,∗

aGEROMGroupeEtudesRemodelageOsseuxetbioMatériaux,LUNAMUniversité,IRIS-IBSInstitutdeBiologieenSanté,CHUd‘Angers,49933AngersCedex, France

bUPSP“BiologieetBiomatériauxduTissusOsseuxChirurgieExpérimentale”,ONIRISNationalVeterinarySchoolofNantes,LUNAMUniversité,Routede Gâchet,BP44706,F44307Nantescedex03,France

cServicedeRhumatologie,CHUd‘Angers,49933AngersCedex,France

a r t i c l e i n f o

Articlehistory:

Received8May2014 Receivedinrevisedform 15September2014 Accepted2October2014 Availableonline13October2014

Keywords:

Myeloma Bisphosphonate Corticalbone Osteolysis MicroCT

a b s t r a c t

Multiplemyelomaisduetotheproliferationofmalignantplasmacellswhichincreasethenumberof osteoclastsleadingtotrabecularandcorticalboneosteolysis.The5T2MMmurinemodelreproducesthe humandiseaseandmicrocomputedtomographyisaprecisetooltoinvestigateboneloss.Bisphospho- nates(zoledronicacidorpamidronate)areusedinpreventingosteolysis.However,lossofcorticalbone innotpossibletoquantifybyhistomorphometryonhistologicalsectionsormicroCTimages.

Osteolysiswasstudiedinmicegraftedwiththe5THLsublinetoseeifonedrugwasmoreactiveafter 10weeks.Miceweredistributedinto4groups:control,untreated,treatedwithpamidronateorwith zoledronicacid.Theleftfemurswereembeddedundecalcifiedandsectionedat7␮m.Therighttibias andfemurswereanalyzedbymicroCTandtrabecularmorphometricparameterswereobtained.Cortical boneosteolysiswasanalyzedbydevelopinganewalgorithmtounwrapmicroCTsectionsofthecortices, allowingmeasurementofthenumberofperforations,porosityandmeanperforationarea.

Thebisphosphonateshadnosignificanteffectonthetumorgrowthasevidencebytheabsenceofeffect ontheM-proteinlevel.Corticalperforationswereevidencedonhistologicalsectionsandtheirnumber seemedtobereducedbybothbisphosphonates.MicroCTwasusedtoquantifythetrabecularbone:a bonelosswasevidencedintheuntreatedmyelomagroupandbothbisphosphonatesappearedequalto preservetrabecularmass.However,thenumberandsizeofcorticalperforationscannotbedetermined on3Dmodels.UnwrappingmicroCTimagesprovidedflatimagesallowingaprecisedeterminationof corticalperforations.Pamidronatedidnotreducethenumberandsizeofcorticalperforationsbutsig- nificantlyreducedporosity.Zoledronicacidappearedsignificantlysuperiorandconsiderablyreducedall parameters.

UnwrappingmicroCTimageisanewmethodallowingthemeasurementofcorticalperforationsin bonemalignancies,aparameterthatcannotbemeasuredcorrectlyon2Dhistologicalsections.

©2014ElsevierLtd.Allrightsreserved.

Abbreviations: 2D,twodimensions;3D,threedimensions;BM,bonemarrow;BP,bisphosphonates;BV/TV,trabecularbonevolume;Ec.Po,endostealporosity;FPP, farnesylpyrophosphate;IL-,interleukine;MicroCT,microcomputedtomography;MM,multiplemyeloma;N.Po,numberofpores;Pam,pamidronate;PamMM,micetreated withpamidronate;PBS,phosphatebufferedsaline;Po.Ar,meanareaofacorticalperforation;Ps.Po,periostealporosity;RANKL,receptoractivatorofNF␬Bligand;Tb.N, trabecularnumber;Tb.Sp,trabecularseparation;Tb.Th,trabecularthickness;UMM,micewithuntreatedmyeloma;VOI,volumeofinterest;Zol,zoledronicacid;ZolMM, micetreatedwithzoledronicacid.

Correspondingauthorat:GEROM–LHEA,IRISIBSInstitutdeBiologieenSanté,LUNAMUniversitéNantesAngersLeMans,CHUd‘Angers,49933AngersCedex,France.

Tel.:+33244688349;fax:+33244688351.

E-mailaddress:daniel.chappard@univ-angers.fr(D.Chappard).

http://dx.doi.org/10.1016/j.micron.2014.10.001 0968-4328/©2014ElsevierLtd.Allrightsreserved.

(2)

108 M.N’Diayeetal./Micron68(2015)107–114 1. Introduction

Multiplemyeloma(MM)isaneoplastichematologicaldisease characterizedby the production of a monoclonal gammopathy (M-protein)and plasma Bcell infiltrationof thebone marrow.

Osteolyticlesionswilldevelopinabout80–90%ofMMpatients;

Theyareduetoanincreasedosteoclasticactivityresultingfrom interactionofplasmacellswiththebonemarrowenvironmentin associationwithadecreaseoftheosteoblasticfunction(Bataille etal.,1989,1991).Severalcytokineshavebeenshowntoberespon- sibleforanincreaseinosteoclastnumberandactivityincluding upregulationofRANKL(receptoractivatorofNF␬Bligand),repres- sionofosteoprotegerin,overproductionofIL-6andmacrophage inflammatoryproteinMIP-1␣bytheplasmacellswithinthebone marrowmicroenvironment(Lentzsch etal., 2003; Pearseet al., 2001;Roodman,2009).Inparallel,thereisanincreasedexpression ofDickkopf-1protein,IL-3 andsecretedfrizzled-relatedprotein 2which provokeaninhibition oftheosteoblastic activity(Tian et al., 2003). This complex alteration in the cytokine network withinbonemarrow invadedbyplasma cellsinduces a vicious circle betweenbone cells and themalignant cells. This is also responsible for the very specific aspect of bone lesions on X- rayimageswhichappearas multiple“punched-out”holes (also coinedcorticalperforations)withoutreactivesignofreconstruc- tionofthesurroundingbone(Dimopoulosetal.,2009).However theselesionsareonlyapparentwhen30–50%ofthebonemin- eraldensityhasbeenlost(Dimopoulosetal.,2009;Dinteretal., 2009).This radiologicalfindingcorresponds toa complete per- forationof thebone corticedeveloped in contact withnodules of plasma cellpresent in thebone marrow. Histologicalstudy, computed tomography or magnetic resonance imaging clearly illustrate that a perforation develops from the endosteal side andprogressestotheperiostealsurfaceofthecortices(Bauerle etal.,2009;Healyetal.,2011).InanimalmodelsofMMsuchas the5T2MMmodel reportedin theC57BL/KaLwRijmouse, sim- ilar cortical perforations (corresponding toosteolytic foci with disappearanceof the wholecortical thicknessfrom the endos- teumtotheperiosteum)havebeenreported(Radletal.,1985).

