• Aucun résultat trouvé

A note on polynomial approximation in Sobolev spaces

N/A
N/A
Protected

Academic year: 2022

Partager "A note on polynomial approximation in Sobolev spaces"

Copied!
6
0
0

Texte intégral

(1)

ESAIM: M

ODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

R ÜDIGER V ERFÜRTH

A note on polynomial approximation in Sobolev spaces

ESAIM: Modélisation mathématique et analyse numérique, tome 33, no4 (1999), p. 715-719

<http://www.numdam.org/item?id=M2AN_1999__33_4_715_0>

© SMAI, EDP Sciences, 1999, tous droits réservés.

L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com- merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Modélisation Mathématique et Analyse Numérique

A NOTE ON POLYNOMIAL APPROXIMATION IN SOBOLEV SPACES

RÜDIGER V E R F Ü R T H1

Abstract. For domains which are star-shaped w.r.t. at least one point, we give new bounds on the constants in Jackson-inequalities in Sobolev spaces. For convex domains, these bounds do not depend on the eccentricity. For non-convex domains with a re-entrant corner, the bounds are uniform w.r.t.

the exterior angle. The main tool is a new projection operator onto the space of polynomials.

.Résumé. Pour des domaines étoiles on donne de nouvelles bornes sur les constantes dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l'excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à Pangle extérieur. L'outil central est un nouvel opérateur de projection sur l'espace des polynômes. >

AMS Subject Classification. 41A17, 41A10, 65N15, 65N30.

Received: October 29, 1997. Revised: August 28, 1998.

1. INTRODUCTION AND MAIN RESULTS

In this note we dérive new upper bounds on the constant Cmj in the Jackson-type inequality

s u p i n f frlW) < Cm jdr+x-i v o < j < m.

\U\

Hère, Q, is a bounded open domain in Mn, n > 2, with diameter d. Hk(Çl), A; € N, and L2(ft) := H°(Q) dénote the usual Sobolev- and Lebesgue-spaces eqùipped with the standard norms '||.||#*(£}) and semi-norms

Fm is the space of ail polynomials in n variables of degree at most m.

The interest in sharp explicit bounds on the constants cmj originates from the a posteriori error analysis of finite element discretizations of partial differential équations. The correct calibration of many popular a posteriori error estimators dépends, among others, on sharp explicit error estimâtes for suitable Clément-type interpolation operators. These estimâtes in turn employ the constants Cmj (c/.? e.g^ [1, 4]).

Specifically, we consider two types of domains: (1) convex domains and (2) non-convex domains which are star-shaped w.r.t. at least one interior point. If Q, is convex, we obtain the bound

f ^ ? (M)

3 J çrm+inWS

Keywords and phrases. Jackson inequalities, polynomial approximation, Sobolev spaces.

1 Fakultât fur Mathematik, Ruhr-Universitàt Bochum, 44780 Bochum, Germany. e-mail: rvQsilly.numl.ruhr-uni-bochmn.de

© EDP Sciences, SMAI 1999

(3)

716 R. VERFÜRTH

(As usual, \x] dénotes the largest integer less than or equal to x.) If ü is not convex, but star-shaped w.r.t. the point x E üj we obtain the bound

(m+l-j)/2 , . _ jv 1/2 , , _ -V )l/2

( n + J X ) ( ^ I I » • (1.2)

U n tv Here, the number K is given by

K :— max |t/ — xU / min |y — yedn yedn

(|.|2 dénotes the Euclidean norm in W1) and the functions Ki, K2, and K% are defined by

— - , ^ n—2 o 2

{

lnz - - + - 2 ^2, ifn = 2, 2 1 1

,

2 n

, / -

2

- — + M ifn>3.

n(n - 2) n - 2 n

The main tooi in establishing these bounds is a new projection operator of Hm(Q) onto Pm which is defined in Section 2. In Sections 3 and 4 we will prove estimâtes (1.1) and (1.2), respectively. In Section 5 we will shortly comment on the generalization to Z/g-norms.

The best estimâtes of cmj , which are known to us, are due to Duran [2]. When comparing his results with ours we observe two major différences.

First, if ft is convex, the bound of [2] is proportional to cf1/2^!"1/2, where \ft\ is the n-dimensional Lebesgue- measure of ft. Thus, it is not uniformly bounded w.r.t. to the eccentricity d7 1^ "1, whereas our bound does not depend on this parameter.

Second, if ft has a re-entrant corner, the bound of [2] tends to innnity when the exterior angle at the corner approaches zero. Our bounds, on the contrary, are uniform w.r.t. the exterior angle. To see this, we may assume that ft is the intersection of the unit bail with the complement of a cone with base at the origin and angle a G (0, TT) having the positive rci-axis as its axis of symmetry. An elementary geometrical argument than shows that ft is star-shaped w.r.t. (-1/2, 0,..., 0) and that K = (l/2){5 + 4cos(o;/2)}1/2 / (1/2) < 3 for all a e (O,TT).

2. A PROJECTION OPERATOR

For any integer m and any measurable subset B of ft with positive Lebesgue-measure'|i?| we want to define a projection operator Pm,B of H171^) onto Pm which has the following properties

JB

l

, (2.1)

- Pm,Bu) = 0 (2.2)

B

for all u E Hm(Q), all 0 < j < m, and all j3 G Nn with |/?| ':= /?i + ...+0n= j . To this end we dénote by

: \B\JB

(4)

the mean value of any integrable function ip on B. For any u E iJm(f2) we recursively define polynomials PmMu)> ...,potB(u) in Fm by

J>m,B(«):= Yl —}^^B{Dau) (2.3)

\a\ = m

and, for fe = m, m — 1,..., 1,

^ u - P f c , B ( u ) ) ] . (2.4)

o : € Nn

| a | = fc-l

We set

Obviously, Pm,B is a linear operator of Hm(ü) onto Pm. In order to see that it satisfies relations (2.1, 2.2) we first consider the case j = 0. Relation (2.1) then is a trivial identity and relation (2.2) immediately follows from équation (2.4) for k = 1. Next, assume that m > 1 and fix an arbitrary j with 1 < j < m and an arbitrary f3 e N with \P\ = j . Differentiating équation (2.3) we conclude that

1 7 7!

