• Aucun résultat trouvé

Adhesion strength of piles in saline ice

N/A
N/A
Protected

Academic year: 2021

Partager "Adhesion strength of piles in saline ice"

Copied!
20
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Adhesion strength of piles in saline ice

Inoue, M.; Frederking, R. M. W.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=a490ff8f-e18f-47f1-87db-61ccd0f2a77e https://publications-cnrc.canada.ca/fra/voir/objet/?id=a490ff8f-e18f-47f1-87db-61ccd0f2a77e

(2)

L A Y

N21d National Resegrch Consell national

no. 1502

1*

1

W n c i l Canada de recherches Canada c. 2

BLDG Institute for lnstitut de

Research in recherche en

-

Construction construction

Adhesion Strength of Piles in Saline Ice

by M. lnoue and R. Frederking

A N A L Y Z E D

Appeared in

Proceedings 8th International IAHR Symposium on Ice

lowa City, lowa, August 18 - 22, 1986 Vol. Ill, p. 89-104

(IRC Paper No. 1502)

Reprinted with permission

Price $3.00 NRCC 28603

(3)

On a effectuC des essais en labratoire pour Ctudier les effets de la vitesse de deplacement,

de 1'Cpaisseur de glace et du diam5tre des pieux sur l'adherence d'une couche de glace

saline sur des pieux de his.

La glace utilisk Ctait repdsentative de la glace de mer

B

grains

prismatiques forrnCe naturellement. Des pieux cylindriques de diam6tre variant entre

30

et

145

mm ont CtC extraits

B

des vitesses de deplacement nominales constantes se situant entre

1.5 x

10-4

et 7.8

x

10-2

d s ,

ltCpaisseur de la glace allant de

58

h 170

rnm.

On a constate que le mode de rupture, soit par cisaillement

B

Itinterface pieu-glace, soit par

flexion de la glace, dCpendait des param5tres des essais. La force #adherence augmentait

de fagon proportionnelle au deplacement des pieux et

B

1'Cpaisseur de la glace, et de fagon

inversement proportionnelle au diam5tre des pieux. On a observC que I'adhCrence de la

glace saline Ctait au moins

3.5

fois moins grande que celle, mesur6e antkrieurement dans

des conditions semblables,

*

la -I- A'M1m h.,-m h m h

~ m m i a u e s .

(4)

lA

HR Ice Symposium 1986

lowu City, Iowu

ADHESION STRENGTH OF PILES I N SALINE I C E

I

I

M. Inoue I c e Engineering Lab. ,Tsu Research Center, Japan Nippon Kokan K.K.

!

R. Frederking I n s t i t u t e f o r Research i n Construction, Canada

i

N a t i o n a l Research Counci 1

! ABSTRACT

Laboratory t e s t s were conducted t o i n v e s t i g a t e t h e e f f e c t s o f displacement r a t e , i c e t h i c k n e s s and p i l e diameter on t h e adhesion of a s a l i n e i c e sheet t o wooden p i l e s . The i c e used was represen- t a t i ve o f n a t u r a l l y formed columnar-grai ned sea i c e . C y l i n d r i c a l p i l e s having diameters between 30 and 145 mn were p u l l e d up a t constant nominal displacement r a t e s between 1

. ~ x I o - ~

and 7.8~10-' m/sec, f o r i c e thicknesses from 58 t o 170 mm.

I

The f a i l u r e mode, e i t h e r shear a t t h e p i l e - i c e i n t e r f a c e o r f l e x u r a l i n t h e i c e was observed t o depend upon t h e t e s t

parameters. The adhesion s t r e n g t h was observed t o increase w i t h i n c r e a s i n g p i l e dispalcement r a t e , i n c r e a s i n g i c e thickness and decreasing p i l e diameter. The adhesion s t r e n g t h of s a l i n e i c e was found t o be smaller by a f a c t o r o f a t l e a s t 3.5 t h a n t h a t of fresh- water c o l umnar-grai ned i c e measured e a r l i e r under simi 1 a r

(5)

I . I N I ~ I ~ U N

A f l o a t i n g i c e cover develops s u b s t a n t i a l v e r t i c a l loads on a

, s t r u c t u r e t o which i t i s f r o z e n due t o changes i n water l e v e l . This type 'of load i s an impotant f a c t o r i n design and c o n s t r u c t i o n o f a r c t i c

I

! o f f s h o r e s t r u c t u r e s used i n petroleum e x p l o r a t i o n and production. It i s ,

therefore, necessary t o evaluate such v e r t i c a l i c e loads a c t i n g on a s t r u c t u r e surrounded by sea ice, i n r e l a t i o n t o adfreeze bond between m a t e r i a l and i c e .