These modelsare useful tounderstand thepathophysiology of thediseaseand toevaluatenewpre-clinicaltherapeuticstrate- giesand pathophysiologicalhypotheses(Benameuret al.,2013;

Vanderkerkenetal.,2003,2005).Aspotentinhibitorsofosteo- clasts,bisphosphonates(BPs)have beenproposedveryearlyas bone-sparingagents inMM patients(Belch etal., 1991;Terpos etal.,2011).However,severalgenerationsofBPshavebeendevel- oped withincreasinganti-osteoclastic properties.Among them, amino BPs are the most active. Numerous clinical trials have showntheinterestoftheaminoBPspamidronate(Pam)andzole- dronic acid (Zol) in the prevention of osteolytic bone lesions andhypercalcemiain MM patients. Althoughthesecompounds are active in preventing trabecular bone loss, their activityon thecorticalbonelossappearslesspronounced(Chappardetal., 1991;Liboubanetal.,2003).Asingleanimalstudyconductedin osteosarcoma-inducedosteolysisintherathasraisedthepossibil- itythatZolcouldbeactiveoncorticallesionsbutnoquantitative evaluation of cortical perforations was done (Labrinidis et al., 2010).

Theaimofthepresentstudywastodevelopanewmethodto quantify,in3D,theefficiencyoftwoaminoBPscurrentlyusedin thetreatmentofMMpatients(PamandZol)inthe5T2MMmodelin themouse.Thetrabecularandcorticalbonelossweredetermined bymicrocomputedtomography(microCT).Becausenoalgorithm existstoquantifytheamountofcorticalperforations,wedevel- oped a methodology ofunwrapping imagesof corticalbone to evaluatethenumber,sizeandsurfaceofthesecorticalosteolytic defects.

2. Materialsandmethods 2.1. Mice

C57BL/KaLwRijfemalemice6–8-weeks-oldwereusedforthe study(Harlan,Gannat,France).Theywereacclimatedforoneweek tothelocalvivarium conditions (24C and 12h/12hlightdark cycle)wheretheyweregivenstandardlaboratoryfood(UAR,Ville- moisonsurOrge,France)andwateradlibitum.TheAnimalCareand UsecommitteeattheUniversityofAngersapprovedallprocedures (experimentation#49028).

2.2. Culturecellline

We used the 5THL cell subline as previously characterized (Croese et al., 1987; Libouban et al., 2004). 5THLcells can be propagated into youngsyngeneic mice by intravenous transfer ofthediseasedbonemarrow(BM).Progressionofthediseasein sevenrecipient micewasassessed bymeasuringtheserumM- proteinlevelusingagarelectrophoresis(HydragelProtein,SEBIA, Issyles Moulineaux, France). Around6 weeks post-injection of 5THL,micehada detectableserumM-proteinandwereeutha- nizedafter10–12weeksbycervicaldislocation.Femursandtibias weredissected,cleanedofsurroundingtissuesandBMwasflushed inDulbecco’smodifiedessentialmedium(DMEM.mod,GIBCO,Life Technologies,France)supplementedwithpenicillin-streptomycin, amphotericin-fungizoneandpyruvate.BMcellswerewashedonce inDMEM.mod.MononuclearcellswereisolatedbyaLympholyte- Mcentrifugationgradient(Cedarlane,Hornby,Ontario,Canada)at 1250gfor20min.Mononuclearcellswerethenwashedtwicein DMEM.modandcounted.

2.3. Experimentaldesign

Asrecommendedinallpapersconcernedwiththe5TMMmodel, mice of 6–8 weeks old were used (Vanderkerken et al., 2003, 2005).Sixtyfivemicewereinjectedwith1.5×106 5THLcellsin thetailveinand8additionalmicewereusedascontrolanddid notreceivethemalignantcells(Controlgroup).Theinjectedmice weredivided in 3 groups accordingto thetreatmentreceived:

25micereceivedaweeklyinjectionofphosphatebufferedsaline (PBS)andconstitutedtheuntreatedMMgroup(UMM)andwere usedtomeasuretheimportanceofthelossoftrabecularandcor- ticalbone.Twentymiceweretreatedbysubcutaneousinjection ofpamidronate(0.4mg/Kg/day,5daysperweek)andconstituted thePamMMgroup.Twenty miceweretreatedbysubcutaneous injectionofzoledronicacid(120␮g/Kg,2daysperweek)andcon- stitutedtheZolMMgroup(Croucheretal.,2003;Patakietal.,1997).

PamandZol(Novartis,Basel,Switzerland)wereobtainedfromthe hospitalpharmacy.ThesedosagesforPamandZolweresimilarto thoseusedforthetreatmentofhumansaccordingtothesupplier ofthedrugs(Green,J.,NovartisPharma,personalcommunication).

Thesuccessand progressionof thegraftwasascertainedby quantitativeelectrophoreticasaboveat6,8and10weeks.When electrophoresisdidnotevidence theM-proteinat 6weeks,the graftwasfoundunsuccessfulandthemousewasexcluded.Atthe endstageofthedisease(10–12weeks),whenosteolysiscanbe evidencedonX-rayimages(Fig.1),micewereeuthanizedforeth- icalreasonsbeforetheoccurrence of fractures.Theywerebled beforebeingsacrificedbycervicaldislocationandthetibiasand femursweredissectedandfixedinformalin.

2.4. Histologicalanalysis

Theleftfemurswereembeddedundecalcifiedinpoly(methyl- methacrylate). They were cut-dry (7␮m in thickness) on a

(3)

Fig.1.Radiographicaspectofcorticalperforationsonthetibiacrestandonthe femurofmouseoftheuntreatedgroupat10weekspostinjectionof5THLcells.

Notethemultiple“punched-out”holeswhichareidenticaltoimagesseeninhuman myeloma.

heavy-duty microtome equipped with tungsten carbide knives (LeicaPolycutS-RueilMalmaison,France).Sectionswerestained witha modifiedGoldner’strichrome.Allhistologicaltechniques havebeenextensivelydescribedelsewhere(Chappard,2009).

