• Aucun résultat trouvé

Monitoring oxidative stability and phenolic compounds composition of myrtle-enriched extra virgin olive during heating treatment by flame, oven and microwave using reversed …

N/A
N/A
Protected

Academic year: 2021

Partager "Monitoring oxidative stability and phenolic compounds composition of myrtle-enriched extra virgin olive during heating treatment by flame, oven and microwave using reversed …"

Copied!
12
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Industrial

Crops

and

Products

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Monitoring

oxidative

stability

and

phenolic

compounds

composition

of

myrtle-enriched

extra

virgin

olive

during

heating

treatment

by

flame,

oven

and

microwave

using

reversed

phase

dispersive

liquid–liquid

microextraction

(RP-DLLME)-HPLC-DAD-FLD

method

S.

Dairi

a,∗

,

T.

Galeano-Díaz

b

,

M.I.

Acedo-Valenzuela

b

,

M.P.

Godoy-Caballero

b

,

F.

Dahmoune

a

,

H.

Remini

a

,

K.

Madani

a

aLaboratoiredeBiomathématique,Biophysique,Biochimie,etScientométrie,FacultédesSciencesdelaNatureetdelaVie,UniversitédeBejaia,

06000Bejaia,Algeria

bUniversityofExtremadura,AnalyticalChemistrydepartment,Badajoz,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9July2014 Receivedinrevisedform 16November2014 Accepted18November2014 Keywords:

Extravirginoliveoil Phenoliccompounds Heating Myrtuscommunis Lipidoxidation Functionalfood

a

b

s

t

r

a

c

t

Lipidsoxidationisoneofthemainwaysthataffectthenutritionalqualityofextravirginoliveoil(EVOO) bylosingitsphenolicsubstancesandespeciallyduringheatingtreatments.Thisstudywasfocusedon theevaluationoftheeffectofMyrtuscommunisphenoliccompounds-enrichedextravirginoliveoil (McPC-EEVOO)onphenoliccompoundscompositionduringflame,ovenat180◦Candmicrowaveheating, atdifferentexposuretimes,evaluatedbyreversedphasedispersiveliquid–liquidmicroextraction (RP-DLLME)-HPLC-DAD-FLD.TheK232andK270werealsoevaluatedforallheatingtreatments.Theobtained resultsshowedthattheenrichmentofEVOObymyrtleextractssignificantlypreventstheconsumption ofendogenousphenoliccompoundfromEVOOasphenolicalcoholandflavonoidsincomparisontothe control(EVOOwithoutenrichment).Themostprotectiveeffectwasfoundduringflameandmicrowave heating.TheK232valuesweresignificantlyreducedduringflameheatingcomparedtothecontroland followedbyovenheating,althoughK232valuesinmicrowaveheatingweresimilarforalltheoilexamines. K270wasnotaffectedbythisenrichmentofEVOO.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Inrecent years, theMediterranean diethasbecome

increas-inglypopular,gainingwidespreadattentionamongthenutrition

andresearchcommunities(HuangandSumpio,2008)and their

replaceableelementin thisdietarystyleisextravirginoliveoil

(EVOO).

ThebeneficialpropertiesofEVOOaremainlyattributedtoits

composition,havingahighpercentageofmono-unsaturatedfatty

acids(oleic acid:C18:1, n9) and significantamountsof minor

componentsasphenoliccompounds(phenolicacids,phenolic

alco-holssuchashydroxytyrosolandtyrosol,secoiridoidsderivatives

andflavonoids,suchluteolinandapigenin)(Alloucheetal.,2007;

Benganaetal.,2013).EVOOphenoliccompoundscontributetothe

∗ Correspondingauthor.Tel.:+213661141500. E-mailaddress:sofianedairi@yahoo.fr(S.Dairi).

antioxidantandbiologicalproperties(TuckandHayball,2002),

oxi-dationresistance,bitterandpungenttasteofEVOO(Bendinietal.,

2007;Benganaetal.,2013).

Virginoliveoil(VOO)maybeconsumedrawasaningredient

intoast, salads,andotherfoodstuffs,although,in addition,itis

highlyconsumedafterdomesticheating,suchasfrying,boiling,and

microwave(Carrasco-Pancorboetal.,2007).Nevertheless,several

studieshavefocusedonpossibledegradationandlossesofphenolic

compoundspresentinEVOOduringdifferentheatingprocedures

by a complex series of chemical reactionsincluding oxidation,

hydrolysis,andpolymerization(Santosetal.,2013).Beˇsteretal.

(2008)haverecentlyfoundthatthetotalphenolcontentdecreased

by55–60%afterheattreatmentat100◦Cfor142h,withanairflow

of10L/h.Regardingsinglecompounds,Carrasco-Pancorboetal.

(2007)reportedthathydroxytyrolanditsderivativesofEVOO

suf-feredsignificantlossesduringheatingat180◦C.Likewise,Brenes

et al.(2002)foundbetween 20and 30% ofhydroxytyrollosses

inEVOOfromSpanishcultivarsafter5and10minofmicrowave

http://dx.doi.org/10.1016/j.indcrop.2014.11.035

(2)

heating.In theliterature,a hugedisparityandconflictedresults

werefoundregardingthecomparisonofmicrowaveheatingeffect

andothersprocessesonoliveoilquality(Santosetal.,2013).

Therefore,phenoliccompoundspresentinEVOOdonotremain

enoughto ensurea good stability during heating. For this, the

enrichmentofoliveoilcomplementingtheolivephenolswithother

kindsofphenoliccompoundscanbeagoodstrategytoimprovethe

oxidativecapacityandnutritionalprofileoftheoliveoil,givingrise

tothedevelopmentofnewfood(Rubioetal.,2012).The

incorpo-rationofthymeextractinEVOOincreasedtheoxidativestability

andtheantioxidantactivityofEVOO(Rubioetal.,2012)andithas

beenalsoobservedanenhancingeffectofthymecompoundsonthe

bioaccessibilityofsecoiridoidsfromoliveoil(Rubioetal.,2014).

Regardingsimulatedhouseheatingeffectonenrichedoil,few

studiesarefoundintheliterature.TherecentworkofMalheiro

etal.(2012)showedthattheteaextractsprotectoliveoilfrom

theoxidativeprocess(until3min),butwithhigherheatingperiods

theextractswerepro-oxidants.Thismeansthatthereisacomplex

interactionoccurringinacomplexmixtureofantioxidantswhich

maybetakenintoaccountwhendesigningafunctionalfood.Tothe

bestofourknowledge,thereisanyworkstudyingtheeffectofthe

co-occurringEVOOandplantextractonthecompositionofEVOO

phenoliccompoundsduringdifferentheatingprocesses.

Myrtle,MyrtuscommunisL.,isarichsourceofantioxidant

com-poundsandpossessesstrongantioxidantproperties(Dairietal.,

2014). The main goal of this work is to evaluate for the first

timetheeffectofmyrtleextract,obtainedbytwodifferent

meth-ods,microwave-assistedextractionandconventionalone,onthe

preservationofEVOO phenoliccompoundsconsumption during

threeheatingprocedures.Theheatinginabutane-airflameheating

(2,3,5and10min)orinovenat180◦C(1,2and3h)wasassayed.

Thelastheatingtreatmentwasappliedbyusingforthefirsttime

scientificmicrowave(5,10,15and20min).Theevolutionofthe

phenoliccompoundscontentofEVOOwasmonitoringbyreversed

phasedispersiveliquid–liquidmicroextraction

(RP-DLLME)-HPLC-DAD-FLDmethod.TheK232andK270werealsodeterminedforall

heatingconditions.

2. Materialsandmethods

2.1. Materials

EVOOsampleswerefromAlgerian“Chemlal”cultivarolives,

col-lectedintheregion ofBejaia (Algeria).Theoils wereextracted

by a three phases centrifugation system from mid-ripe olive

fruit.

2.2. Chemicalsandstandards

Forallexperiments,analyticalreagentgradechemicalsand

sol-ventswereused.UltrapurewaterwasobtainedfromaMillipore

Milli-QA10 System (Waters,Germany). Hydroxytyrosol (HYTY),

luteolin(LUT)andapigenin(APIG)wereobtainedfrom

Extrasyn-these(Genay,France);gallicacid(GAL) tyrosol(TY),p-coumaric

acid(p-CUM),ferulicacid(FER)andmyricitrinanalyticalstandards

fromSigma-AldrichChemieGmbH(Steinheim,Germany).All

sol-ventsemployedwereHPLCgrade;ethanolandacetonitrilewere

providedbyPanreac(Spain),aceticacidbyRomilChemicalsLtd

(England).

2.3. Plantmaterialpreparation

M.communisleaveswerecollectedintheregionofBejaia

(Alge-ria),and dried in anoven at 40◦C until constant weight, then

crushedandsievedtohaveasizelessthan125␮m.Thesamples

werestoredinthedarkatroomtemperature.