Sackinger and Sackinger (1977) subjected a s t e e l c y l i n d e r embeded i n sea i c e t o an a p p l i e d torque and measured t h e adhesion s t r e n g t h as a

f u n c t i o n of s a l i n i t y and temperature. Saeki e t a l . (1981) conducted

push-out t e s t s on p i l e s w i t h various m a t e r i a l s i n sea ice, and measured t h e adhesion s t r e n g t h as a f u n c t i o n o f p i l e displacement r a t e , diameter

and m a t e r i a l as w e l l as i c e thickness and temperature. Oksanen (1982)

measured adhesive shear s t r e n g t h between s a l i n e i c e and s t e e l p l a t e s under

varying s a l i n i t i e s and r e l a t i v e l y low temperatures. These i n v e s t i g a t i o n s

were r e l a t e d t o the case where shear between the m a t e r i a l and i c e

predominates. Under n a t u r a l conditions, however, t h e i c e cover could f a i l

i n bending as w e l l as shear. On t h e o t h e r hand, t h e o r e t i c a l treatments of

v e r t i c a l i c e loads on p i l e s have been based on t h e bending theory of a p l a t e on an e l a s t i c foundation ( f o r example, L o f q u i s t , 1951). Recently Vershinin e t a l . (1983) conducted f i e l d t e s t s t o determine v e r t i c a l loads

on 1 m diameter p i l e f r o z e n i n t o n a t u r a l sea i c e o f 1.15111 thickness. Thej

found t h a t the measured value o f 70 tons was several times greater than the value computed according t o t h e recommendations i n t h e Construction Norms and Regulations (1975).

The purpose o f t h e present work was t o o b t a i n data on t h e adhesion s t r e n g t h of p i l e s i n s a l i n e i c e under c o n d i t i o n s s i m i l a r t o those i n

nature. The t e s t s were conducted using a r e l a t i v e l y small tank. P i l e s

frozen i n t o s a l i n e i c e were p u l l e d upwards r e l a t i v e t o the i c e cover. Wooden p i l e s were used t o minimize t h e i c e t h i c k e n i n g e f f e c t around p i l e s .

I

This paper r e p o r t s t h e t e s t r e s u l t s o f adhesion s t r e n g t h measured as a

I f u n c t i o n o f p i l e displacement rate, i c e thickness and p i l e diameter. An

1

e m p i r i c a l equation t o p r e d i c t t h e adhesion s t r e n g t h i s a l s o proposed.

I

/ 2 . DESCRIPTION OF TEST APPARATUS

i

Tests were conducted using a small i n s u l a t e d tank, 660

mm

i n diameter

(6)

Qppl ied Load

Fig.1

Scheme o f load and d e f l e c t i o n measurements

I

-

100 mm

~ b 0 t t O m and sides so t h a t t h e water temperature and i c e growth r a t e could

1

be c o n t r o l led. A thermocouple probe was used t o moni t o r i c e and water temperatures.

! A loading apparatus s e t up over t h e tank p u l l e d t h e p i l e upwards Z

] r e l a t i v e t o the i c e cover. The outer perimeter o f t h e i c e cover adhered

y t o the tank w a l l l i n e r made o f galvanized s t e e l . Load was a p p l i e d w i t h a screw jack d r i v e n by a v a r i a b l e speed motor. Loading speed could be v a r i e d between 7 ~ 1 0 - ~ mm/sec and 8 ~ 1 0 - ~ nmnlsec. A schematic of t h e

arrangement f o r measuring load and d e f l e c t i o n o f t h e i c e cover i s shown i Fig.1. Loads were measured by a load c e l l mounted between t h e p i l e and

i

the screw jack. Displacement o f t h e p i l e and d e f l e c t i o n s of t h e i c e cove

1

a t r a d i i o f 100 mm and 250 nmn from the center o f t h e p i le, were measured

I

i r e l a t i v e t o t h e i c e surface a t a distance o f about 25 mm from t h e w a l l of

the tank, using f i v e displacement transducers ( d i r e c t c u r r e n t d i f f e r e n t i a

I

transformers

1,

mounted on a reference arm. Load and displacement s i g n a l s

1

were recorded on a s t r i p c h a r t recorder as we1 1 as i n a d i g i t a l i z e d form.

I

The p i le s were made o f B. C. fir, t h e same as those used e a r l i e r by

I

Frederking (1979) f o r t e s t s i n freshwater i c e . They were shaped on a

I

l a t h e and f i n i s h e d by emery paper: A r o d threaded through t h e center of

1

I the p i l e connected i t t o t h e load c e l l .

I

1

3. TEST PROCEDURE

I

The loading system was set over t h e water-f i 1 le d tank. The p i l e was soaked and then attached t o t h e system, c a r e f u l l y a l i g n i n g i t v e r t i c a l l y ,

1

before i c e growth was i n i t i a t e d . A l l t e s t s were done i n s a l i n e i c e grown t o simulate n a t u r a l sea i c e . The tank which was fi 1 le d w i t h water of

(7)

I

! Time (hour) Grain Size (mm), Salinity (7..)