2.5. X-rayandmicrocomputedtomography

-RadiographsofmiceweredoneexvivousingaFaxitronX-ray systemwitha 12cm×12cm CCD camera (Edimex,Le Plessis Grammoire,France)everytwoweekstofollowtheappearance ofosteolyticlesions(Liboubanetal.,2003,2004).TheSkyscan 1172X-raycomputed microtomograph(Bruker MicroCT,Kon- tich,Belgium)wasusedintheconebeamacquisitionmode.The bones(righttibiaandfemur),stillinthefixativetopreventdesic- cation,werescannedaccordingtopreviouslypublishedprotocol at69kV,100␮Aand a0.5mmaluminumfilter.Thepixelsize wasfixedat3.75␮manda0.25 rotationanglewasappliedat eachstep.Foreachbone,astackof2D-sectionswasobtained.

TheCTAnSoftware(Skyscan,release1.10.1.0)wasusedforthe

Fig.2.(A)3DmodelofafemurfromamouseoftheUMMgroup.Notethenumberof perforationsvisibleontheperiostealsurface.Thesectioningplaneindicatesthelevel ofsection(B);(B)the2Dsectionselectedin(A)showingperforationsofthecortical ringandtrabeculaeinsidethecancellousspace;(C)Samesectionafterremovalof thetrabeculae;(D)binarizedimageofsection(C);(E)unwrappedimageofsection D;(F)3Dmodelofallunwrappedimagesviewedfromtheendostealside;(G)3D modelofallunwrappedimagesviewedfromtheperiostealside.

reconstructionofthewhole3Dmodel(Fig.2A)andtomeasure thebonemassandarchitectureatthesecondaryspongiosaof thetibia.Thefirstimageselectedforanalysiswasjustunderthe growthplate(excludingthethinprimaryspongiosa),andthen 6682Dsectionswereselectedforthefemurand800sectionsfor thetibia.Thevolumeofinterest(VOI)wasdesignedbydrawing polygonsonthe2Dsections.Onlyafewnumberofpolygonsneed tobedrawn(e.g.onthefirstsection,severalatthemiddle,andon thefinalsection)sincearoutinefacilitycalculatesalltheinterme- diarymasksbyinterpolation.TheVOIcomprisedonlytrabecular boneandmarrowcavity.Thefollowingparametersweremea- suredintheVOI(TV,inmm3)accordingtotherecommendations oftheAmericanSocietyforBoneandMineralResearch(Dempster etal.,2013).

-Trabecularbonevolume(BV/TV,in%)representsthepercentage ofthecancellousspaceoccupiedbytrabecularboneintheVOI.

-Trabecularthickness(Tb.Th,in␮m),trabecularseparation(Tb.Sp, in ␮m), and trabecular number (Tb.N, in/mm) provide a full descriptionofbonemicroarchitecture.

Then,trabecularbonewasdiscardedbyusingaroutinefacility ofthesoftwareandanewstackofbinaryimagescontainingonly thesectionofcorticalbonewasobtained(Fig.2B–D).

(4)

110 M.N’Diayeetal./Micron68(2015)107–114

Fig.3.Histologicanalysisofundecalcifiedfemur:(A)untreatedmousefromtheUMMgroup;(B)mousetreatedwithpamidronatefromthePamMMgroup;(C)mouse treatedwithzoledronicacidintheZolMMgroup.Arrowsidentifycorticalperforations.Goldner’strichrome;thebarstandfor500␮m.

2.6. Algorithmforunwrapping2Dimagesofbonesections obtainedbymicroCT

Themethodemployedhereisbased ona technique usedin vision technology to unwrap omnidirectional images acquired throughtheuseofacatadioptricsensor.Webasedonthechange ofreferencespacefollowedbyatranslationtounwrapastackof microCTimages.UnwrappingtheimageswasdoneusingaMat- lablab-madesoftware(MathWorks,Natick,MA,release7.10).In theory,weconsiderthatpixelsofeach2Dsectionofcorticalbone werepositionedinanorthogonalreferencewhosecentercoincides withthecenteroftheimage2D(Fig.2D).Thechangeofreference consistedtoexpressthecoordinatesofeachpixeloftheoriginal image2Dintheformofpolarcoordinates.Twocoordinates,andı wereobtainedforeachpixelofimage.Then,thepixelswerecopied inanewmatrixbyputtinginrowandıincolumn(ElKadmiri andMasmoudi,2011;Kepuckaetal.,2012).

Inpracticethealgorithmcanbedescribedasfollows:

Inthefirststep,theunwrappedmatrixwasinitializedandits sizedetermined.Toknowthesizeoftheunwrappedimagematrix, theradiusRandtheperimeterPofthe2Dwrappedimagewere determined;theyrepresentrespectivelythewidthandlength.Each pointofthe2Dwrappedimageisidentifiedbyitsx,ycoordinatesin thematrix.So,themasscenter(xc,yc)ofeach2Dsectionofthestack inaCartesianspacewasdetermined.Then,themasscenterwas translatedtotheoriginoftheCartesiansystem.Aftertranslation, thenewcoordinatesofeachpointwerelinkedtotheformersby therelation:x1=x−xcandy1=y−yc.Inthisway,themeanRand Pcanbeexpressedasfollows:

Rmoy= 1 N

N

1

(xi−xc)2+(yi−yc)2

P=2..Rmoy

In the second step, for each pixel of the unwrapped image matrix,thepolarcoordinates(,)wereobtained.

=i

= Pj ×2whereiandjstandfortherawandcolumnnumber inthematrix.

Inthethirdstep,thepolarcoordinates(,)wereconverted intoCartesiancoordinates(X,Y)asfollows:

[X,Y]=

cos(),sin()

Inthefourthstep,the(X,Y)coordinateswereexpressedinthe orthonormalreferencecenteredinthemiddleofthecenterofthe unwrappedimage.Becausethe0,0originofanimageinMatlab alwaysappearsonthetopleftoftheimage,(X,Y)wereconverted to(X,Y)expressedinthereferenceframecenteredas:

X=X+xc

Y=Y+yc

In thefifth step, each pixel values of thematrix (of the2D wrappedimagewithindex(X,Y))wascopiedinacelldefinedbyits i,jindexesintheunwrappedimagematrix.So,the2Dunwrapped matrixwasconvertedintoanewimagewiththe‘imshow’function ofMatlabandsavedinthe.bmpformat(Fig.2E).Thisprocedure wasrepeatedforall2D bonesectionsof thestack producedby themicroCT;in sucha way,anewstack ofunwrapped images wasobtained.The3Dreconstructionoftheunwrappedbonewas obtainedwiththeAntsoftwareandbothendosteal(Fig.2F)and periosteal(Fig.2G)sidescanbeimaged.