2.4. Extractionprocedure

2.4.1. Microwaveassistedextraction(MAE)method

Theextractionprocedurewaspreviouslydescribedinour

pre-viousstudy(Dairietal.,2014).Briefly,domesticmicrowaveoven

(NN-S674MF, LG,Japan, 32L, 1000W; variable in 100W

incre-ments,2.45GHz)modifiedinourlaboratorywasusedforextraction

ofmyrtleleavesphenoliccompound(McPCs).Theleave

suspen-sion(1gofleavespowderper20mLof50%EtOH)wasirradiated

bymicrowaves(700Wofpower)for1minaccordingtothe

fol-lowing cycle: 45s power-on, 10s of power-off and again 15s

power-on.Thesamplewasfilteredwithasinteredglassat0.45␮m

usingavacuumpump.Twoothersadditionalextractionswere

car-riedoutforrecoveringthetotalityofPCsandthethreefractions

werecombined.Then,thesolventwasevaporatedtoobtainadry

extract.

2.4.2. Conventionalextraction(CE)method

20mLof50%-ethanolwereaddedto1gofmyrtleleavespowder

andletmacerateduring60minwithmagneticagitation.Afterthat,

theprocesswasthesameasforMAEmethod(Dairietal.,2014).

2.5. Preparationofenrichedextravirginoliveoil

Weighed quantities of myrtle extracts weredissolved in an

appropriatevolumeofethanol(50%).Then,anappropriatevolume

ofthese(500␮L),togive200mgGAEkg−1 ofoil,wereaddedto

extravirginoliveoil(500g)bystepwiseundervigorousstirringfor

30min.Oilsampleswerestoredinthedarkuntiluse(Bouazizetal.,

2008).

2.6. Reversedphasedispersiveliquid–liquidmicroextraction

(RP-DLLME)ofphenoliccompoundsfromEVOO

TheextractionofphenoliccompoundsfromEVOOwascarried

outbyDLLME,andtheirquantificationwasmadebyemployingthe

standardadditioncalibrationmethod.Forthis,2gofEVOOspiked

withincreasinglevelsofthephenoliccompoundswereweighed

in atest tubewithconical bottom and1mLof1,4-dioxane (as

dispersersolvent) plus 150␮Lof ethanol:water 60:40 (v/v) (as

extractionsolvent) wereinjectedrapidlyintotheEVOOsample

using a 2mL syringe. The mixture was then shaken in a

vor-texapparatusfor1minand centrifugedfor15minat4000rpm

usinga Mixtaselcentrifuge. Thedispersedfinedropsof

extrac-tion solvent were separated and settled at the conical bottom

oftheconicaltesttube.Theseparatedphasewastakenusinga

syringeanddirectlyinjectedinthechromatographicsystemfor

itsanalysisintheoptimized conditions(Godoy-Caballeroetal.,

2013).

2.7. Identificationandquantificationofphenoliccompoundsof

EVOOandenrichedEVOObyRP-DLLME-HPLC-FLD-DAD

ThechromatographicstudieswereperformedusinganAgilent

Model1100LCinstrument (AgilentTechnologies,Palo Alto,CA,

USA)equippedwithdegasser,quaternarypump,columnoven,auto

samplerAgilent1290infinitythermostatizedat5◦C,UV–vis

diode-arraydetector(DAD),rapidscanfluorescencedetector(FLD),and

theChemstationsoftwarepackagetocontroltheinstrument,and

fordataacquisitionandanalyses.Theanalyticalcolumnemployed

wasa120ODBS5␮m,150mm×4.6mm(Teknokroma,Barcelona,

Spain).Thecolumntemperaturewassetat25◦C.Themobilephase

componentswerehigh-puritywater/0.5%aceticacid/0.1%

acetoni-trile(phaseA)andacetonitrile/0.5%aceticacid(phaseB)andwere

(3)

10%B;20–30min,45%B;30–45min,45% B;45–50min,10%B;

50–65min,10%B.Then, thecolumnwasre-equilibratedduring

15minintheinitialconditions.Theflowratewassetconstantat

0.5mLmin−1andtheinjectionvolumewas10␮L.

Identification of individual polyphenols was carried out by

usingretention times and spectrometricand fluorescencedata.

ThedetectionwasdirectlyperformedbyHPLC-DADatthe

max-imumabsorbancewavelengthforeachpolyphenol.Quantification

ofthesinglepolyphenolswasdeterminedfromstandardaddition

calibrationcurvemethodusingafour-pointregressioncurveand

analyticalfigureswereperformedbymeansoftheACOCprogram

inMatLabcode(Godoy-Caballeroetal.,2012).

2.8. Measurementofspecificabsorbancecoefficient(K232and

K270)

Coefficientsofspecificextinctionat232and270nm(K232and

K270) were determined according to European Union standard

methods(CommissionRegulation(EEC)no.2568/91).Theoil

sam-plesweredilutedinisooctaneplacedintoa1cmquartzcuvette,

andtheirabsorbancevalues weremeasuredatthewavelengths

270and232nm,againstablankofisooctane.Threereplicateswere

preparedandanalyzedpersample.

2.9. Heatingproceduresofun-enrichedandenrichedextravirgin

oliveoil

2.9.1. Conventionalheatingbyflame

Tosimulatetheconditionsofheatinginhousecooking

prac-tices,samples(5g)ofeachEVOOsamplewereweighedinPyrex

beakersof 42mm diameterand placed onthecenterof a

sup-portandwereheatedbyflamefordifferentexpositiontimes,0,

2,3,5and10min.Threeexperimentswerecarriedoutforeach

sample under the same conditions. After each heating period,

theoiltemperaturewasdeterminedwitha thermometer.After

cooling, the samples were stored in sealed tubes at 6◦C until

analysis.

2.9.2. Conventionalheatinginovenat180◦C

Tosimulatefryingconditions,ninealiquots(5g)ofeachsample

wereweighedinPyrextubesandsubjectedtoconventional

heat-ingat180◦CinaHeraeusdryingoven.Thetubeswereremoved

fromtheovenatfixedintervalsof60min,obtainingsampleswith

differentheatingtreatments(60,120,180min)tobeanalyzed.All

heatedsampleswerecooledatroomtemperature(23±1◦C)and

storedat6◦Cuntilchemicalanalysis.

2.9.3. Microwaveheating

AScientificmicrowaveoven(MilestoneETHOS(800W)with

NS14100ATC-FONS14stopperwithquartzthermowell)wasused

toheatingtreatmentofextravirginoliveoil(EVOOor EEVOO).

To simulatethe averagequantity and conventional times used

in home cooking, three aliquots (5g) of each oil were placed

inPyrex beakers(42mmdiameter)attheovenandexposedto

microwaveirradiationof2450Hzfrequencyatmaximumpotency

(1000W)for differentmicrowavingtimes,5,10,15and20min.

Theachievedtemperaturesofheatedoilsweremeasured

imme-diately aftermicrowave exposure, by insertinga thermocouple

(connectedtoanacquisition system)atapproximatelythe

geo-metricalcenterofthesample.Allheatedsampleswereallowedto

coolatroomtemperaturefor60minafterthermaltreatmentand

beforechemicalanalysis.Thethree5galiquotsofeachoilwere

combinedaftermicrowavinginorder toobtaina homogeneous

sample. The sampleswere keptunder refrigeration (4◦C) until

analysis.

Fig.1.DADandFLDchromatogramsofun-enrichedandenrichedEVOObymyrtle extractsubjectedtotheRP-DLLMEanddirectlyinjected.Galloylquinicacid(1),gallic acid(2),hydroxytyrosol(3),tyrosol(4),secoiridoid1(5),secoiridoid2(6),myricitrin (7),luteolin(8),apigenin(9).Similarchromatogramprofilewasobtainedformyrtle CE-enrichedEVOO.

3. Resultsanddiscussion

3.1. Identificationandquantificationof“chemlal”EVOOphenolic

compounds

TheextractionofEVOOphenoliccompoundswascarriedout

usinganewmethoddevelopedbythelaboratorywherethiscurrent

studywasdone. Thus,areversed phasedispersive liquid–liquid

microextraction(RP-DLLME)procedureshavebeenusedwith

1,4-dioxane asdisperser solvent which is misciblewith extraction

solvent (ethanol/water) and withthe EVOOsample. This novel

extractiontechniqueenablestheincrease ofthecontactsurface

areabetweentheextractionsolventandEVOOsample,resulting

inabetterrecoveryefficiencyandshorterextractiontime(

Godoy-Caballeroetal.,2013).Themainphenoliccompoundsidentifiedin

EVOOareshowninFig.1issummarizedinTable1.Thephenolic

compoundsdetectedbelongingtophenolicalcohols(hydroxytyrol,

tyrosol),cinnamicacidderivatives(p-coumaricacid,ferulicacid)

andflavonoids(luteolinandapigenin).Thesecompoundidentified

wereinagreementwithpreviousworksstudyingthesame

culti-var(Benganaetal.,2013;Tamendjarietal.,2014).Twoanother

important peakswere eluted at 36.6and 36.9minrespectively

between luteolin and apigenin and showingthe same spectral

behavior(max280nm).Accordingtotheliterature(Benganaetal.,

2013;Capriottietal.,2014;Lozano-Sánchezetal.,2013)

concern-ingSpanishandAlgerianEVOO,someoleuropeinandligstroside

derivativeswereelutedbetweenluteolinandapigenin.Therefore,

(4)

Table1

IdentificationofphenoliccompoundfromAlgerianextravirginoliveoil“Chemlal”cultivarbyRP-DLLME-HPLC-DAD-FLD.