1

Fig.2 I c e growth as a f u n c t i o n Fig.3 Grain s i z e and s a l i n i t y

I

o f time p r o f i le s o f i c e cover

o f -15

"C.

The water was mixed w h i l e c o o l i n g u n t i 1 t h e e n t i r e depth reached i t s f r e e z i n g p o i n t . When t h e water temperature near t h e surface decreased s l i g h t l y below the f r e e z i n g p o i n t , t h e tank was seeded by s i e v i n g f i n e - g r a i n e d snow u n i f o r m l y over t h e water surface. Side and bottom heaters helped t o m a i n t a i n uniform i c e thickness and t o prevent any i c e p a r t i c l e s from forming a t t h e bottom o f the tank d u r i n g i c e growth.

F i g .2 shows i c e thicknesses measured w i t h a r e s i s t a n c e w i r e thickness gauge as a f u n c t i o n o f time. The growth r a t e v a r i e d from 40 t o 20 mm/day w i t h elapsed time. The s a l i n i t y p r o f i l e o f t h e i c e cover grown i n t h i s manner i s shown i n Fig.3, together w i t h g r a i n s i z e p r o f i l e . The average s a l i n i t y o f the i c e was 5.5%0 which i s q u i t e s i m i l a r t o t h a t of n a t u r a l sea ice, as observed by Nakawo and Sinha (1981). The g r a i n s i z e increased l i n e a r l y w i t h depth, which i s a l s o s i m i l a r t o n a t u r a l c o n d i t i o n s observed by Weeks and Hamilton (1962). The i c e consisted of a 7 mn seeded l a y e r at the t o p w i t h a columnar-grained s t r u c t u r e extending below i t . Therefore, the i c e grown i n the l a b o r a t o r y was very s i m i l a r t o n a t u r a l l y formed sea i c e .

When t h e i c e cover reached t h e desired thickness, t h e reference arm was placed onto the i c e surface and displacement transducers were

c a r e f u l l y s e t up. A f t e r s t a b i l i z i n g t h e transducers f o r about one hour, t e s t s were s t a r t e d . Most o f t h e t e s t s were conducted a t a thickness o f about 90 mm and a t a p i l e diameter o f 50 mn. Nominal p i l e displacement r a t e s were v a r i e d from 1

. ~ x I o - ~

t o 7 . 8 ~ 1 0 ~ ~ mm/sec.

I

(8)

r

'

E t a 1 o f 21 t e s t s were performed t o i

i Temperature (

i n v e s t i g a t e the e f f e c t s o f p i l e displace- ment r a t e , p i l e diameter and i c e thickness on adhesion strength. Continous records / o f load and d e f l e c t i o n s w i t h time were

1

made f o r a1 1 t e s t s . Immediately before land a f t e r each t e s t temperature p r o f i l e s I

b

1

of the i c e cover were a1 so measured. An

-

6

jexample of the p r o f i l e i s shown i n Fig.4. 5

a

i

Average i c e temperature was mai n t a i ned a t

gto

Ice

- Water

about -4"C, w i t h very l i t t l e v a r i a t i o n d u r i n g a t e s t . Test r e s u l t s and

c o n d i t i o n s are summarized i n Table 1.

Several d i f f e r e n t types of loading 1 5 -

.

\.

curve were observed. The s t r e s s - and 1 1 1 . 1 1 .

I,

~

-

1

displacement -time curves f o r one type o f Fig.4 Temperature prof i l e

I

1

loading behaviour are shown i n Fig.5. i n t e s t No.2

(

~ d h e s i o n s t r e s s was determined by d i v i d i n g

f

the v e r t i c a l load by t h e contact area

I

L

Table 1 . TEST RESULTS

.

Test d h

n

z

tf S f o 8 ~ 1 0 0 8f250 Tav 'av

(9)

Ice th~ckness : 10 1 cm. Plle d~ameter : 5 . 0 cm. Fig.5 Records of t e s t No.10 1 i T ~ m e (set) ( a ) stress-time curve

Ice th~ckness : 10.1 cm. ( b ) displacement

-time curve

T ~ m e (sec)

between p i l e and i c e cover. Note t h a t t h e actual p i l e displcement r a t e increases w i t h time u n t i l t h e s t r e s s reaches a peak, and then remains constant i n t h e post y i e l d r e g i o n (Fig.5 ( b ) ) . The constant r a t e i s equal t o the nominal r a t e , which corresponds t o the r a t e o f t h e loading

1

apparatus operated under no load resistance. A s i m i l a r v a r i a t i o n i n r a t e was observed by Sinha (1981)

f o r

i c e under u n i a x i a l compression a t

constant nominal cross-head r a t e s on a conventional t e s t machine. The d e f l e c t i o n s

measured

a t r a d i i of 100 mn and 250 m from t h e p i l e center also i n d i c a t e d t h e same t r e n d u n t i l t h e s t r e s s reached a peak. I n t h e present t e s t s , the displacement and d e f l e c t i o n s were measured w i t h a reference

arm

whose end p o i n t s r e s t e d on the i c e surf ace 25 mn from t h e i n n e r w a l l o f the tank. The d e f l e c t i o n a t the end p o i n t was a l s o measured by a d i a l gauge attached t o the tank w a l l , which showed t h a t t h e end p o i n t

k,

i-tu-t !if a v , i t s d ~ f l ~ c t i n n w a z a t l e a s t an a r d P ~

(10)

i

0.t5

!