2.7. Measurementofboneperforationsontheunwrappedimages The3Dreconstructionoftheunwrappedbonewastransferred toMatlabsoftware.Twotypesofimageprocessingoperationswere appliedonthe3Dunwrappedimage.Inthefirststepasegmenta- tionwasperformedtodifferentiatebonefromperforations(bone inwhiteandperforations inblack).Inthesecondstep,labeling ofeach perforationwasdoneandtheirnumber N.Powascom- puted.Oneachofbothsurface(periostealandendosteal)ofbone, the total area of thebone unwrapped surface (resp. Ps.Ar and Ec.Arinmm2)andthetotalareaofperforations (Po.Ar,inmm2) were determined. So the periosteal porosity Ps.Po (in %) was derivedas100*Po.Ar/Ps.ArandendostealporosityEc.Po(in%)as 100*Po.Ar/Ec.Ar.

2.8. Statisticalanalysis

StatisticalanalysiswasperformedusingtheSystatstatistical softwarerelease13.0(SystatSoftwareInc.,SanJosé,CA,USA).All datawereexpressedasmean±standarderrorofthemean.Differ- encesbetweengroupswereanalyzedbyanon-parametricANOVA

(5)

Fig.4.3Dreconstructedmodelsoftheuppertibiaextremityinthedifferentgroupsofmice.(A)controlmouse;(B)untreatedmousefromtheUMMgroup;(C)mousetreated withpamidronatefromthePamMMgroup;(D)mousetreatedwithzoledronicacidintheZolMMgroup.

test(Kruskall–Wallis)withtheConover-Inmanpost-hoctest.Dif- ferenceswereconsideredsignificantwhenp<0.05.

3. Results

3.1. EvolutionoftheM-protein

EvolutionoftheM-proteinduringthediseaseisknowntoreflect thetumor growthand representsan indirectevaluation ofthe tumormassinthemouse.Thegraftof5THLcellswassuccessful inthe25casesoftheUMMgroup,17ofthePamMMgroupand14 oftheZolMMgroup.Asexpected,theM-proteinlevelsignificantly increasedineachgroupduringthetimecourseofthedisease.There wasnosignificantdifferencebetweenthegroupsatsix,eightorten weeks.

3.2. Evolutionoftrabecularandcorticalbone

Histologicalanalysisevidencedamassiveinfiltrationofthebone marrow of thefemur in each groupof animals (Fig. 3).Perfo- rationsof thecorticalbone wereeasilyshown;malignant cells

expansioninthesofttissuewasmostoftenlimitedbytheperios- teum.TheamountofperforationsseemedreducedinthePamand Zolgroups.However,due totheshapeof thebone andsection obliquity,nohistomorphometricevaluationofthenumberandsize oftheseperforationscouldbedone.

AnalysiswaseasieronbonesevaluatedbymicroCT.Thetypical aspectofthetibiametaphysisineachgroupappearsinFig.4.The amountoftrabeculaeislimitedinthisstrainofmouseasevidenced inFig.4A.Inthefemur,theaspectsweresimilar.Thetumorpro- vokedanetreductionofthetrabecularnetworkassociatedwith largeperforationsofthecorticalboneduetoincreasedresorption (Fig.4B).InthePamMMandZolMMgroups,trabecularbonewas preservedbutcorticalperforationswerestillnoticed(Fig.4C–D).

Onaquantitativepointofview,thetumorinducedaninsignif- icant decrease in BV/TV (Fig. 5A) in both femur and tibia.

MorphometricresultsarefiguredinTable1.Quantitatively,trabe- cularbonelosswasduetoasignificantreductioninthenumberof trabeculaeassociatedwithaparallelincreaseinTb.Sp.Pamidronate provokedanincreasein BV/TVbothatthefemurand tibia;the number of trabeculaewaselevatedand Tb.Thwassignificantly increasedatthetibiabutnotatthefemur.IntheZolMMgroup,

(6)

112 M.N’Diayeetal./Micron68(2015)107–114

Table1

histomorphometricresultsatthefemurandtibiainthedifferentgroupsofmice.

Control UMM PamMM ZolMM

Femur

BV/TV(%) 3.54±0.4 2.51±0.37 8.27±1.18a,b 5.65±0.29a,b

Tb.Th(␮m) 46±2 51±2 61±1a,b 53±1a

Tb.Sp(␮m) 354±9 664±39a 462±43a,b 481±21a,b

Tb.N(/mm) 0.76±0.06 0.49±0.06 1.35±0.19a,b 1.078±0.05a,b

N.Po 1.9±0.3 31.2±2.9a 32.7±2.23a 20.15±3.28a,b,c

Po.Ar(␮m2) 12±0.02 79.34±12.3a 88.99±12.9 32.35±9.0a,b,c

Ps.Po(%) <0.01 10.18±1.43a 6.85±0.98a 1.89±0.48a,b,c

Tibia

BV/TV(%) 4.28±0.68 3.93±0.55 7.12±0.81a,b 8.58±0.49a,b

Tb.Th(␮m) 49±2 51±2 55±2a 62±7a

Tb.Sp(␮m) 414±26 638±27a 455±30b 404±21b

Tb.N(/mm) 0.86±0.11 0.74±0.1a 1.28±0.14a,b 1.53±0.13a,b

N.Po 2.25±3.14 43.13±3.97a 42.25±5.13a 23.93±5.01a,b,c

Ps.Po(%) 0.06±0.01 7.03±1.15a 5.31±1.16a 1.83±0.52a,b,c

Po.Ar(␮m2) 12.7±0.3 93.75±14.0a 109.0±24.2a 35.52±12.25a,b,c

aSignificantlydifferentfromcontrols.

b SignificantlydifferentfromUMM.

c significantlydifferentfromPanMM.

BV/TVwasalsosignificantlyincreasedvs.controlsbutdidnotdiffer fromvaluesofthePamMMgroup.However,Tb.Thwasmoderately increasedatthefemur;Tb.Nwasincreasedvs.controlinbothtypes ofbone.Thiseffectisduetothelackofremodelingoftheprimary spongiosainanimalsreceivingBPs.