Phenoliccompound Retentiontime(Tr) Equation R2 Concentration(mgkg−1ofoil)

Quinicacidorderivative 4.01 – – –

Hydroxytyrol 10.09 Y=72.15x+246.1 0.999 4.12±1.57 Tyrosol 17.32 Y=35.98x+222.9 0.997 5.54±1.46 Luteolin 35.92 Y=365.61x+1340.8 0.997 3.67±0.77 Apigenin 38.47 Y=360.72x+589.74 0.996 1.63±0.60 P-coumaricacid 31.95 Y=0.6695x+32.531 0.993 0.05±0.04 Ferulicacid 32.64 Y=0.4119x+13.303 0.997 0.03±0.01 Secoiridoid1 36.65 – – – Secoiridoid2 36.94 – – –

(oleuropeinorligstrosidederivatives)whichoccurintheseEVOO at63–91mgkg−1ofEVOOasfoundintheworkofBenganaetal. (2013)studyingthesameEVOOvarietyatdifferentharvestdates.

The phenolic alcohols fraction was higher than flavonoids one

which is consistent with the finding of Bengana et al. (2013),

whereastheworkof(Tamendjarietal.,2014)studyingthesame

Algerian cultivars shows a different result. These observations

support the effect of various factors such as geographical

ori-gin,ripeningdegreeandextractionprocessonchemicalprofiles

andEVOOphenoliccompoundscomposition(Bendinietal.,2007;

Benganaetal.,2013).

TheanalysisofphenoliccompoundcompositionfromM.

com-munis leaves was carried out by HPLC-DAD-FLD in the same

conditionsutilizedfortheanalysisofEVOOphenoliccompounds

(datanot shown).The enrichmentof EVOOwithmyrtle extract

revealedthepresenceofnewcompoundsintheoilsampleascan

beseenin theFig.1,andthemainimportantcompoundswere

resumedinTable2.At280nm,thechromatogramreportedthe

presenceofanimportantpeakat4.1minwhich wastentatively

attributedtogalloylquinicacidfrommyrtleextract(Romanietal.,

2012)asmentionedaboveinourpreviousstudy(about7mg

gal-licacidequivalentpergramofdrymyrtleextract)(unpublished

data).However,thispeakoverlayswithanothersmallpeakfrom

EVOObothhavingthesameelutiontimeand spectralbehavior.

Intheliterature,thepresenceofapeakelutingbeforegallicacid

hasbeen reported in EVOO “Chemlal” variety and assigned to

quinicacidpresent ata concentrationof 3–4mgkg−1 (Bengana

etal.,2013).Thisletsupposethat thisinterfering peakmaybe

attributedtoquinicacidorderivative.Theconcentrationof

gal-loylquinicacidwasexpressedasgallicacidequivalent(GAE)from

standardadditioncalibrationcurvewithremovingthesignaldueto

theinterferingpeakfromEVOO.Gallicacidwasalsoidentifiedin

enrichedEVOOand inmyrtleextracts(datanotshown)

accord-ingtoitsretention timeand UV–vis datain comparisontothe

standard,andwaspresentata concentrationof1.48±0.76 and

1.68±0.80mgkg−1 forMyrtle MAE or CE-enrichedextravirgin

oliveoil(EEVOO)respectively.Ontheotherhand,whenthe

chro-matogramwasacquiredat350nm,differentnewcompoundswere

observedbutduetothelackofstandards,itwasonlypossibleto

identifyoneflavonoidasmyricitrin3-Orhamnoside(Romanietal.,

2012),oneofthemaincompoundpresentinmyrtleextract,and

waspresentinEEVOOat2.5timeshigherthangallicacidcontent.

Ontheotherhand,theEVOOsamplesenrichedwithMyrtleMAE

andCEextractsgaveclosephenoliccompoundscompositionwhich

impliesthatthemicrowaveextractionmethodmaybean

alterna-tivemethodallowingagoodrecoveryofantioxidantcompounds

fromplantsasreportedpreviouslyinmany studies(Dahmoune

etal.,2013).

3.2. Heatingeffectsonthephenoliccompoundcompositionof

myrtle-enrichedEVOO

Tobetterunderstandtherole ofphenolic compoundsinthe

EVOOoxidativestability,changesintheircompositionwere

mon-itoredduringtheprogressofoxidation.

3.2.1. Flameheating

Flameheating wasusedin ordertosimulatesomedomestic

practices.Theevolutionoftheendogenousphenoliccompoundsas

hydroxytyrol,tyrosol,luteolin,apigeninandunknown1(showing

astrongFLsignal)duringflameheatinginthecontrol(oil

with-outenrichment)andenrichedEVOO(EEVOO)wasconductedby

monitoringDADor FLD signal,and theevolution of exogenous

compoundssuchasgalloylquinicacidandmyricitrinwasalso

mon-itoredinmyrtleMAEorCE-EEVOO.Theresultwasexpressedas

degradation%.

With regard to phenolic alcohols, hydroxytyrol disappeared

progressivelyduringtheheatingtreatmenttoachieveacontent

lossof 69.5% after10min (235◦C),while tyrosolwas degraded

lessquicklyduringthefirstminutesoftreatment.While50%of

hydroxytyrosolwasdegradedafter5min(188◦C),thedecrease

of tyrosol content was about 7.7% in this time, diminishing

later more drastically until a 58.9% after 10min. In any case

the loss of tyrosol is less than that of hydroxytyrol (Fig. 2).

The phenolic compounds were degraded as a consequence of

their antioxidant activity and their degradation rate was

pos-itively correlated to their antioxidant efficacy (Bouaziz et al.,

2008).Infact,ourresultwasinagreementwiththetestsonthe

antioxidativeproperties ofthestudied compounds; the

antiox-idantcapacity decreased in the orderhydroxytyrol>oleuropein

aglycone>ligstrosideaglycone>Tyrosol(Carrasco-Pancorboetal.,

2005).Thus,hydroxytyrosol,havingtwohydroxylgroup,wasthe

firstcompoundtobeoxidizedincomparisontotyrosol(one

OH-groupandithasbeenclaimedpreviouslythatitisthemostactive

Table2

IdentificationofMyrtuscommunisphenoliccompoundinenrichedextravirginoliveoilusingRP-DLLME-HPLC-DAD-FLD.

EVOO+MyrtleMAE EVOO+MyrtleCE

Equation;R2 Concentration(mgkg−1ofoil) Equation;R2 Concentration(mgkg−1ofoil)

Galloylquinicacid* 3.44±0.08a 4.17±0.07b

Gallicacid Y=262.35x+389.72;0.99 1.48±0.76a 262.35x+440.59;0.99 1.68±0.80a

Myricitrin Y=183.6x+697.78;0.99 3.73±1.73a 183.6x+755.75;0.99 4.04±1.81a

Thevalueswereexpressedasthemeanofthreemeasurements(n=3)±standarddeviation(SD).Meanswithdifferentlettersforeachcompoundaresignificantlydifferent atp≤0.05.

(5)

Fig.2.FlameheatingeffectonEVOOorMyrtle-EEVOOphenoliccompoundsdegradation.

antioxidantcompound(Bendinietal.,2007)providingoxidative

stability totheEVOO byprotecting polyunsaturated fattyacids

(PUFAs) (Nissiotis and Tasioula-Margari,2002). Theantioxidant

activityof hydroxytyrosol is due tohydrogen donation and its

ability to scavengefree radicals by formingan intra-molecular

hydrogenbondbetweenthefreehydrogenofitshydroxylgroup

andtheirphenoxylradicals(Bouazizetal.,2008).

Luteolin(which hasa catecholgroup) is theflavonoidmost

affectedduringflameheatingandespeciallyafter5min(188◦C)

oftreatmentwhere thedegradationrateincreasedsignificantly

toachieve a loss of 69.3±1.1% at the highest exposition time.

Regardingapigeninwhichhasnotacatecholgroup,itwasthemost

stablecompoundanditscontentdiminishedina22.8±2.1%.These

resultsshowedthatluteolinwasmoreefficientantioxidantthan

apigenin,therefore,itmightplayanimportantroleinthe

protec-tionoftheoilagainstthermaloxidationprocess.Theseobservations

confirmedthatthepresence ofa catecholmoiety enhancesthe

abilityofthephenoliccompoundstoactasantioxidantsby

reac-tingwithlipidradicalstoformnon-reactiveradicals,interrupting

thepropagationchain(Bendinietal.,2007)and alsothis

struc-turefeatureallowsabetterstabilizationofthephenoxylradicalby

increasingtheelectrondelocalization.

Thesecoiridoid1(tr36.6)showedthehigheststabilityin

compar-isontotheotherEVOOphenoliccompoundsduringflameheating

andlosingonly9.08%ofitscontentafter10minofheating.Itiswell

knownthatsecoiridoidcompoundsarethemostimportant

antiox-idants occurringin EVOO(90%) and contributeto itsoxidative

stabilityduetotheirantioxidantpropertiesandespecially

oleo-sidicformofhydroxytyrol(NissiotisandTasioula-Margari,2002).

Accordingtotheliterature,theconcentration ofthesecomplex

phenolsdecreasedduringlongstoragetimeLozano-Sánchezetal.

(2013)andalsoduringstrongheatingasreportedpreviouslyby

Beˇsteretal.(2008)showingthatthermaltreatmentofEVOOfor

(6)

Fig.3.ThedegradationofMyrtuscommunisphenoliccompoundduringflameheating(A),ovenheatingat180◦C(B)andmicrowaveheating(C)inmyrtle-EEVOO.

ofsecoiridoid biophenols tothesimple biophenols,tyrosol and

hydroxytyrosol.Thissupposesthatourconditionswerefartocause

asignificantlossesofthesecompounds.