1 Ice thickness

: 6.4 cm. circumferential

0.12 Nom~nol rote : Pile diameter : 1.3~ 5.0cm. 10~mn/sec

!

1 2

1 I f

-

0.0s Fig.6

1 -

I t

Stress-time curve

,

G o f t e s t No.8 0.06

!

-51

I

fi

! 0.03

j

1

o.m

!

0 400 1600 2000

o f magnitude smaller than a t 250 mn radius.

Fig.5 ( a ) shows t h a t as t h e p i l e i s displaced upward, t h e s t r e s s increases monotoni c a l l y reaching a maximum, and then gradual l y decreases t o an almost constant value. Four r a d i a l cracks, c i r c l e d saw-tooth-like peaks, are noted on t h e s t r e s s - t i m e curve. Although no cracks were seen f o r the f i r s t t h r e e peaks, t h e sounds were heard c l e a r l y . The f o u r t h peak corresponded t o a r a d i a l crack which was v i s i b l e i n t h e i c e immediately adjacent t o t h e p i l e . At t h e maximum stress, a few a d d i t i o n a l r a d i a l cracks appeared which developed t o depths l i m i t e d t o about 5 mm from t h e

i c e surface. Frederking (1979) has r e p o r t e d t h e development of m i c r o cracks and a c o n i c a l f a i l u r e surface a t a maximum load f o r freshwater i c e t e s t s . Such a c o n i c a l f a i l u r e surface was n o t apparent i n t h e present t e s t s . A f t e r t h e maximum stress, t h e adhesion between the p i l e and t h e i c e was g r e a t l y dimi n i shed and f r i c t i o n between them became predominant

.

This f r i c t i o n a l r e s i s t a n c e was observed t o be l e s s than t h e peak value by a f a c t o r o f 2 t o 4. I n t h e case o f t e s t No.10 the maximum s t r e s s was associated w i t h t h e occurrence o f r a d i a l cracks. This i s designated as R t

( i n Table 1. I n some cases, r a d i a l cracks could n o t be seen even a t a

!

:maximum stress, although they c o u l d be heard. This case i s designated as

INC,

but t h e f a i l u r e process c o u l d be s i m i l a r t o t h e case designated R. I t /was d i f f i c u l t t o see t h e v i s i b l e cracks i n t h e cloudy s a l i n e i c e .

I

Fig.6 represents the stress-time curve f o r t e s t No.8, which i s

1

F

I

c h a r a c t e r i zed by r a d i a1 cracks and subsequent c i r c u m f e r e n t i a1 crack. The

I

peak s t r e s s corresponded t o the f o r m a t i on o f a c i rcumferenti a1 crack.

(11)

7-- I " ' ' 1

I

1 1 " * ' I I ' " ' 1

Pile Diameter : 50 mm

Ice Thickness :80-100mm

i

l o o 0 Fresh Woter Ice by Frederking

I

A ( 1979)

g

---

; P *

I

-

= 500 h = 90mm A

-

i (.1

.

!

5 0 i c i ? 100

i

I

.- C 0 m I

g

5 0 -

l

a I.

r

1

1

I 1 1 l 1 1 1 t l I I I l l l l l I I I 1 1 1 1 1 1

i

10

'

" I " 5 5 lo-z 5 16'

I

Pile Displacement Rate

,

S,

,

8 ,

( -/set)

I Fig.7 Adhesion s t r e n g t h as a f u n c t i o n o f p i l e displacement r a t e

' P i l e displacement r a t e e f f e c t s

!

i

I n F i g . 7 the values o f adhesion strength,

7

,

determined from t h e

)maximum s t r e s s from curves such as Fig.5 ( a ) are p l o t t e d against the

j

nominal p i l e displacement rates,

in,

f o r a p i l e diameter of 50 rm and i c

i thickness o f around 90

rrm,

a t an average i c e temperature of -4

"C.