Corticalboneappeared more stronglyaffectedbythetumor thantrabecularbone.Largeosteolyticlesionswereobservedinthe UMMgroup(Fig.5B).Morphometricanalysisoftheunwrapped imagesshowedthatbothBPshadreducedthesizeofperforations (Fig.4C–D)butthenumberofperforations(N.Po)wasreducedonly intheZolMMgroup(Fig.5C–DandTable1).Thesurfaceofeachcor- ticallesionwasreducedinthePamMMandZolMMgroups,sothe fractionsurfaceofthecorticalbonewithperforations(Ps.Poand Ec.Po)wasreducedwhencomparedtotheUMMgroup.Ps.Poand Ec.Powereexactlysimilarineachanimal,soonlyPs.Poappearsin Table1.Ps.PowassignificantlylowerintheZolMMgroupwhen comparedtothePamMMgroup(Fig.5C).N.Poandporositywere calculatedinthecontrolgroupandcorrespondedtothevascular channelswhichbringthevascularsupplytothecorticalboneand thebonemarrow.

4. Discussion

In thepresent study,unwrapping the3D imagesof a tubu- larbone was foundtobethe mostreliable methodtoanalyze cortical porosity. In a preliminary approach, filling the holes on2D microCTsections wasourfirst approach; we have tried a number of techniques classically used in image analysis to reconstructtheperiostealand/orendostealsurfaces:conditional opening/closing,x3 polynomialreconstruction afterray tracing, snake reconstruction... However, none of these methods was foundsatisfactorybecausetheyworkedwellonasinglemicroCT sectionandconsiderabledifferenceswereobtainedonthesuperior orinferiorsections.Theunwrappingmethoddescribedherecauses aminimumofartifactssuchasalittlealiasingeffectobservedon theflattenedimages.

BPsarehighlypotentanti-osteoclasticdrugswhichareincor- poratedintothemanagementofosteolyticlesionsinmetastatic bonedisease(Body,2003)andmultiplemyeloma(Bataille,1996;

Berenson, 1998;Mahindra et al.,2012).Pamidronate and zole- dronicacidarenowadaysthemostcommonlyusedBPsforthe preventionofMM-relatedosteolysis.Bothcompoundsbelongto thesubgroupofaminobisphosphonateswhicharesuperiortothe firstgenerationofBPssuchasclodronate,etidronate,tiludronate.

Atthetissue level, Zolis byfarmore potentthan Pamin pre- servingtrabecularbone in rat models(Patakiet al.,1997).The potencyofbisphosphonates,atthecellularlevel,isrelatedtotheir potencytoinhibitthetargetenzymefarnesylpyrophosphatesyn- thase(FPP-synthase), a key branchingpoint of the mevalonate pathway(Dunfordetal.,2001;Greenetal.,1994).

Inthepresent study,wefoundthatboth BPsweresimilarly effectivein preservingthetrabecularbone massin the5T2MM model. Pam and ibandronate were found to reduce osteolytic lesionsin the5T2MM model without anyeffect on thetumor burden and thetumormass becausebone marrowwasalmost completelyinvadedinthe3groupsofanimals(Dallasetal.,1999;

Liboubanetal.,2003;Radletal.,1985).PamandZolpreventedthe bonelossduetothehyper-resorptioninducedbythe5THLcells.

TheincreaseinBV/TVisnotduetoastimulationoftheosteoblas- ticactivity.Becauserodentshaveacontinuousgrowth(thegrowth platedoesnotdisappearinratsandmice),BPsinduceaconden- sationdue tothelack of remodelingofthe primaryspongiosa.

Thiseffectisoftenreferredasthe“Schenkeffect”(Schenketal., 1986).Asimilareffecthasbeendescribedinratmodelsofmetas- tasiswhereasingleZolinjectioncanconvertosteolyticmetastases intoosteoscleroticones(Nyangogaetal.,2010).

Iftrabecular morphometricanalysis iseasy to perform,it is moredifficulttoanalyzecorticalboneathistomorphometricand microCTlevels.Corticalperforationsareobservableduringrota- tionofthemodelinthe3Dspaceallowingadirectvisualization oftheselesionsbutnoquantitativeanalysisispossible.Wehave foundthatunwrappingimagesofthecorticescouldrepresenta suitablemethodtoquantifyboneresorptioninthisenvelope.The 3Dmodelscanbecomparedtoasceneanalyzedbyaunidirectional cameraandtheirrotationissimilartotheuseofmultidirectional camera.Multidirectionalcamerasystemsaremoreandmoreused byresearchersworkingincomputervision,becausetheycancap- turelargepartofasurroundingscenewithananglerangingfrom 0to360.Manyapplicationssuchasrobotics,videosurveillance, andvideo-conference have founda great interestinusing such systems.Invariousapplications,theunwrappingprocessisnec- essaryto obtainpanoramicimageswhich are more adaptedto humanvisualsystemofconcentricannulardistortion.Themost usedmethodandeasiesttoimplemented,isthemethodofcon- vertingpolarcoordinatestoCartesiancoordinates,precededbya geometrictranslation,althoughthistechniqueaffectsthesizeand resolutionoftheoutputimage(Potúˇcek,2006;StraussandComby, 2005).

(7)

Nb of periosteal perforations (N.Po) 0 20 40 60 0

BV/TV (in %)

2.5 5 7.5 10 12.5

Porosity Ps.Po (in %)

0 2 4 6 8 10 12

tibia femur

tibia femur

tibia femur

* *

*

§

*

§

§

§

* *

* *

* *

§

§

#

#

*

*

§

§ #

#

*

*

*

*

control UMM

PamMM ZolMM

A

B

C

Fig.5. Mainmorphometricresultsobtainedintrabecularandcorticalboneby microCTatthefemurandtibia.(A)Trabecularbonevolume;(B)numberofperfora- tions;(C)Porosity.*:significantlydifferentfromthecontrolgroup;§:significantly differentfrom theuntreatedgroup(UMM);#: significantlydifferentfromthe pamidronatetreatedgroup(PamMM).

Becauseit is technicallydifficulttounwrapa 3D image,we chosetounwrapeach2Dsectionobtainedafterbinarizationand toproceedtoa reconstructionofa new3D modelof thestack of the unwrapped images. The method was developed under Matlabwhichwasalsousedtoprovidequantitativeanalysisofthe perforations.

Inthisstudyweevidencedthatthenumberofperforationswas decreasedinthePamMMgroupbuttheirmeansurfaceremained similartothoseoftheUMMgroup.Thiswaspreviouslynoticed byourgroupinMMmicetreatedwithPamatthesamedosage butwewerenotabletoquantifythisparameter(Liboubanetal., 2003).Zolcausedaconsiderablereductioninporositybyreducing thenumberandthemeansurfaceofperforations.

Significant differences were noted between ZolMM and PamMM,meaningthatZol,asa3rdgenerationBP,ismorepotent toinhibitprogressionofosteolyticlesionsincorticalbonewhen administeredinclinicallyrelevantdosesthanPam.