TheresultsshowalsothattheenrichmentofEVOObymyrtle

extractpreventsignificantlytheconsumptionofendogenous

phe-noliccompoundfromEVOOduringflameheating,incomparisonto

thecontrol(EVOOwithoutenrichment)asitcanbeseeninFig.2.

MyrtleMAEorCE-EEVOOdecreasedsimilarlythedegradationof

hydroxytyrol,20.04and18.87%respectively,andoftyrosol,14.14

and13.10%ofdecreaserespectively,incomparisontothecontrol.

Inaddition,myrtleMAE-EEVOOdecreasedthediminutionof

lute-olinandapigenin,32.55and15.62%respectively,andtheseeffects

werehigherthantheprotectionaffordedbymyrtleCE-EEVOO:only

aprotectionof8.90 and3.83%forluteolinandapigenin

respec-tivelywas observed.On the otherhand; secoiridoid 1was not

affectedduringflameheatingofEEVOO,incontrasttothecontrol

(EVOOwithoutenrichment).Regardingthephenoliccompounds

ofmyrtleextracts,ascanbeseeninFig.3A,rapiddegradationwas

observedformyricitrinandafter5minofheattreatmentthelevelof

myricitrindecreaseddramaticallyby91%or97%formyrtleMAEor

CE-EEVOOrespectively.Withregardtogalloylquinicacidwhichisa

hydrolysabletannin,itsleveldecreasedmoreslowlythanobserved

formyricitrinandachievelossesof75.0±6.7%or64.0±7.4%for

myrtleMAEorCE-EEVOOrespectivelyafter5minofheating.The

decreaseoftheconcentrationsofthesebothcompoundscouldbe

explainedbytheirantioxidantactivitiesandtheirthermal

degra-dation(Bouazizetal.,2008)andthedifferenceobservedbetween

themcouldbeattributedtotheirdifferenceinchemicalstructure,

reactivityagainstlipid radicalsbutalsotheirlocalizationinthe

oilsincegalloylquinicacidismorepolarthatflavonol(myricitrin).

Thus,myricitrinandgalloylquinicacidmaycontributetostabilize

EVOOduringheating.

3.2.2. Ovenheating

Theconventionalheatingat180◦Csimulatesfrying

tempera-turesduringdifferenttimeintervals(1,2and3h).Ascanbeseenin

Fig.4,thebehaviorofendogenousEVOOphenoliccompounds

dur-ingovenheatingat180◦Cwasdifferenttotheoutcomeobserved

duringflameheatingprocedure.

Thelevelofhydroxytyrosolinthecontrol(EVOOwithoutphenol

addition)remainedconstantduringthefirsthourofthetreatment;

after2and3hofheating at180◦C,thehydroxytyrosolcontent

lostby15.45%and 53%respectivelybutremainedlessthanthe

lossvalueobserved duringflame heating (Fig.3).On theother

hand,theleveloftyrosolincreasedsignificantlyby33.5and49.1%

compared to the unheated EVOO during the first 2 h of

heat-ingat 180◦C respectively, andafter 2h,tyrosol contentstarted

(7)

Fig.4.Evolutioncontentofhydroxytyrolandtyrosolduringovenheatingat180◦C

forEVOOandmyrtle-EEVOO.

beforeheating(+14.24%incomparisontothecontrol).

Carrasco-Pancorboetal.(2007)whostudiedthedeteriorationofEVOOby

heatingat180◦C,reportedalossof91.5%and57.0%for

hydrox-ytyrosolandtyrosolrespectively,whichletussupposeaninitial

compositionolivecultivareffects(Brenesetal.,2002)on

antiox-idantevolution duringheating. In addition,Beˇsteret al.(2008)

studiedthephenoliccompoundchangesofextravirginoliveoils

afterheatingfor142hat100◦Cwithanairflow10L/handshowed

anincreaseoftyrosolcontentwhile hydroxytyrosoland

deriva-tives(oleuropein)andtyrosolderivatives(ligstroside)decreased.

Theseobservationssupposedthatthetransformationof

hyroxyty-rosolandtyrosolderivativesmayoccurduringheatingat180◦C

releasingsimplebiophenols,hydroxytyrolandtyrosolrespectively

(Beˇsteretal.,2008).Therefore,theconcentrationofhydroxytyrol

ateachstageofheatingwouldbethesumofitsformationfrom

thedecompositionofitssecoiridoidderivativesandits

decompo-sitionduetoitsroleasantioxidant(Kricheneetal.,2010).Since

tyrosolwaslesseffectivethanhydroxytyrol,itresultsan

accumu-lationofthis compoundduringtheirderivativestransformation

andafter2hwhenitstartedtardilyactingasantioxidant,itslevel

decreased.WhenEVOOwasenrichedbymyrtleextract,

hydroxy-tyrollevelwasalmostunalteredduringthetwofirststepofheating

(1and2h)similarlytotheobservedinun-enrichedoil,but,only

forMAE-EEVOO,anincreaseofhydroxytyrollevelwasobserved

incomparisontothecontrol(withoutenrichment).Thismaybe

attributedtothepresenceofinterferingcompoundfromoxidation

coelutingwithhydroxytyrolandthusincreasingtheareaofthis

lattercompound.Attheendofthetreatment(3h),hydroxytyrosol

waslessdegradedthaninthecontrol:41.8and38.4%degradation

forMAEandCE-enrichedEVOOrespectivelygivinganadditional

protectionof11.2%and14.58%fortheaboveoilsrespectivelyin

comparisontothecontrol.Thismaybeexplainedbytheactive

contributionof antioxidants from myrtle extract together with

Fig.5.Monitoringofthedegradationofluteolin,apigeninandunknown1during ovenheatingat180◦CinEVOOandmyrtle-EEVOO.

endogenousphenoliccompoundfromEVOOtoinhibitlipid

oxi-dationduringtheseheatingconditions.Withregardtotyrosol,the

enrichmentdoesnotaffectsignificantlytheevolutionofthis

com-poundduringheatingat180◦Cwhichfollowsthesamebehavior

observedabovefortyrosolinEVOOcontrol.Itsfinalconcentration

remainedequalorsuperiortotheinitialforalloiltypesandthisis

relatedtotheweakantioxidantactivityoftyrosolandderivatives

(Carrasco-Pancorboetal.,2005).

Fig.5showsthedegradationofluteolinduringheatingat180◦C.

ThedepletionofluteolininEVOOincreasedslowlyduringthefirst

steps,degradationreaching3.1and 19.6%in1and2 hof

heat-ing,respectively.Thenafurtherrapiddecreasewasobserved,up

to68.3%attheend(3h).However,apigeninshowedaslower

degra-dationandattheendoftheheatingabout49.4%waslost.Therefore,

apigeninshowedhigherstabilitythanluteolinwhichcorrespondto

theresultonflameheatingeffect.Thebehavioroftheseflavonols

wasinagreementwiththepreviousworkofAlloucheetal.(2007)

studyingtheheatingeffectat180◦Conextravirginoliveoil.The

differenceobservedbetweenthesecompoundsmaybeattributed

tothedifferentnumberofphenolichydroxylslinkedtotheir

phe-nol ring. Regarding the enriched EVOO, myrtle extract didnot

significantlystabilizethesecompoundsinthesupplementedoil

asobservedforflameheating.AscanbeobservedinFig.5,the

depletionof luteolin andapigenin wasingeneralthe samefor

alloils,bothun-enriched andenrichedoil,althougha

significa-tivedecreaseofthedegradationofthesecompoundswithrespect

tothecontrolsamplewasobservedafter2hoftreatment,being

anaverageprotectioneffectof9.6%and3.7%forluteolinand

api-geninrespectivelyinmyrtle-EEVOO.Theseobservationssuppose

alsothepossiblecontributionofflavonolstotheoilstabilityas

pre-viouslyreportedintheworkofArtajoetal.(2006)whoshowedthat

refinedoilenrichedbyluteolinandapigeninimprovesignificantly

itsoxidativestability.

Regardingthesecoirioid 1compound,itsleveldecreased

sig-nificantlywithrespecttotheresultofflameheating.Infact,the

(8)

Fig.6.MonitoringofEVOOorMyrtle-EEVOOphenoliccompoundduringmicrowave heating.

significantlossesof44.2%whichishigherthanthevaluefoundfor

flameheatingtreatment(only9%ofdegradationwasobserved).