The

1

s t r e n g t h increases w i t h increase i n nominal r a t e up t o 1.5~10-' mm/sec,

!

then decreases s i g h t l y and remains constant. The t r e n d i s almost t h e sam

1

as t h a t observed f o r freshwater i c e by Frederking (19791, shown i n t h e

I

i

f i g u r e f o r comparison purposes. The adhesion s t r e n g t h i n s a l i n e i c e i s

1 smaller than t h a t i n freshwater ice, by a f a c t o r o f 3.5 a t higher r a t e s

I

/corresponding t o t h e maximum strengths. The d i f f e r e n c e becomes g r e a t e r a

1

the nominal r a t e decreases.

I

Regression a n a l y s i s o f t h e data f o r nominal r a t e s l e s s than

1

! 1 . 5 ~ 1 0 ' ~ min/sec gave the f o l lowing equation:

i

i

where

T

i s i n kPa and

6,

i s i n mn/sec.

As seen i n Fig.5 (b), a constant displacement r a t e i s not achieved

before y i e l d i n g , so t h a t i t i s more appropriate t o use an average

1

displacement r a t e ,

laV,

determined by d i v i d i n g t h e p i l e displacement a t I f a i l u r e , 6f0, by the time t o f a i lure, tf. These data are p l o t t e d as

(12)

t r ' r l I ' ' " I Ice Thickness : 80-100rnrn Pile Diameter : 50mm 1 'ill 10-~ I I L l t I l l ) I 1 l l l l l l l I 1 I I I l l 1 1 5 lo* 5 1 6 ' 5 ld'

Loading stress Rate, t kPa/sec)

I Fig.8 Adhesion s t r e n g t h as a f u n c t i o n o f average s t r e s s r a t e

r a t e s l i e s t o t h e l e f t as compared t o t h e p r e v i o u s l y determined r e g r e s s i o

l i n e , on a nominal-rate basis. I t i s i n t e r e s t i n g t o note t h a t t h e data

p o i n t s o f nominal r a t e s higher than 2 ~ 1 0 - ~ m / s e c s h i f t t o t h e l e f t

s i g n i f i c a n t l y . This c o u l d be due t o t h e l i m i t a t i o n o f t h e loading system employed i n the present t e s t s e r i e s .

The r a t e s e n s t i v i t y o f s t r e n g t h o f ice, i s o f t e n expressed i n terms

o f s t r e s s r a t e f o r engineering purposes. Fig.8 shows t h e v a r i a t i o n o f t h

average s t r e s s r a t e ,

$

,

( d e f i n e d as adhesion s t r e n g t h , T , d i v i d e d by t h e

time t o f a i l u r e , t f ) f o r t h e same c o n d i t i o n s as shown i n Fig.7. The

adhesion s t r e n g t h increases l i n e a r l y w i t h i n c r e a s i n g average s t r e s s r a t e ,

on a log-log scale. The f o l l o w i n g regression l i n e was obtained,

where

7

i s i n kPa and i s i n kPa/sec.

I c e thickness e f f e c t s

The dependence o f adhesion s t r e n g t h on i c e thickness was s t u d i e d

using the 50 mn diameter p i l e data a t nominal p i

l e

displacement r a t e s o f

1 . 3 ~ 1 0 ' ~ m l s e c and 1

. ~ x I o - ~

mn/sec. The r e s u l t s are given i n Fig.9.

'Most o f these t e s t s were conducted a t 1 . 3 ~ 1 0 - ~ nun/sec since a maximum

adhesion s t r e n g t h appeared a t t h i s r a t e . Although t h e data are small i n number and s c a t t e r g r e a t l y , a r e g r e s s i o n a n a l y s i s gives t h e f o l l o w i n g bes f i t equation t o the data

(13)

I I I 1 I i r r t 1 1 1 1 1 1 1 1 1

lo00 Fresh M t e r Iee

t

1 1 1 1 1 1 1 1 1 I L w 1 t m r a l

10 50 100 500

Ice Thickness, h (mrn)

10 50 100 500

Pile Diameter

,

d ( mm

I

Fig.9 Adhesion s t r e n g t h versus Fig.10 Adhesion s t r e n g t h versus

I c e thickness. p i l e d i ameter

RC i n d i c a t e s f a i l u r e

F followed by c i r c u m f e r e n t i a l crack

i

The value of the exponent i n t h e equation i s t w i c e t h a t obtained f o r :freshwater i c e w i t h the same p i l e diameter, but a t a r a t e o f 2 . 4 ~ 1 0 - ~ ?

tmn/sec which a l s o corresponds t o a maximum adhesion s t r e n g t h of freshwater

/ i c e (Frederking, 1979). The f a i l u r e process f o r a l l freshwater i c e t e s t s

lwas associated w i t h t h e occurrence o f r a d i a l cracks and formation of I

i c o n i c a l f a i l u r e surface around t h e p i l e , whereas i n some of t h e present ' t e s t s w i t h s a l i n e ice, f a i l u r e was f o l l o w e d by t h e f o r m a t i o n o f