Therearefewclinicalstudiesconcernedwiththecomparison ofPamandZol.BothBPsareconsideredtohaveasimilarpower forthetreatmentofPaget’sbonedisease(Merlottietal.,2007).

In alargemeta-analysis,comparingZol,Pamand clodronatein patientswithbonemetastases,it wasfoundthatZolwassupe- riortoPamand clodronatetoreducetheoccurrenceofskeletal relatedevents(Machadoetal.,2009).HowevernoneoftheBPswas associatedwithareducedmorbidityinthesepatients.Inanother meta-analysisconductedinMMpatientstreatedbyZol,etidronate orotherBPs,Zolwassuperiortoetidronateinimprovingsurvival (Mhaskaretal., 2012).All BPsappeared tohave similareffects inreducingthenumberofvertebralfractures,theotherskeletal relatedeventsandpainwithoutevidenceofsuperiorityofZolover Pam,ibandronate,etidronateorclodronate.However,theinfluence onperipheralfractureswasnot takeninto consideration.Kanis reviewed theeffect ofPam and clodronate in thetreatmentof MMpatients.BothBPswereactiveinpreventinghypercalcemia, painandtheskeletalrelatedeventswithoutmakingacleardis- tinctionbetweenvertebralfractures(vertebralbodiesbeingmainly composedoftrabecularbone)andlongbonefractures(mainlycom- posedofcorticalbone)(KanisandMcCloskey,2000).Ina study comparingcorticalandtrabecularboneinoncologicpatientswith metastasisandtreatedwithZol,noincreaseinbonedensityofcorti- calbone(measuredbyvolumetriccomputedtomographydensity) wasnotedinthenon-invadedbone(Quattrocchietal.,2012).How- ever,osteolyticmetastasescontainingbothtrabecularandcortical bonehadanincreasedbonedensity.

EquivalentresultswereobtainedinMMpatientstreatedbyper- fusionofPam(90mg)orZol(2or4mg)(Berensonetal.,2001).In thisstudy,ZolwassuperiortoPaminpreservingcorticalboneinthe 5T2modelofMMasevidencedbytheunwrappingofthemicroCT images.AllBPsinhibittheFPPsynthaseandtheirpotencydepends bothoftheirhalfmaximalinhibitoryconcentration(IC50)onthis enzyme(Kavanaghetal.,2006)andtheiraffinityforthehydroxy- apatiteofthebonematrix(Nancollasetal.,2006).BPaffinityalso affectsdrugdistributionincorticalandtrabecularbone(Tureketal., 2012).Zolhasthehighestaffinityforhydroxyapatiteand isthe mostpotentinhibitorofthetargetenzymeFPP-synthase,which mayexplainitssuperiorityoverPamwithregardtotheinhibition ofcorticalosteolysisinourmousemodelofMM.

5. Conclusion

Inthepresentstudy,weproposeanewsoftware-basedimage processing methodfor‘unwrapping’microCTimagesof cortical bones,thusallowingforthefirsttimetomeasureporosityandpore characteristicscausedbyosteolytictumorsinamousemyeloma model.ThismethodcouldbetransferredtoCT(orHighresolution peripheralquantitativeCT)scansobtainedinhumans,toevaluate theprotectiveeffectofdrugsoncorticalbonewhichforthelackof asuitablemethodhasreceivedmuchlessattentionthantrabecular bone.

Conflictofinterest

Theauthorsdisclosenopotentialconflictsofinterest.

Acknowledgments

This work was made possible by grants from Contrat Region Pays de la Loire: Bioregos2 program. Many thanks

(8)

114 M.N’Diayeetal./Micron68(2015)107–114

to Mrs. Lechat for secretarial assistance and to the SATT Ouest Valorisation for their help with the deposit of this software (Unwrappos) at the Agency for Programs Protection IDDN.FR.001.310043.000.S.P.2013.000.31230.

References

Bataille,R.,1996.Managementofmyelomawithbisphosphonates.N.Engl.J.Med.

334,529–530.

Bataille,R.,Chappard,D.,Marcelli,C.,Dessauw,P.,Baldet,P.,Sany,J.,Alexandre, C.,1991.Recruitmentofnewosteoblastsandosteoclastsistheearliestcritical eventinthepathogenesisofhumanmultiplemyeloma.J.Clin.Invest.88,62–66.

Bataille,R.,Chappard,D.,Marcelli,C.,Dessauw,P.,Sany,J.,Baldet,P.,Alexandre,C., 1989.Mechanismsofbonedestructioninmultiplemyeloma:theimportanceof anunbalancedprocessindeterminingtheseverityoflyticbonedisease.J.Clin.

Oncol.7,1909–1914.

Bauerle,T.,Hillengass,J.,Fechtner,K.,Zechmann,C.M.,Grenacher,L.,Moehler, T.M.,Christiane,H.,Wagner-Gund,B.,Neben,K.,Kauczor,H.U.,Goldschmidt, H.,Delorme,S.,2009.Multiplemyelomaandmonoclonalgammopathyofunde- terminedsignificance:importanceofwhole-bodyversusspinalMRimaging.

Radiology252,477–485.

Belch,A.R.,Bergsagel,D.E.,Wilson,K.,O‘Reilly,S.,Wilson,J.,Sutton,D.,Pater,J., Johnston,D.,Zee,B.,1991.Effectofdailyetidronateontheosteolysisofmultiple myeloma.J.Clin.Oncol.9,1397–1402.

Benameur,T.,Chappard,D.,Fioleau,E.,Andriantsitohaina,R.,Martinez,M.C.,Clere, N.,Marchand-Libouban,H.,2013.Plasmacellsreleasemembranemicroparticles inamousemodelofmultiplemyeloma.Micron54–55,75–81.

Berenson,J.R.,1998.Theefficacyofpamidronatedisodiuminthetreatmentofoste- olyticlesionsandbonepaininmultiplemyeloma.Rev.Contemp.Pharmacother.

9,195–203.

Berenson,J.R.,Rosen,L.S.,Howell,A.,Porter,L.,Coleman,R.E.,Morley,W.,Dreicer, R.,Kuross,S.A.,Lipton,A.,Seaman,J.J.,2001.Zoledronicacidreducesskeletal- relatedeventsinpatientswithosteolyticmetastases.Cancer91,1191–1200.

Body,J.J.,2003.Effectivenessandcostofbisphosphonatetherapyintumorbone disease.Cancer97,859–865.