Thisconfirmsourhypothesisadvancedfromflameheatingresults,

thatthiscompoundwasdegradedindrasticconditionswithlonger

time.Tobetterunderstandtheimpactofthedepletionofthis

com-pound,wehaveexaminedthecorrelationbetweentheunknown

1depletion and tyrosol content increase and a negative linear

relationship(R2=0.90)wasfoundduringthefirst2hofthermal

treatment.Thismaysupposethatthesecoiridoid1maybelongto

ligstrosidefamilyanditsthermalhydrolysisaffectstheesterbound

betweenthephenolicportionandtherestofthemoleculeandthus

releasedasimplephenolastyrosol(tyrosolasanaromatic

alco-holicmoiety).Thisisinagreementwithseveralpreviousstudies

(Brenesetal.,2002;Carrasco-Pancorboetal.,2007).Thesecoiridoid

compoundsarethemainresponsibleofbitternessandpungency

sensationsinEVOO(Rubioetal.,2014)andaccordingtothework

ofLozano-Sánchezetal.(2013)whoinvestigatedthephenolic

com-poundsprofileofEVOOduringstorage(10month)thesecomplex

phenolsdecreasednoticeablyattheendofstoragesuggestingthat

thesesecoiridoidcompoundscouldbeusedasbiomarkersofEVOO

freshness.However,thesecoiridoid1contentduringthefirst2h

ofheatingat180◦CwasnotalteredinmyrtleMAEorCE-EEVOO

whichisincontrasttoitsbehaviorincontrolsample.Butafter3hof

treatment,nosignificantdifferencewasobservedforalloilstudied.

ThismeansthatthepresenceofmyrtleextractsinEVOOreducethe

depletionofthecompoundsecoiridoid1andthismaybeexplained

bythefactthatthislattercompoundwasnotonlylostbythermal

hydrolysisbutalsobyapossibleactionasantioxidantsubstance

reducingitsconsumptionwhenmyrtleextractwaspresent.Infact,

theworkofCarrasco-Pancorboetal.(2005)reportedthattyrosol

derivatives(ligstrosideaglycon)hadhigherscavengingeffecton

DPPHradicalsthantyrosol.

Regarding the antioxidants from myrtle extract (Fig. 3b),

galloylquinic acid presented similar degradation behavior that

observedwhenflameheatingwasappliedbut after3hof

heat-ing,galloylquinicacidwaslostby88%whileduringflameheating

(after10minwith235◦C)thiscompoundwascompletelylost.This

maybeattributedtothetemperatureeffectsincetheheatingtime

islongerinoventreatmentassay.Ontheotherhand,myricitrin

decreasedmoreabruptlyduringheatingat180◦Ctoreacha

max-imalloss(99%)after1hoftreatmentwhichisinaccordancewith

flameheatingassayandthusconfirmingthehighreactivityofthis

compoundanditsthermolabilityrelatedtoitshighernumberof

hydroxylgroups (Biesaga,2011).Incomparison tosecoiridoid 1

depletion,thereisatimeheatingeffectinsteadtemperature

heat-ingoneasfoundforgalloylquinicacid,andthus,itcanbededucted

thatthephenoliccompoundtrendsduringthermalstressaremore

Table3

TemperaturesachievedduringflameandmicrowaveheatingofEVOOsamples.

Flameheating Microwaveheating

Time(min) Temperature(◦C) Time(min) Temperature(C)

2 122±3.1 5 93±3.0

3 140±3.5 10 110±0.0

5 188±3.0 15 112±3.0

10 235±5.0 20 118±4.0

Thevalueswereexpressedasthemeanofthreemeasurements(n=3)±standard deviation(SD).

relatedtotheirnatureofmolecularstructure(Brenesetal.,2002; Lozano-Sánchezetal.,2013).

3.2.3. Microwaveheating

To the best of ourknowledge, noinvestigations have been

published on the influence of microwave irradiation on

phe-nolcomposition ofEVOO orEEVOO usingscientific microwave.

In this present study,we have workingat opensystemduring

microwaveheating(thetemperaturewasnotcontrolled)andthe

temperaturewasimmediatelymeasuredafterprocessing.The

tem-peraturesachievedweregiveninTable3.Animportantdisparity

hasbeenobservedregardingthetemperaturesachievedby

domes-ticmicrowave(170◦Cvs313◦C)reportedbymanyauthorsinthe

literaturewhohavestudiedtheimpactofmicrowaveheatingon

chemicalqualityofEVOO(Santosetal.,2013).

Theinfluence ofmicrowave heatingover the phenolic

com-poundsofthesampleswasassessedandtheresultsobtainedare

representedinFigs.6and7.Regardingphenolicalcohols(Fig.6),

itappearedthattheyaremoreresistanttomicrowaveexposure

thanobservedduringflameheating(Cerretanietal.,2009).The

microwaveheatingdecreasedprogressivelythelevelof

hydroxy-tyrosolbycausingalossof40.2%,whiletyrosolshowsmorestability

andwaslost onlyby23.6% atthehighest microwaveexposure

time(20min,118±4◦C).Brenesetal.(2002)found20 and30%

ofhydroxytyrollossinEVOOfromSpanishcultivarsafter5and

10minofmicrowaveheatingrespectivelywhiletyrosolwas

unal-teredasfoundbythesameauthors(Brenesetal.,2002)which

mightbedue tothelower powersettingemployed(500W)by

theseauthorsthatinducedlesschemicalchangesinthiscompound

(Cerretanietal.,2009).In addition,theselatterauthorsshowed

animportant depletionof hydroxytyrosoland tyrosol by93.93

and62.33%respectivelyduring15minofheatingusingdomestic

microwave(at720W)andtheachievedtemperaturewas313◦C.

Theseobservationsshowedtemperatureeffectondepletionof

phe-nolicalcoholsduringmicrowaveheatingbutalsotheamountof

theoilanalyzedandthetypeofmicrowaveusedmustbetaken

inaccount.Theenrichmenthadasignificantprotectioneffecton

theconcentrationofphenolicalcoholsbyreducingtheirdepletion

duringmicrowaveheatingandtheirlossesstartedafter5minof

treatmentwhichisincontrastwiththecontrolascanbeseenin

Fig.6.Withrespecttohydroxytyrol,anadditionalprotectiveeffect

wasobserved,about11%and14%forMAE-orCE-EEVOO

respec-tivelyafter15minofheatingwithoutasignificantdifferenceat

p<0.05forthesebothoils.Atthehighesttimeofheating

hydroxyty-rosolcontentinCE-EEVOOwasquiteclosetothecontrol(1.9±0.7%

ofdifference).Thedepletionoftyrosolwasreducedby32.2and

30.3%(after15min,112◦C)inMAE-andCE-EEVOOrespectively.

TheworkofMalheiroetal.(2012)showedthatabout50%ofEVOO

totalphenoliccompounds(TPC)waslostduringmicrowave

heat-ing(1000W,10min)andthatteaextractenrichedEVOOhadnot

apositiveeffectontheTPCdepletionandgreenteaextract

pre-sentedaprooxidanteffectwhichisnotobservedinourwork.This

meansthatthetypeofplantextractisadeterminantfactorinthe

designingoffunctionalfoodsinceantagonistorsynergiceffectmay

(9)

Fig.7. MonitoringofEVOOorMyrtle-EEVOOphenoliccompoundduringmicrowave heating.

Regarding flavonol fraction (Fig. 7), luteolin and apigenin

contentsremainedunchangedduringmicrowaveheatingforall

exposuretimesassayedwhichisinagreementwiththeworkof

Vallietal.(2010)studyingtheeffectofmicrowaveheating(9minat

750W).Thecomparisonofthisresultwithflameandconventional

heating,supposed that thesethermal treatmentsledtoa more

importantoxidativeandhydrolyticdegradationofflavonolsthan

microwaveheating (Vallietal.,2010)andflavonolscontributed

secondaryontheoilstabilitycomparedtophenolicalcohols.The

flavonolsintheoils enrichedbymyrtle extractspresentedalso

similarpatternstothoseobservedwiththecontrol.

Thesecoiridoid1wasnotchangedduringmicrowaveheating

forallexposuretimeswhichincontrastwiththeresultobtained

whentheoilswasheatedinovenat180◦C.Itwasalreadyreported

byBrenesetal.(2002)thattheoildegradationwasverylowwhen

theoilswereheatedbymicrowave,andaccordingtotheworkof

Cerretanietal.(2009)itwasfoundthatsecoiridoidsderivatives

(ligstrosides)contentremainedconstantduringmicrowave

heat-inguntil9minoftreatment(700W,293◦C).Theseobservations

showedthehighstabilityofthesecompoundsduringthermalstress

whichisveryimportanttothenutritionalandorganolepticquality

ofEVOO,sincethesecompoundcontributedtothetasteand

pun-gencyoftheoil.ThesamepatternwasobservedforenrichedEVOO

bymyrtleextract.

Regardingmyricitrinandgalloylquinicacid(Fig.3C),microwave

heatinggives riseto lessdegradation effectcompared toflame

andovenheating.Adepletionof64.4and72.4%wasobservedfor

myricitrininMAEandCE-EEVOOrespectivelyduringmicrowave

heating.Thismaybeexplainedbytheoxidativestabilityandalso

bytheirhydrolyticdegradationasshownintheworkofBiesaga

(2011)andLiazidetal.(2007)whoreportedthelessstabilityof

flavonoidasmyricetinduringexpositiontomicrowaveirradiation

whichisrelatedtothegreaterdegreeofsubstitution(hydroxylic

groups).Galloylquinicacidwaslostby49.5and66.1%inMAEand

CE-EEVOOrespectivelyduringheatingtreatmentwhichsupposed

thecontributionofthiscompoundintheoilstability.