I

t

c i r c u m f e r e n t i a l cracks. Thus t h e d i f f e r e n c e i n t h e values of t h e exponent

lbetween the two types o f i c e c o u l d be associated w i t h the two d i f f e r e n t

i f a i lu r e processes. Saeki e t a l . (1981) conducted p i l e push-out t e s t s i n

j n a t u r a l l y formed sea i c e a t a temperature range o f -1.5 "C t o -4

"C

and

!obtained an exponent o f 0.2. D i f f e r e n c e s i n t e s t i n g method a l s o a f f e c t

1

r e s u l t s of adhesion s t r e n g t h measurements considerably.

i I n c o n t r a s t t o the above described r e s u l t s , Frederking and K a r r i

3

(1983) found no c l e a r dependence o f adhesion s t r e n g t h on i c e thickness

l o v e r the range o f thickness between 50 m and 120 mm, u s i n g freshwater i c e

1

I and 100 mn diameter p i l e s o f several d i f f e r e n t m a t e r i a l s i n c l u d i n g wood.

!Recently Saeki e t a l . (1986) have c a r r i e d out extensive push-out t e s t s

I

;using 100 mn diameter p i l e s and observed t h a t t h e adhesion s t r e n g t h

I

approaches a constant when t h e i c e thickness exceeds 60 mm.

I

I

p i l e d i ameter e f f e c t s

(14)

The adhesion s t r e n g t h o f s a l i n e i c e was p l o t t e d against t h e p i l e

diameter a t a nominal p i l e displacement r a t e o f 1 . 3 ~ 1 0 - ~ mmlsec w i t h an

i c e thickness o f about 100

mm

i n Fig.10. Comparable t e s t r e s u l t s f o r

freshwater i c e (Frederki ng, 1979) are a l s o shown i n F i g

.lo.

The adhesion s t r e n g t h i s i n v e r s e l y p r o p o r t i o n a l t o approximately the square r o o t o f t h e p i l e diameter. A regression a n a l y s i s gives t h e

f o l l o w i n g best f i t equation:

I where

T

i s i n kPa and d i s i n m. The exponent i n t h e equation i s

d i f f e r e n t from t h a t obtained f o r freshwater ice, namely -0.79, which i s

s i m i l a r t o Saeki's r e s u l t s (1981). D e f l e c t i o n shape

Attempts were made t o r e l a t e t h e measured d e f l e c t i o n s of t h e i c e cover t o shear and f l e x u r e i n t h e i c e . For t h e present t e s t conditions, the d e f l e c t i o n a t the p i l e i s evaluated from p l a t e bending theory

1 (Timoshenko and Woi nowsky-Krieger, 1959),

where P i s a p p l i e d load, E i s e l a s t i c modulus, v i s Poisson's r a t i o , h i s

i c e thickness, a i s r a d i u s o f t h e tank, and b i s r a d i u s of t h e p i l e . A

shear deformation c o r r e c t i o n , Ws, can be c a l c u l a t e d from

where r i s distance from t h e p i l e center, G i s shear modulous and

G = E/2(1+ v ).

The d e f l e c t i o n s o f t h e i c e cover c a l c u l a t e d

,

using equation

(5)

and

reasonable values o f e l a s t i c p r o p e r t i e s o f t h e ice, were a t l e a s t one

order of magnitude smal l e r than t h e measured values. Even though a

reduced e f f e c t i v e e l a s t i c modulus and t h e shear deformation c o r r e c t i o n , W,

were applied, the d i f f e r e n c e from t h e measured values was s t i 11 large. I t

was, therefore, decided t o c a l c u l a t e d e f l e c t i o n curves o f t h e i c e cover

u s i n g equation ( 5 ) and equation ( 6 ) independently. This procedure was

(15)

I

2

---

Flexural modal

-

Sheor model

-

.5 - 1 I 0 Fig.11 D e f l e c t i o n shape

I

(a) t e s t ~ o . 1

I

Distance from Pile Center

I

--

Flexural model

-

Shear model

-''

-

10

( b ) t e s t No.8

Distonct tram Pile Center (mm)

----

Flexural model

-

Sheor model

Distance from Pile Cenrer (mm)

-

( c ) t e s t No.17

( d l

t e s t No.19

(16)

t h e measured d e f l e c t i o n curves on simply supported c i r c u l a r p l a t e s composed of s i m i l a r s a l i n e ice, w i t h a constant load a p p l i e d a t t h e center.

Fig.11 shows t h e d e f l e c t i o n curves c a l c u l a t e d i n such a manner t h a t

Wf and Ws a t the p i l e were made equal t o t h e corresponding measured

d e f l e c t i o n s both a t h a l f t h e peak load and a t peak load. Agreement

between c a l c u l a t e d and measured values a t h a l f t h e peak load i s remarkablj good f o r e i t h e r f l e x u r a l model o r shear model, b u t t h e c a l c u l a t e d values a t peak load d e v i a t e s l i g h t l y from t h e measured values.