Chappard,D.,2009.Technicalaspects:howdowebestpreparebonesamplesfor properhistologicalanalysis?In:Heymann,D.(Ed.),BoneCancer:Progression andTherapeuticApproaches.Acad.Press,ElsevierInc.,London,pp.203–210.

Chappard,D.,Petitjean,M.,Alexandre,C.,Vico,L.,Minaire,P.,Riffat,G.,1991.Cortical osteoclastsarelesssensitivetoetidronatethantrabecularosteoclasts.J.Bone Miner.Res.6,673–680.

Croese,J.W.,VasNunes,C.M.,Radl,J.,vandenEnden-Vieveen,M.H.,Brondijk,R.J., Boersma,W.J.,1987.The5T2mousemultiplemyelomamodel:characterization of5T2cellswithinthebonemarrow.Br.J.Cancer56,555–560.

Croucher,P.I.,DeRaeve,H.,Perry,M.J.,Hijzen,A.,Shipman,C.M.,Lippitt,J.,Green,J., VanMarck,E.,VanCamp,B.,Vanderkerken,K.,2003.Zoledronicacidtreatment of5T2MM-bearingmiceinhibitsthedevelopmentofmyelomabonedisease:evi- dencefordecreasedosteolysis,tumorburdenandangiogenesis,andincreased survival.J.BoneMiner.Res.18,482–492.

Dallas,S.L.,Babatunde,B.O.,Oyajobi,O.,Dallas,M.R.,Boyce,B.F.,Bauss,F.,Radl,J., Mundy,G.R.,1999.Ibandronatereducesosteolyticlesionsbutnottumorburden inamurinemodelofmyelomabonedisease.Blood93,1697–1706.

Dempster,D.W.,Compston,J.E.,Drezner,M.K.,Kanis,J.A.,Malluche,H.,2013.Stan- dardizednomenclature,symbols,andunitsforbonehistomorphometry:a2012 updateofthereportoftheASBMRHistomorphometryNomenclatureCommit- tee.J.BoneMiner.Res.28,2–17.

Dimopoulos,M.,Terpos,E.,Comenzo,R.L.,Tosi,P.,Beksac,M.,Sezer,O.,Siegel,D., Lokhorst,H.,Kumar,S.,Rajkumar,S.V.,Niesvizky,R.,Moulopoulos,L.A.,Durie, B.G.,Imwg,2009.Internationalmyelomaworkinggroupconsensusstatement andguidelinesregardingthecurrentroleofimagingtechniquesinthediagnosis andmonitoringofmultiplemyeloma.Leukemia23,1545–1556.

Dinter,D.J.,Neff,W.K.,Klaus,J.,Bohm,C.,Hastka,J.,Weiss,C.,Schoenberg,S.O., Metzgeroth,G.,2009.Comparisonofwhole-bodyMRimagingandconventional X-rayexaminationinpatientswithmultiplemyelomaandimplicationsforther- apy.Ann.Hematol.88,457–464.

Dunford,J.E.,Thompson,K.,Coxon,F.P.,Luckman,S.P.,Hahn,F.M.,Poulter,C.D., Ebetino,F.H.,Rogers,M.J.,2001.Structure-activityrelationshipsforinhibitionof farnesyldiphosphatesynthaseinvitroandinhibitionofboneresorptioninvivo bynitrogen-containingbisphosphonates.J.Pharmacol.Exp.Ther.296,235–242.

ElKadmiri,O.,Masmoudi,L.,2011.Anomnidirectionalimageunwrappingapproach.

In:InternationalConferenceonMultimediaComputingandSystems(ICMCS), IEEE,pp.1–4.

Green,J.R.,Muller,K.,Jaeggi,K.A.,1994.PreclinicalpharmacologyofCGP42446, anew,potent,heterocyclicbisphosphonatecompound.J.BoneMiner.Res.9, 745–751.

Healy,C.F.,Murray,J.G.,Eustace,S.J.,Madewell,J.,O‘Gorman,P.J.,O‘Sullivan,P.,2011.

Multiplemyeloma:areviewofimagingfeaturesandradiologicaltechniques.

BoneMarrowRes.2011,583439.

Kanis,J.A.,McCloskey,E.V.,2000.Bisphosphonatesinmultiplemyeloma.Cancer88, 3022–3032.

Kavanagh,K.L.,Guo,K.,Dunford,J.E.,Wu,X.,Knapp,S.,Ebetino,F.H.,Rogers,M.J., Russell,R.G.,Oppermann,U.,2006.Themolecularmechanismofnitrogen- containingbisphosphonatesasantiosteoporosisdrugs.Proc.Natl.Acad.Sci.U.

S.A.103,7829–7834.

Kepucka,E.,Gurcan,I.,Temizel,A.,2012.FastOmnidirectionalImageUnwrappingon GPU,EuromicroInternationalConferenceonParallel,DistributedandNetwork- BasedComputing(WIP).WIP.

Labrinidis,A.,Hay,S.,Liapis,V.,Findlay,D.M.,Evdokiou,A.,2010.Zoledronicacidpro- tectsagainstosteosarcoma-inducedbonedestructionbutlacksefficacyagainst pulmonarymetastasesinasyngeneicratmodel.Int.J.Cancer127,345–354.

Lentzsch, S., Gries, M., Janz, M., Bargou, R., Dorken, B.,Mapara, M.Y., 2003.

Macrophageinflammatoryprotein1-alpha(MIP-1alpha)triggersmigrationand signalingcascadesmediatingsurvivalandproliferationinmultiplemyeloma (MM)cells.Blood101,3568–3573.

Libouban,H.,Moreau,M.F.,Baslé,M.F.,Bataille,R.,Chappard,D.,2003.Increased boneremodelingduetoovariectomydramaticallyincreasestumoralgrowthin the5T2multiplemyelomamousemodel.Bone33,283–292.

Libouban,H.,Moreau,M.F.,Baslé,M.F.,Bataille,R.,Chappard,D.,2004.Selectionof ahighlyaggressivemyelomacelllinebyanalteredbonemicroenvironmentin theC57BL/KaLwRijmouse.Biochem.Biophys.Res.Commun.316,859–866.

Machado,M., Cruz,L.S., Tannus,G.,Fonseca,M.,2009. Efficacy ofclodronate, pamidronate,andzoledronateinreducingmorbidityandmortalityincancer patientswithbonemetastasis:ameta-analysisofrandomizedclinicaltrials.

Clin.Ther.31,962–979.

Mahindra,A.,Pozzi,S.,Raje,N.,2012.Clinicaltrialsofbisphosphonatesinmultiple myeloma.Clin.Adv.Hematol.Oncol.10,582–587.

Merlotti,D.,Gennari,L.,Martini,G.,Valleggi,F.,DePaola,V.,Avanzati,A.,Nuti,R., 2007.ComparisonofdifferentintravenousbisphosphonateregimensforPaget’s diseaseofbone.J.BoneMiner.Res.22,1510–1517.

Mhaskar,R.,Redzepovic,J.,Wheatley,K.,CamaraClark,O.A.,Miladinovic,B.,Glas- macher,A., Kumar,A., Djulbegovic,B.,2012. Bisphosphonatesinmultiple myeloma:anetworkmeta-analysis.CochraneDatabaseSyst.Rev.5,CD003188.

Nancollas,G.H.,Tang,R.,Phipps,R.J.,Henneman,Z.,Gulde,S.,Wu,W.,Mangood, A.,Russell,R.G.G.,Ebetino,F.H.,2006.Novelinsightsintoactionsofbisphos- phonatesonbone:differencesininteractionswithhydroxyapatite.Bone38, 617–627.

Nyangoga,H.,Blouin,S.,Libouban,H.,Baslé,M.F.,Chappard,D.,2010.Asinglepre- treatmentbyzoledronicacidconvertsmetastasesfromosteolytictoosteoblastic intherat.Microsc.Res.Tech.73,733–740.

Pataki,A.,Muller,K.,Green,J.R.,Ma,Y.F.,Li,Q.N.,Jee,W.S.,1997.Effectsofshort-term treatmentwiththebisphosphonateszoledronateandpamidronateonratbone:

acomparativehistomorphometricstudyonthecancellousboneformedbefore during,andaftertreatment.Anat.Rec.249,458–468.

Pearse, R.N., Sordillo, E.M., Yaccoby, S., Wong, B.R., Liau, D.F., Colman, N., Michaeli, J., Epstein, J., Choi, Y., 2001. Multiple myeloma disrupts the TRANCE/osteoprotegerincytokineaxistotriggerbonedestructionandpromote tumorprogression.Proc.Natl.Acad.Sci.U.S.A.98,11581–11586.

Potúˇcek,I.,2006.Omni-DirectionalImageProcessingforHumanDetectionand Tracking.BrnoUniversityofTechnology,CzechRepublic(PhDThesis).

Quattrocchi,C.C.,Dell’Aia,P.,Errante,Y.,Occhicone,F.,Longo,D.,Virzì,V.,Tonini,G., Napoli,N.,Santini,D.,BeomonteZobel,B.,2012.Differentialeffectofzoledronic acidonnormaltrabecularandcorticalbonedensityinoncologicpatientswith bonemetastases.J.BoneOncol.1,24–29.

Radl,J.,Croese,J.W.,Zurcher,C.,vandenEnden-Vieveen,M.H.,Brondijk,R.J.,Kazil, M.,Haaijman,J.J.,Reitsma,P.H.,Bijvoet,O.L.,1985.Influenceoftreatmentwith APD-bisphosphonateonthebonelesionsinthemouse5T2multiplemyeloma.

Cancer55,1030–1040.

Roodman, G.D., 2009. Pathogenesis of myeloma bone disease. Leukemia 23, 435–441.

Schenk,R.,Eggli,P.,Fleisch,H.,Rosini,S.,1986.Quantitativemorphometricevalua- tionoftheinhibitoryactivityofnewaminobisphosphonatesonboneresorption intherat.Calcif.TissueInt.38,342–349.

Strauss,O.,Comby,F.,2005.Opérationsmorphologiquesflouesànoyauxvariables pourimagesomnidirectionnellesàpointdevueunique.TraitementduSignal 22,453–468.

Terpos,E.,Dimopoulos,M.A.,Berenson,J.,2011.Establishedroleofbisphosphonate therapyforpreventionofskeletalcomplicationsfrommyelomabonedisease.

Crit.Rev.Oncol.Hematol.77,S13–S23.

Tian,E.,Zhan,F.,Walker,R.,Rasmussen,E.,Ma,Y.,Barlogie,B.,ShaughnessyJr.,J.D., 2003.TheroleoftheWnt-signalingantagonistDKK1inthedevelopmentof osteolyticlesionsinmultiplemyeloma.N.Engl.J.Med.349,2483–2494.

Turek,J.,Ebetino,F.H.,Lundy,M.W.,Sun,S.,Kashemirov,B.A.,McKenna,C.E.,Gal- lant,M.A.,Plotkin,L.I.,Bellido,T.,Duan,X., Triffitt,J.T.,Russell,R.G.,Burr, D.B.,Allen,M.R.,2012.Bisphosphonatebindingaffinityaffectsdrugdistribu- tioninbothintracorticalandtrabecularboneofrabbits.Calcif.TissueInt.90, 202–210.

Vanderkerken,K.,Asosingh,K.,Croucher,P.,VanCamp,B.,2003.Multiplemyeloma biology:lessonsfromthe5TMMmodels.Immunol.Rev.194,196–206.

Vanderkerken,K.,Asosingh,K.,Willems,A.,DeRaeve, H.,Couck,P.,Gorus,F., Croucher,P., VanCamp,B.,2005. The5T2MMmurinemodel ofmultiple myeloma:maintenanceandanalysis.MethodsMol.Med.113,191–205.

Références

Documents relatifs

Images were transferred to a Leica Quantimet Q550 (Leica, Nanterre, France) to be analyzed by lab-made software for the determination of the porosity

Jain RK (2003) Molecular regulation of vessel maturation. Histological aspect of bones after MicrofilH injection and decalcification, MicrofilH appears shrunk with a deep

Or, les scrupules d’Armand Strubel à se débarrasser de qu’il appelle la « fiction d’un Homme éternel » me semblent liés au fait qu’il néglige de distinguer entre les «

Nous trouvons aussi une critique du syncrétisme de la méthode de Solms et Kaplan-Solms dans un article sur la « Somatoparaphrénie de fille » de Morin et al., publié dans

These novel 3D quantitative results regarding the osteocyte lacunae and micro-cracks properties in osteonal and interstitial tissue highlight the major role

This paper presents a robust and accurate novel method for processing WBC (leukocyte) using a combination of ideas. The segmentation of cells is achieved in two phases, the first is

Ainsi, la séquence consonantique rct qu’on trouve dans infarctus est rare et difficile à prononcer en français ; l’usagère ou l’usager croit avoir entendu une autre séquence,

Affirmation 1 : La vitesse moyenne d’un coureur qui parcourt 12 km en une heure est strictement supérieure à celle d’une voiture télécommandée qui parcourt 3 m par