\-r\=m-j

Differentiating équation (2.4) we recursively obtain for k = m, m — 1,..., j + 1

= Pk-j-l,B(Dl3u).

This proves that

and thus establishes relation (2.1). Relation (2.2) immediately follows from relation (2.1) and équation (2.4) for k = 1 with u replaced by D@u.

3. CONVEX DOMAINS Assume that Q is convex. Payne and Weinberger [3] proved that

\ \ Q ) (3.1)

holds for ail (p G H1 (Cl) having zero mean value.

(5)

718 R. VERFÜRTH

Now, consider an arbitrary u G Hm+l(Q). Applying inequality (3.1) to tp := u-Pmtnu and using relation (2.2) with (3 = 0 yields that

Applying this estimate recursively to the derivatives of u — Pm,n^ and using relations (2.1, 2.2) we arrive at

•—^ • P e Nn, \0\ = m + A simple symmetry argument shows that

and thus complètes the proof of estimate (1.1) for the case j = 0.

The case 1 < j; < m follows from the case j = 0, relation (2.1), and the observation that

4. NON-CONVEX, STAR-SHAPED DOMAINS

Assume that Cl is star-shaped w.r.t. the point x € Q and not necessarily convex. Since the Lebesgue-integral is translation invariant we may from now on assume that x is the origin. Set

p := min \y\2 , R := max |t/|2 , K := -R yeöfi yeön p

and dénote by ^ the bail with radius p and centre at the origin. Lemma 4.1 in [4] and its proof imply that IMIi'(n) < K,(K)K2y\\lHB) + K2{K)R2\^\2H1{B) + K3(K)R2\<p\2HHnXB) (4.1) holdsfor all (p e 1

(6)

Inserting tp := u — Pm.BU in estimate (4.1) and invoking relation (2.2) for j3 = 0 and estimate (3.1) with Çl replaced by £?, we conclude that

KS(K)R2\U-P^£

Applying this estimate recursively to the derivatives of u — Pm,BU and recalling that R < d we arrive at

i rn-\-l . .

\\Dil...im+1u\\lHn)

This proves estimate (1.2) in the case j = 0. The case 1 < j < ra again follows from the case j = 0 and relation (2.2).

5. JACKSON-INEQUALITIES IN Whq

With obvious modifications of the fonctions i^i, K2, and K%, the arguments of Sections 3 and 4 immediately carry over to gênerai L9-spaces with 1 < q < oo. The crucial ingrediënt is an explicit knowledge of a Poincaré- constant cq such that

holds for all open convex subsets u of lRn and all functions <p E W1^^) having zero mean value on cj.

(Note that the diameter is always computed using the Euclidean norm and that the natural semi-norm is 1^1^1,4 = { ^ I I ^ ^ I I L ^ }1^9 with the obvious modification for q = oo.)

From inequality (3.1) we know that c2 < 1/TT. (This estimate is optimal, cf. [3].) Intégration along lines, on the other hand, yields CQO < n1/2. (This estimate may not be optimal. The example Q = (—1, l)71, <p(x) = Y2 xi->

however, shows that it differs from the optimal estimate by a factor 2 at most.) Interpolating between L2 and L°° we conclude that

Cq ^ 7T ' ^ T l ' '^ V 2 < Ç f^ OO.

For the range l < g < 2 a similar estimate is not known to us.

REFERENCES

[1] C. Carstensen and St. A. Funken, Constants.in Clément-interpolation error and residual based a posteriori error estimâtes in finite element methods. Report 97-11, Universitàt Kiel, Germany (1997).

[2] R,G. Durân, On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal 20 (1983) 985=988.

[3] L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292.

[4] R. Verfürth, Error estimâtes for some quasi-interpolât ion operators. Report 227, Universitàt Bochum, Germany (1997); RAIRO Model Math. Anal Numér. 33 (1999) 695-713.

Références

Documents relatifs

En utilisant les deux exercices précédents, montrer que l’on peut prolonger toute fonction de W 1,p (I) en un élément de W 1,p ( R ) et que ce prolongement est continu..

(On peut aussi montrer avec ce mˆ eme exemple que le Th´ eor` eme 4.3.5 de densit´ e et la Proposition 4.4.2 de prolongement ne sont pas vrais pour un tel

Exercice 6.9.. On utilisera les notations suivantes. Pour simplifier, on suppose que la triangulation est uniforme au sens où, à chaque T h , correspond un élément fini qui est

HAN, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Annales de l’Institut Henri Poincaré, Analyse

Gromov de la méthode de Garland pour obtenir des théorèmes de points fixes (voir [5, 4]). On suppose que deux triangles distincts quelconques de X/Γ ont au plus un sommet ou une

Convenons d'appeler réseau simplement recouvrant celui dont les domaines n'ont deux à deux aucun point intérieur commun, et dont les domaines recouvrent le plan (c'est alors en

Nous montrerons que la recherche de toute inégalité de Sobolev quantitative sur une variété riemannienne compacte se ramène à la même inégalité sur une boule euclidienne,

The second definition of Sobolev spaces with zero boundary values has been extended to the metric setting, in the case of Newtonian functions based on Lebesgue spaces [22], on