The enrichment of olive oil with myrtle extract could be

considereda water/oilemulsion inwhich smalldroplets of the

hydro-ethanolic solutionof theextract are dispersed in theoil

(Suárez et al., 2011). On the other hand, the peroxidation in

homogenouslipidsystemispredominantattheoil/airinterface

and thus, when the antioxidants accumulate is this interface,

theantioxidantactivityisgreater.ThefortificationofEVOOwith

myrtle extract increased the total phenolic compounds from

250mgGAEkg−1 (for the control without supplementation) at

about350mgGAEkg−1 for enrichedEVOO (datanot shown).In

addition,inourpreviousstudy,wereportedthatmyrtleextract

andEVOOphenoliccompoundsmayactcooperativelytoinhibit

lipidoxidationinliposomalmodel,inducedbyiron/ascorbicacid

system(unpublished data). Alltheseobservations supposethat

myrtleextractthroughitsdifferentantioxidantsbeinglocatingin

oil/airinterfaceand/orinlipidcorecouldcontributetostabilize

EVOOespeciallyduringflameheatingbyneutralizinglipid

radi-calsformedandthus,decreasedtheconsumptionofendogenous

phenoliccompoundsofEVOO.

3.3. Heatingeffectonspecificextinctioncoefficientsat232nm

and270nm

Theevaluationofspecificextinctioncoefficients(K232andK270)

allowscheckingthedegreeofoliveoiloxidation(Malheiroetal.,

2012).Thesespecificextinctioncoefficientsareindicativeofthe

formationforprimary(K232)andsecondaryproduct(K270)of

oxi-dationrespectivelyduringthermalstress(Malheiroetal.,2013).

ThemaximumvaluesallowedforK232andK270arerespectively

2.50and0.20forextravirginoliveoils(EEC,1991).

Table4showstheevolutionofK232andK270duringflame

heat-ingatdifferentexposuretimes.Theinitialvalueswere2.07and

0.11respectivelyforK232 andK270and thus,this oilwas

classi-fiedinEVOOcategoryaccordingtoEuropeancommunityregulation

(EEC,1991).Theadditionofmyrtleextractstotheoliveoildidnot

broughtsignificantchangesonK232andK270valuesforenrichedoil

beforeheating(t=0min).Duringtheflameheating,K232showed

highervaluesandconstantincreaseduringthermaltreatmentand

especiallyafter5min(188◦C)ofheatingwhereadrasticincrease

ofK232 wasobserved,from2.88to5.96.However,theenriched

oilbymyrtleextractshowedlessoxidativestatusandalloweda

protectiveeffectofabout40%attheendofthetreatment(10min)

comparedtothecontrol.Theseobservationswereinagreement

withtheresultobtainedfortheevolutionofEVOOphenolic

com-poundduringflametreatmentwhichindicatesthatmyrtleextract

mayreducethelossesofEVOOphenoliccompoundsduring

heat-ingand,therefore,myrtleextractmaycontributetodecreasethe

formationofprimaryproducts(hydroperoxides)byprotectingthe

oxidation ofpolyunsaturatedfattyacids(PUFAs)(Bouazizetal.,

2008;Malheiroetal.,2013).

ConcerningK270,theformationofsecondaryproductinthe

con-trolincreasedprogressivelyduringtheflameheatingbutadrastic

increase wasobserved after3min(140◦C)toachieve 1.07

val-uesattheendofthetreatment.Theenrichmentofoilbymyrtle

extractdidnothaveanysignificanteffectonK270values.The

com-parisonoftheK232andK270obtainedwithEEVOOsupposedthat

firstly,thereisotheroxidationcompoundsthatmayinterferewith

thetrieneconjugatedevaluatedat 270nm.Secondly, it maybe

supposedthatthedecompositionofhydroperoxidesformedwas

(10)

Table4

Comparisonofflame,ovenandmicrowaveheatingeffectinqualityparameters(K232andK270)ofextravirginoliveoilswithandwithoutmyrtleextracts.

Flameheating Time(min) 0 2 3 5 10 K232 Control 2.07±0.00de 2.46±0.00d 2.48±0.01cd 2.88±0.09c 5.96±0.07a MyrtleMAE 2.04±0.04e 2.13±0.02de 2.27±0.04de 2.28±0.00de 3.13±0.11b MyrtleCE 2.02±0.00e 2.17±0.08de 2.16±0.05de 2.25±0.02de 3.33±0.11b K270 Control 0.10±0.00d 0.14±0.01d 0.15±0.01d 0.58±0.09b 1.05±0.01a MyrtleMAE 0.11±0.00d 0.12±0.00d 0.16±0.01d 0.51±0.04bc 1.09±0.00a MyrtleCE 0.12±0.01d 0.13±0.00d 0.17±0.04d 0.52±0.10c 1.03±0.02a Ovenheating Time(hour) 0 1 2 3 K232 Control 2.07±0.00efg 2.25±0.00d 2.58±0.02b 2.76±0.03c MyrtleMAE 2.04±0.04fg 2.12±0.03e 2.43±0.01c 2.63±0.03b MyrtleCE 2.02±0.00g 2.10±0.00ef 2.42±0.04c 2.65±0.00b K270 Control 0.11±0.00f 0.48±0.01e 0.66±0.05c 0.75±0.00b MyrtleMAE 0.11±0.00f 0.46±0.00e 0.58±0.00d 0.69±0.01c MyrtleCE 0.12±0.01f 0.55±0.00d 0.71±0.03bc 0.83±0.02a Microwaveheating Time(min) 0 5 10 15 20 K232

Control 2.07±0.02gh 2.04±0.04h 2.21±0.04def 2.24±0.02cde 2.33±0.14bcd

MyrtleMAE 1.98±0.04h 2.13±0.01efgh 2.30±0.07cde 2.37±0.02b 2.48±0.02ab

MyrtleCE 2.02±0.00h 2.10±0.00fgh 2.19±0.01defg 2.34±0.00bc 2.53±0.01a

K270

Control 0.10±0.00h 0.14±0.00efg 0.18±0.03cde 0.21±0.01cd 0.27±0.00ab

MyrtleMAE 0.11±0.00gh 0.17±0.01def 0.20±0.00cd 0.22±0.00bc 0.28±0.01a

MyrtleCE 0.12±0.01fgh 0.17±0.00de 0.17±0.00def 0.21±0.01cd 0.29±0.00a

Thevalueswereexpressedasthemeanofthreemeasurements(n=3)±standarddeviation(SD).Meanswithinasameheatingprocedure,ineachparameterstudied,with differentlettersdiffersignificantly(p≤0.05).

2002).Thus,nocorrelationbetweenthisbothparameterscouldbe

established.

Regardingtheheatingprocedureat180◦C,K232valuesincreased

duringthethermalstresstoachieveavalueof2.76after3hwhich

isverylowcomparedtotheresultobtainedwithflameheating.

ROOHaretheproductsoftheactionofalkylperoxyradicalswith

theantioxidant,theirimmediatedecompositionatthehigher

tem-peratureswouldevenleadtochainpropagationratherthanchain

breakingundertheseconditions(VelascoandDobarganes,2002)

andthismayexplainthedifferenceofK232valuesfoundinthese

bothheatingproceduresandatimeeffectmaybethustakenin

considerationsince alongerheatingtime inducedlower

oxida-tivestabilityoftheoil(Carrasco-Pancorboetal.,2007).Enriched

oilshowedaslightprotectiveeffectonhydroperoxideformation

(K232)of 4.79and3.83%for MAE-andCE-EEVOOrespectivelyat

theendoftheheating(after3h)comparedtothecontrolwhich

inthecontrastwiththeresultofflameheating.Asshownabove,

drasticlossesofmyrtlephenoliccompounds(asmyricitrin)occur

duringovenheatingincomparisontoflameheatingandthus

reduc-ingtheantioxidantactivityoftheenrichedoilandtheirstability

becomesclosetothecontrolone.ForthechangesonK270values,it

canbeseeninTable4thattheproductionrateofsecondary

prod-uctsfromoiloxidationwasfasterduringthefirsthourforallthe

oiltypes(controlandenrichedoils)butthereafter,theK270values

increasedslowlywhichmaybeexplainedbutthestrong

volatiliza-tionofsecondaryoxidizedproductasformicacidandaldehydes

inthesedrasticconditions (Carrasco-Pancorboetal.,2007).The

controlandenrichedoilsshowedsimilarevolutionpatternsduring

ovenheatingbutCE-EEVOOshowedslightlyhighervalueattheend

ofthetreatmentthanthecontrolandMAE-EEVOO.

Table4presentsthechangesonspecificcoefficientabsorbance

duringmicrowaveheatingofoils.Themicrowaveheatingduring

allexposuretimesshowedlessdamageeffectonEVOOin

rela-tionwithhydroperoxidesproduction(K232)comparedtotheabove

heatingprocedures,flameandovenheating,andwhichisin

agree-mentwiththedegradationeffectonphenoliccompoundcontents,

i.e.lowerpolyphenollosses,lowerhydroperoxidesformationand

loweroxidationstatus.Ourresultsareinaccordancewithother

workpreviouslyreportedbyBrenesetal.(2002)butincontrast

withtheworkofAlbietal.(1997)whoreporteda moredrastic

effectofmicrowaveheatingthanofovenone.Theseconflicting

resultsmayberelatedtotheconditionsofheatingandthe

instru-mentused.K232valuesincreasedslowlyduringmicrowaveheating

withsimilartrendsfor thecontroland myrtle-enrichedoilsup

to15min,butattheendofthetreatment,asignificant(p<0.05)

highervaluewasobservedforenrichedoilthanforthecontroland

theirvalues wereslightlyhigher thanthelimitvalue(2.5). Our

resultisinagreementwiththefindingofMalheiroetal.(2012)

studyingtheenrichmentofEVOObygreentea.Thismayberelated

tothephoto-oxidationofchlorophyllwhereitmayactas

prooxi-dantsubstanceswhichleadtoincreasetheproductionofoxidation

primaryproduct.Thishypothesismaybesupportedbythework

ofWanasundaraandShahidi(1998)whoreportedthatgreentea

extractexhibitedaprooxidanteffectinedibleoils,namelymarine

oils,butdechlorophyllizedgreenteaextractpresentedanexcellent

antioxidantactivityintheoilstudied.