For t e s t No.1 (

6,

= 1 . 3 ~ 1 0 - * m / s e c ) , t h e f a i l u r e was characterized by shear f a i l u r e a t t h e p i l e - i c e i n t e r f a c e , f o l l o w e d by a few r a d i a l cracks. This i s c l e a r l y r e f l e c t e d on t h e measured d e f l e c t i o n curves; i .e,

t h e shear model a c c u r a t e l y describes the deflections. For a t h i n n e r i c e

cover ( F i g . l l b ) , t h e f a i l u r e was f o l l o w e d by the formation o f

c i r c u m f e r e n t i a l crack. I n t h i s case good agreement between the data and

the c a l c u l a t i o n was given by t h e f l e x u r a l model.

For the slower r a t e s ( F i g . l l c ) , no v i s i b l e cracks were detected a t

a1 1. The measured d e f l e c t i o n curve agrees we1 1 w i t h t h e shear model

applied t o t h e data a t h a l f t h e peak load, but the curve deviates

s i g n i f i c a n t l y f o r t h e data a t peak load. This d i f f e r e n c e could be due t o t h e predominant creep deformation o f t h e i c e around t h e p i le , as observed

by Frederking (1974). This type o f f a i l u r e might be c a l l e d shear creep

f a i l u r e , d i s t i n g u i s h i n g i t from t h e shear f a i l u r e .

For a l a r g e r p i l e diameter ( F i g . l l d ) , t h e f l e x u r e of t h e i c e was expected t o be predominant, since more r a d i a l cracks occurred d u r i n g

loading. This i s confirmed by t h e agreement between t h e measured values and the f l e x u r a l model f o r t h e data a t h a l f t h e peak load. The data measured a t peak load, however, f i t s t h e shear model b e t t e r . This would be associated w i t h more d e t e r i o r a t i o n o f t h e i c e caused by t h e developmenl of several r a d i a l cracks a t f a i l u r e .

Empi r i c a l f ormu 1 a

Based on t h e r e s u l t s presented, combining t h e e f f e c t s of p i l e displacement r a t e , i c e thickness and p i l e diameter on t h e adhesion strength, t h e f o l l o w i n g e m p i r i c a l equation can be formulated,

(17)

I 1

I

102

@

f o r the ranges

in

<

1 . 5 ~ 1 0 - ~ mmlsec 30

<

d

<

145 mn 50

<

h

<

170 mn

For

in

greater than 1 . 5 ~ 1 0 - ~ mmlsec, a constant value of 1.5~10-* mmlsec should be taken since t h e r e was no f u r t h e r increase i n adhesion strength.

Information on measured adhesion strengths o f s a l i n e i c e i n t h e f i e l d i s very l i m i t e d . Recently Vershinin e t a l . (1983) measured an adhesion s t r e n g t h of 194 kPa a t a constant r a t e o f 1 mn/sec f o r a 100 cm diameter p i l e frozen i n t o n a t u r a l sea i c e o f 115 cm thickness i n t h e f i e l d . The mean d a i l y temperature was -14OC, so t h a t t h e average i c e temperature could be estimated as -6"C, which i s s i m i l a r t o t h e present t e s t c o n d i t i o n . Equation ( 7 ) p r e d i c t s an adhesion s t r e n g t h of 300 kPa f o r those conditions. I n f o r m a t i o n on p i l e m a t e r i a l used i n t h e i r t e s t s i s lacking, however, i f t h e m a t e r i a l used i s assumed t o be steel, t h e p r e d i c t e d value could be comparable t o t h e measured value.

5. CONCLUSIONS

The adhesion s t r e n g t h o f wooden p i le s f r o z e n i n t o s a l i n e i c e was measured as a f u n c t i o n o f p i l e displacement rate, i c e thickness and p i l e diameter. The r e s u l t s obtained are as follows;

( 1 ) Two t y p i c a l f a i 1 ure modes were observed; shear f a i 1 ure a t t h e p i le - i c e i n t e r f a c e and f l e x u r a l f a i l u r e i n t h e i c e .

( 2 ) The adhesion s t r e n g t h was observed t o increase w i t h increasing p i l e displacement r a t e , i n c r e a s i n g i c e thickness and decreasing p i l e diameter.

( 3 ) The adhesion s t r e n g t h o f s a l i n e i c e was found t o be less by a f a c t o r o f a t l e a s t 3.5 than t h a t o f freshwater columnar-grained i c e .

( 4 ) A t displacement r a t e s l e s s than

1 0 ' ~

nm/sec t h e adhesion s t r e n g t h measured i s very low, l e s s than 100 kPa.

( 5 ) The d e f l e c t i o n curve a n a l y s i s using f l e x u r a l model and shear model was successfully a p p l i e d t o r e l a t e t h e measured d e f l e c t i o n curve t o f l e x u r e and shear i n t h e i c e .