RegardingK270,theabsorbancevaluesofconjugatedtrienes(CT)

weregraduallyincreasedwiththeincreaseof heatingtime but

after15min,theK270 valuesbecomehigherthanthelimitvalue

toachieve0.27,0.28and0.29forthecontrol,MAE-orCE-EEVOO

respectively and thus disqualifying the oil studied from EVOO

category.ThisparameterisinaccordancewithK232resultwhich

indicatedthatmicrowaveheatingcausedminorchangesonolive

(11)

Fig.8.Principalcomponentanalysis(A)andhierarchicalclusteranalysis(B)ofEVOOsamplesbasedonthemainimportantfactors(redcolor)(hydroxytyrol,tyrosol,luteolin, apigeninandunknown1content,K232andK270).Oil1–5:oilcontrolheatedbyflame(0,2,3,5and10min);Oil6–10:Oil+myrtleMAEheatedbyflame(0,2,3,5and10min);

Oil11–15:oil+myrtleCEheatedbyflame(0,2,3,5and10);Oil16–20:oilcontrolheatedbymicrowave(0,5,10,15and20min);Oil21–25:oil+myrtleMAEheatedby microwave(0,5,10,15and20min);Oil26–30:oil+myrtleCEheatedbymicrowave(0,5,10,15and20min):Oil31–34:oilcontrolheatedbyoven(0,1,2and3h);Oil35–38 oil+myrtleMAEheatedbyoven(0,1,2and3h):Oil39–42:oil+myrtleCEheatedbyoven(0,1,2and3h).(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

tothestatisticalanalysis,theK270valuesduringmicrowave

heat-ingdidnotshowsignificantdifference(p<0.05)foralloilsstudied

atthedifferentexpositiontimes,i.e.theadditionofmyrtleextract

totheEVOOdidnotaffectsignificantlytheK270valueswhichis

incontrastwiththeworksof Malheiroet al.(2012,2013) who

reportedthatgreenteaandoliveleavesincreasedK270valuesin

EVOOandsoybeanoilundermicrowaveheatingrespectivelyatthe

endoftreatment(15min,1000W)whichmeansthattheseextracts

actedasprooxidantbyfavoringsecondaryoxidationcompounds

formationwhichisnotobservedwithmyrtleextract.

3.4. Principalcomponentanalysis(PCA)andhierarchicalcluster

analysis

Oncetheinformationfromallparametersanalysisoftheoils

hadbeencollected,astatisticalstudywascarriedouttoseethe

distributionthatfollowedthedata.Principalcomponentanalysis

(PCA) was considered as a good tool in establishing

relation-shipsbetweenvariables.Fig.8ashowsthebiplotofthetwofirst

principalcomponentsthatexplain82.06%ofthetotalvariancein

thedatacollectedfromoilsheatedbythedifferentprocedures.As

canbeclearlyseeninthegeneralplotoftheparameters,thereis

apositiverelationshipbetweenluteolin,apigeninandsecoiridoid

1,andnegativecorrelationofthesevariableswithK232andK270.

Itcanbealsoobservedthattyrosolandhydroxytyrosolshowed

aweakcorrelationwiththeothersfactorsthatmeansthatthese

compoundshaddifferentbehaviorsthanotheronesasobserved

duringovenheatingfortyrosol.

Inordertoobservesimilaritiesordissimilaritiesbetweentheoil

samples,hierarchicalclusteranalysiswasusedasacomplementary

tooltoPCA.Thedissimilarityofdifferentclusterswascalculatedby

Ward’smethod.Fig.8bshowsthedendrogramobtainedfromthe

oilsamplesandsixclustersareformed.Ascanbeseen,cluster1

wasformedprincipallybyoilheatedbymicrowave(0–5min)and

flame(0–3min);andthecluster2wasformedbyoilheatedby

microwave(5–20min)andflame(5min).Thisresultmeansthat

theoilheatedbyflame(after5min)presentsimilaritywiththe

(12)

heatingis moreseverethan microwaveone.The oilheated for

20min by flame formed two distinct clusters, 3 and 4, which

containedoilcontrol(withoutenrichment)andenrichedoil

respec-tively.Thisresultsuggestthattheseoilshaveadifferencewithin

thecompositionandphytochemicalprofilewhichisinagreement

withthechemicalanalysis,intheotherhand,theenrichedoilwas

lessdegradedthanoilcontrol.Theclusters5and6wereprincipally

formedbyoilsheatedbyovenat180◦C.Acleardistinctionbetween

theoilcontrolandenrichedoilwasnotdeterminedbecausethe

treatmentappliedisquiteseverecomparedtootherprevious

treat-mentandthus,thereisaclosecompositionandoxidationstatusfor

alloilstudied.Accordingtoalltheseobservation,theenrichment

ofoliveoilbymyrtleextractinducesasignificanteffectprincipally

duringflameheating.

4. Conclusions

Ourresultsdemonstratethatheatingtreatmentcouldinduce

significantlossesofEVOOphenoliccompoundswhichleadtothe

deteriorationofitsnutritionalandorganolepticqualities.Themore

safetyheatingprocedurewasmicrowavetreatmentincomparison

withflame orovenones.Achemical structureand degradation

raterelationshipwas observedand therefore hydroxytyrolwas

themain important antioxidant toensure oilstability but also

flavonoidsfractionhavepositive effects. Theadditionof myrtle

extractsinEVOOpreventstronglytheconsumptionofits

endoge-nousphenoliccompoundsashydroxytyrol,tyrosolandflavonoids

(luteolin and apigenin) and the greatest protective effect was

observed when microwaveand flame heating were applied. In

addition,ahigherinhibitionintheformationofprimaryoxidation

compoundsduetoahighercapacitytoprotectPUFAwasobserved

inenrichedoilduringflameandovenheating.Myrtleextractsmay

benefittheoilsbyimprovingtheircompositioninantioxidant

com-poundsandtheiroxidativestability.Thedevelopmentofanew

functionalfoodwithEVOOandmyrtleextractshouldbeexplored.

Acknowledgements

SofianeDAIRIgratefullyacknowledgesElisabethMartinTornero

andMariCarmenHurtado Sánchezfortheirhelpandassistance

duringthiswork,andtheOrganicChemistryLaboratorypersonnel

(ExtremaduraUniversity)fortheirtechnicalsupportandassistance

duringsampleanalysis.

References

Albi,T.,Lanzón,A.,Guinda,A.,Leon,M.,Pérez-Camino,M.C.,1997.Microwaveand conventionalheatingeffectsonthermoxidativedegradationofediblefats.J.Agri. FoodChem.45(10),3795–3798.

Allouche,Y.,Jimenez,A.,Gaforio,J.J.,Uceda,M.,Beltran,G.,2007.Howheatingaffects extravirginoliveoilqualityindexesandchemicalcomposition.J.Agric.Food Chem.55,9646–9654.

Artajo,L.S.,Romero,M.P.,Morelló,J.R.,Motilva,M.J.,2006.Enrichmentofrefined oliveoilwithphenoliccompounds:evaluationoftheirantioxidantactivityand theireffectonthebitterindex.J.Agric.FoodChem.54,6079–6088.

Bendini,A.,Cerretani,L.,Carrasco-Pancorbo,A.,Gómez-Caravaca,A.M., Segura-Carretero,A.,Fernández-Gutiérrez,A.,Lercker,G.,2007.Phenolicmoleculesin virginoliveoils:asurveyoftheirsensoryproperties,healtheffects, antioxi-dantactivityandanalyticalmethods.AnoverviewofthelastdecadeAlessandra. Molecules12,1679–1719.

Bengana,M., Bakhouche,A., Lozano-Sánchez,J., Amir,Y.,Youyou, A., Segura-Carretero,A.,Fernández-Gutiérrez, A.,2013.Influence ofoliveripenesson chemicalpropertiesandphenoliccompositionofChemlalextra-virginoliveoil. FoodRes.Int.54,1868–1875.

Beˇster,E.,Butinar,B.,Buˇcar-Miklavˇciˇc,M.,Golob,T.,2008.Chemicalchangesinextra virginoliveoilsfromSlovenianIstraafterthermaltreatment.FoodChem.108, 446–454.

Biesaga,M.,2011.Influenceofextractionmethodsonstabilityofflavonoids.J. Chro-matogr.A1218,2505–2512.

Bouaziz,M.,Fki,I.,Jemai,H.,Ayadi,M.,Sayadi,S.,2008.Effectofstorageonrefined andhuskoliveoilscomposition:stabilizationbyadditionofnaturalantioxidants fromChemlalioliveleaves.FoodChem.108,253–262.

Brenes,M.,García,A.,Dobarganes,M.C.,Velasco,J.,Romero,C.,2002.Influenceof thermaltreatmentssimulatingcookingprocessesonthepolyphenolcontentin virginoliveoil.J.Agric.FoodChem.50,5962–5967.

Capriotti,A.L.,Cavaliere,C.,Crescenzi,C.,Foglia,P.,Nescatelli,R.,Samperi,R.,Lagana, A.,2014.Comparisonofextractionmethodsfortheidentificationand quantifi-cationofpolyphenolsinvirginoliveoilbyultra-HPLC-QToFmassspectrometry. FoodChem.158,392–400.

Carrasco-Pancorbo,A.,Cerretani,L.,Bendini,A.,Segura-Carretero,A.,DelCarlo,M., Gallina-Toschi,T.,Lercker,G.,Compagnone,D.,Fernandez-Gutierrez,A.,2005.

Evaluationoftheantioxidantcapacityofindividualphenoliccompoundsin virginoliveoil.J.Agric.FoodChem.53,8918–8925.

Carrasco-Pancorbo,A.,Cerretani,L.,Bendini,A.,Segura-Carretero,A.,Lercker,G., Fernandez-Gutierrez,A.,2007.Evaluationoftheinfluenceofthermaloxidation onthephenoliccompositionandontheantioxidantactivityofextra-virginolive oils.J.Agric.FoodChem.55,4771–4780.

Cerretani,L.,Bendini,A.,Rodriguez-Estrada,M.T.,Vittadini,E.,Chiavaro,E.,2009.

Microwaveheatingofdifferentcommercialcategoriesofoliveoil:PartI.Effect onchemicaloxidativestabilityindicesandphenoliccompounds.FoodChem. 115,1381–1388.

Dahmoune,F.,Boulekbache,L.,Moussi,K.,Aoun,O.,Spigno,G.,Madani,K.,2013.

ValorizationofCitruslimonresiduesfortherecoveryofantioxidants:evaluation andoptimizationofmicrowaveandultrasoundapplicationtosolventextraction. Ind.Crop.Prod.50,77–87.

Dairi,S.,Madani,K.,Aoun,M.,KeeHim,J.L.,Bron,P.,Lauret,C.,Cristol,J.-P., Carbon-neau,M.-A.,2014.Antioxidativepropertiesandabilityofphenoliccompounds ofMyrtusCommunisleavestocounteractinvitroLDLandphospholipidaqueous dispersionoxidation.J.FoodSci.,http://dx.doi.org/10.1111/1750-3841.12517. EuropeanUnionCommissionRegulationEEC2568/91,1991.Onthecharacteristics

ofoliveandolivepomaceoilsandtheiranalyticalmethods.Off.J.Eur.Commun., L248.

Godoy-Caballero,M.,Acedo-Valenzuela,M.,Galeano-Díaz,T.,2012.Simple quantifi-cationofphenoliccompoundspresentintheminorfractionofvirginoliveoil byLC-DAD-FLD.Talanta101,479–487.

Godoy-Caballero,M.P.,Acedo-Valenzuela,M.I.,Galeano-Diaz,T.,2013.Newreversed phasedispersiveliquid–liquidmicroextractionmethodforthedeterminationof phenoliccompoundsinvirginoliveoilbyrapidresolutionliquid chromathog-raphywithultraviolet-visibleandmassspectrometrydetection.J.Chromatogr. A1313,291–301.

Huang,C.L.,Sumpio,B.E.,2008.Oliveoil,themediterraneandiet,andcardiovascular health.J.Am.Coll.Surg.207,407–416.

Krichene,D.,Allalout,A.,Mancebo-Campos,V.,Salvador,M.D.,Zarrouk,M., Fre-gapane,G.,2010. Stabilityofvirginolive oilandbehaviour ofitsnatural antioxidantsundermediumtemperatureacceleratedstorageconditions.Food Chem.121,171–177.

Liazid,A.,Palma,M.,Brigui,J.,Barroso,C.G.,2007.Investigationonphenolic com-poundsstabilityduringmicrowave-assistedextraction.J.Chromatogr.A1140 (1),29–34.

Lozano-Sánchez,J.,Bendini,A.,Quirantes-Piné,R.,Cerretani,L.,Segura-Carretero, A.,Fernández-Gutiérrez,A.,2013.Monitoringthebioactivecompoundsstatus ofextra-virginoliveoilandstorageby-productsovertheshelflife.FoodControl 30,606–615.

Malheiro,R.,Casal,S.,Lamas,H.,Bento,A.,Pereira,J.A.,2012.Canteaextractsprotect extravirginoliveoilfromoxidationduringmicrowaveheating?FoodRes.Int. 48,148–154.

Malheiro,R.,Rodrigues,N.,Manzke,G.,Bento,A.,Pereira,J.A.,Casal,S.,2013.Theuse ofoliveleavesandteaextractsaseffectiveantioxidantsagainsttheoxidationof soybeanoilundermicrowaveheating.Ind.Crop.Prod.44,37–43.

Nissiotis,M.,Tasioula-Margari,M.,2002.Changesinantioxidantconcentrationof virginoliveoilduringthermaloxidation.FoodChem.77,371–376.

Romani,A.,Campo,M.,Pinelli,P.,2012.HPLC/DAD/ESI-MSanalysesandanti-radical activityofhydrolyzabletanninsfromdifferentvegetalspecies.FoodChem.130, 214–221.

Rubio,L.,Macia,A.,Castell-Auvi,A.,Pinent,M.,Blay,M.T.,Ardevol,A.,Romero,M.P., Motilva,M.J.,2014.Effectoftheco-occurringoliveoilandthymeextractsonthe phenolicbioaccessibilityandbioavailabilityassessedbyinvitrodigestionand cellmodels.FoodChem.149,277–284.

Rubio,L.,Motilva,M.J.,Macia,A.,Ramo,T.,Romero,M.P.,2012.Developmentofa phenol-enrichedoliveoilwithbothitsownphenoliccompoundsand comple-mentaryphenolsfromthyme.J.Agric.FoodChem.60,3105–3112.

Santos,C.S.P.,Cruz,R.,Cunha,S.C.,Casal,S.,2013.Effectofcookingonoliveoilquality attributes.FoodRes.Int.54,2016–2024.

Suárez, M., Romero, M.-P., Ramo, T., Motilva, M.-J., 2011. Stability of a phenol-enriched olive oil during storage. Eur. J. Lipid Sci. Technol. 113, 894–903.

Tamendjari,A.,Laincer,F.,Laribi,R.,Arrar,L.,Rovellini,P.,Venturini,S.,2014.Olive oilsfromAlgeria:phenoliccompounds,antioxidantandantibacterialactivities. GrasasyAceites65,e001.

Tuck,K.L.,Hayball,P.J.,2002.Majorphenoliccompoundsinoliveoil:metabolism andhealtheffects.J.Nutr.Biochem.13,636–644.

Valli,E.,Bendini,A.,Cerretani,L.,Fu,S.,Segura-Carretero,A.,Cremonini,M.A.,2010.

Effectsofheatingonvirginoliveoilsandtheirblends:focusonmodificationsof phenolicfraction.J.Agric.FoodChem.58,8158–8166.

Velasco,J.,Dobarganes,C.,2002.Oxidativestabilityofvirginoliveoil.Eur.J.Lipid Sci.Technol.104,661–676.

Wanasundara,U.N.,Shahidi,F.,1998.Antioxidantandpro-oxidantactivityofgreen teaextractsinmarineoils.FoodChem.63(3),335–342.

Figure

Fig. 1. DAD and FLD chromatograms of un-enriched and enriched EVOO by myrtle extract subjected to the RP-DLLME and directly injected
Fig. 2. Flame heating effect on EVOO or Myrtle-EEVOO phenolic compounds degradation.
Fig. 3. The degradation of Myrtus communis phenolic compound during flame heating (A), oven heating at 180 ◦ C (B) and microwave heating (C) in myrtle-EEVOO.
Fig. 4. Evolution content of hydroxytyrol and tyrosol during oven heating at 180 ◦ C for EVOO and myrtle-EEVOO.
+4

Références

Documents relatifs

The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. The plant apoplasm is an important recipient compartment

regime and at low driving-frequency, a single-electron source can be described in terms of a quantum RC cir- cuit whose charge relaxation resistance has a universal..

ةمجرت نإ لوقلا نكمُي rhetoric لمشتل تعستا لئادبلا ةمئاق نإف ةقيقحلا يفو ،نيرصاعملا برعلا نيثحابلا مامأ اًيلعف اًقزأم تلثم ةملك مادختساب يرمعلا

We provide an algorithmic solution to scaling symmetry reduction of a dynamical system: determine a maximal scaling symmetry without isotropy, compute a generating set of

We conducted remotely operated vehicle (ROV) surveys complemented with benthic fauna collections using an Agassiz trawl, aiming to achieve the following objectives: (1) to describe

In general pulsatile CSF oscillations are believed to be driven by systolic vascular dilata- tion followed by diastolic contraction. Some imaging studies have recorded displacements

la communication par l'image.série nathan... la communication

1 LBE, Montpellier SupAgro, INRAE, UNIV Montpellier, Narbonne, France 2 ELSA, Research group for environmental life cycle sustainability assessment, 2 place Pierre Viala,