(18)

( 6 ) The proposed e m p i r i c a l equation o f adhesion s t r e n g t h was found t o g i v e a comparable value t o the f i e l d data.

ACKNOWLEDGEMENT

The authors wish t o thank J. N e i l , Technical O f f i c e r o f DBR/NRC, f o r

h i s assistance i n performing t h e present t e s t series.

REFERENCES

Construction Norms and Regulations, 1975. SNIP-11-57-75 Loads exerted on

h y d r a u l i c s t r u c t u r e s by waves, i c e and ships. National Research Counci 1

of Canada, Tech. Trans. TT-1968, 1980.

I

I

Frederking, R., 1974. Downdrag loads developed by a f l o a t i n g i c e cover :

I f i e l d experiments. Can. Geotech. J., Vol .ll, No.3, p.339-347.

I

Frederki ng, R., 1979. Laboratory t e s t s on downdrag loads developed by

f l o a t i n g i c e covers on v e r t i c a l p i l e s . Proc. 5 t h I n t . Conf. on POAC,

Trondheim, Vol .I I, p.1097-1110.

IFrederking, R. and K a r r i ,

J.,

1983. E f f e c t s o f p i l e m a t e r i a l and loading

s t a t e on adhesive s t r e n g t h o f p i l e s i n ice. Can. Geotech. J., Vo1.20, p .673-680.

Lofquist, B., 1951. L i f t i n g f o r c e and bearing c a p a c i t y o f an i c e sheet.

Nat i onal Research Counci 1 o f Canada, Tech. Trans. TT-164.

!

Nakawo, M. and Sinha, N. K., 1981. Growth r a t e and s a l i n i t y p r o f i l e of

f i r s t - y e a r sea i c e i n t h e h i g h A r c t i c . J. Glaciol., Vo1.27, No.96,

p.315-330.

Oksanen, P., 1982. Adhesion s t r e n g t h o f ice. Technical Research Center

of

Finland, Res. Report 123.

Sackinger, W. M. and Sackinger, P. A., 1977. Shear s t r e n g t h of t h e

adfreeze bond o f sea i c e t o s t r u c t u r e s . Proc. 4 t h I n t . Conf. on POAC,

S t . John's, Vol.11, p.607-614.

Saeki

,

H., Ono, T. and Ozaki

,

A., 1981. Mechanical p r o p e r t i e s of adhesior

s t r e n g t h t o p i l e s t r u c t u r e s . Proc. IAHR I c e Symposi urn, Quebec, Vol .I I,

(19)

Saeki, H., Ono, T., Takeuchi, T., Kanie, S. and Nakazawa, N., 1986. I c e forces due t o changes i n water l e v e l and adfreeze bond strength between sea i c e and various material. Proc. 5 t h I n t . Symp. o f OMAE, Tokyo, Vol . I V , p.534-540.

Sinha, N. K., 1981. Rate s e n s i t i v i t y o f compressive strength o f columnar- grained ice. Exp. Mech., Vo1.21, No.6, p.209-218.

Timoshenko, S. and Woinowsky-Krieger, S., 1959. Theory o f p l a t e s and shells. McGraw-Hill Book Co.

Tinawi

,

R. and Gagnon, L., 1984. Behaviour of sea i c e p l a t e s under long term loading. Proc. IAHR I c e Symposium, Hamburg, Vol .I, p.103-112. Vershinin, S. A. e t al., 1983. E f f e c t o f an i c e cover frozen t o the

c y l i n d r i c a l support o f offshore o i l w e l l platforms subjected t o water l e v e l f 1 uctuation. National Research Counci 1 o f Canada, Tech. Trans. TT-2041.

Weeks, W. F. and Hami lton, W. L., 1962. Petrographic c h a r a c t e r i s t i c s of

(20)

T h i s paper i s being d i s t r i b u t e d i n r e p r i n t form by t h e I n s t i t u t e f o r Research i n Construction. A l i s t of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be obtained by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , I n s t i t u t e f o r Research i n C o n s t r u c t i o n , National Research C o u n c i l of Canada, O t t a w a , O n t a r i o ,

KIA

OR6.

Ce document est d i s t r i b u g sous forme de t i r e - 8 - p a r t p a r 1' I n s t i t u t de recherche en

c o n s t r u c t l o n . On peut o b t e n i r une l i s t e d e s p u b l i c a t i o n s de 1' I n s t i t u t p o r t a n t s u r l e a techniques ou les recherches e n matisre

d e b l t i m e n t e n Bcrivant B l a S e c t i o n d e s p u b l i c a t i o n s , I n s t i t u t de recherche en c o n s t r u c t i o n , C o n s e i l n a t i o n a l d e r e c h e r c h e s du Canada, Ottawa ( O n t a r i o ) ,

Figure

Table  1 .   TEST  RESULTS  Test  d  h  .

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers