• Aucun résultat trouvé

AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES CONVEX IN EVEN-DIMENSIONAL EUCLIDEAN SPACES*

N/A
N/A
Protected

Academic year: 2022

Partager "AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES CONVEX IN EVEN-DIMENSIONAL EUCLIDEAN SPACES* "

Copied!
22
0
0

Texte intégral

(1)

AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES CONVEX IN EVEN-DIMENSIONAL EUCLIDEAN SPACES*

B Y

I. J. S C H O E N B E R G in Philadelphia, Pa.

I n t r o d u c t i o n

I . T h e m a i n t h e o r e m . A closed c o n v e x curve i n the p l a n e E2 is u s u a l l y defined as the b o u n d a r y of a c o m p a c t c o n v e x set. 1 A l t e r n a t i v e l y , if t h e curve is g i v e n i n p a r a m e t r i c form we could s a y t h a t t h e curve is convex provide(1 it n e v e r crosses a s t r a i g h t line more t h a n twice. T h e second d e f i n i t i o n h a s the a d v a n t a g e of e x t e n d i n g in a n a t u r a l w a y to closed c u r v e s in a n e v e n - d i m e n s i o n a l space Ezn as follows:

Let

( l ) C: x ~ = x t ( t ) , ( i = l . . . 2 n ; 0 ~ t:5 2 ~ ) ,

where xt(t) are c o n t i n u o u s f u n c t i o n s of period 2 z , be a close(I curve in E 2 , . W e shall s a y t h a t C is convex in E.z~ provided t h a t it n e v e r crosses a h y p c r p l a n e more t h a n 2 n times. If C is c o n v e x in E,,~ a n d s p a n s t h e space E.,~, i.e. is n o t c o n t a i n e d in a l o w e r - d i m e n s i o n a l flat space, t h e n we shall s a y t h a t ( ' is convex on E . , , . I t A s a l l will be s h o w n below (Article 5) t h a t c u r v e s c o n v e x i n E.,n are rectifiable.

e x a m p l e of a curve convex on E.,= we m e n t i o n the curve

(2) Co:

I n d e e d , C o is s u b s t i t u t e t h e x~

x l = e o s t , x 3 = 8 9 ~ = 1 c o s n t , n

1 .

x 2 -- sin t, x 4 = 89 sin 2 t . . . x., n = - sin n (, (0 ~ l ~< 2 ~ ) .

n 'o

c o n v e x i n E 2 , , for if l ( x z . . . x.zn) is a n y l i n e a r f u n c t i o n a n d if we as defined b y (2), we find t h a t l = T n ( t ) is a real t r i g o n o m e t r i c

* T h i s w o r k w a s p e r f o r m e d on a N a t i o n a l B u r e a u of S t a n d a r d s c o n t r a c t w i t h t h e U n i v e r s i t y of C a l i f o r n i a , L o s A n g e l e s , a n d w a s s p o n s o r e d (in p a r t ) b y t h e Office of S c i e n t i f i c R e s e a r c h , U S A F .

x See [1], p a g e 3, in t h e l i s t of r e f e r e n c e s a t t h e e n d of t h i s p a p e r . l O - 533807. Acta mathematiea. 91. I m p r i m d le 27 octobre 1954.

(2)

144 I . J . SCHOENBERG

p o l y n o m i a l of o r d e r n which is k n o w n n e v e r to c h a n g e sign m o r e t h a n 2 n t i m e s w i t h i n a p e r i o d .

The m a i n r e s u l t is t h e following t h e o r e m

I. Let C be a closed curve convex in E2 ~ and let L denote its length. Let K = K (C) be the convex hull o/ C and let V = V (K) denote the 2 n-dimensional volume o / K . Then the /ollowiny inequality holds

(3) L 2 n > _ ( 2 ~ n ) n n! ( 2 n ) ! V ( K ) ,

with the equality sign if and only i/ the curve C agrees u p to a rigid motion and a similitude, [ollowed perhaps by a reflexion, with the curve C O 2 defined by (2).

I f n = l , (3) r e d u c e s to t h e c l a s s i c a l i s o p e r i m e t r i c i n e q u a l i t y L 2 _ > 4 ~ V for c u r v e s c o n v e x in t h e p l a n e , V now d e n o t i n g t h e a r e a e n c l o s e d b y C, a n d where e q u a l i t y h o l d s o n l y if C is a circle. T h e i n e q u a l i t y (3) s h o w s t h a t a m o n g all c l o s e d c u r v e s c o n v e x in E2n a n d of g i v e n l e n g t h L , o n l y t h o s e w h i c h a r e s i m i l a r to C 0 will m a x i - mize t h e v o l u m e V ( K (C)) of t h e i r c o n v e x hull.

2. T w o r e l a t e d t h e o r e m s . T h e o r e m I will follow f r o m t h e following t h e o r e m in which t h e r e is n o reference t o c o n v e x c u r v e s :

I I . Let xt (t), (i = 1 . . . 2 n), be absolutely continuous functions of period 2 ~, not all being constant and such that x[ (t) E L~ (0, 2 z~). Then the following inequality hold~

2 n 2 n 2 ~

I f ' / 2 n \ ~ n i" [.

/ I

0 0 0

the inteqrand o/ the right-hand side being a determinant o/ order 2 n whose ith row is written out. Moreover, we have the equality sign if and only i/ the functions x~ (t) arise /rant the special set o/ /unctions (2) by a right-handed orttmyonal transformation followed by a similitude with positive ratio and a translation,.

T h i s t h e o r e m will be e s t a b l i s h e d b y m e a n s of F o u r i e r series, a m e t h o d f i r s t u s e d b y A. H u r w i t z a for t h e s p e c i a l case w h e n n = 1. I n t h i s c l a s s i c a l case, F o u r i e r e x p a n - sions r e d u c e t h e p r o b l e m t o a q u a d r a t i c i n e q u a l i t y e a s i l y e s t a b l i s h e d b y c o m p l e t i n g s q u a r e s . I t will be seen b y m e a n s of F o u r i e r e x p a n s i o n s t h a t T h e o r e m I I is equi- v a l e n t t o t h e f o l l o w i n g t h e o r e m

z The curve C O is a simple example of a closed screw-line in Esn (see [10]). A curve Ca, related to C o by similitudes, and the corresponding K ( C I ) , play an important role in C~.~tA~ODORY's paper [2] .and also in the so-called trigonometric m o m e n t problem.

, See [8].

(3)

A N I S O P E R I M E T R I C I N E Q U A L I T Y F O R C L O S E D C U R V E S 145 I I I . Let

(5) M = l l a , l , b t ~ , a , 2 , b,2 . . . . ,a~m,b, . . . [[, ( i = 1 . . . 2n),

be a real matrix o/ 2 n rows and in/initely m a n y columns, M ~: O, and such that the s u m o/ the squares o/ the elements in every row converges. Let

(6) n (fl, i2 . . . in ) = d e t [[aij,, b~,, a~,, b~j . . . a*~n, btJn [I, (1-<?',<?'2< "'" < } n ) .

Setting

oO 2 n

(7) S = 2 Z ( a ~ , + b ~ )

vffil i - I

and

(8) ~b = ~ - -1 D (]1, S2, " ' ' , in), t . . . ,~ i, i2.--Jn

then the last series converges absolutely and we have the inequality

(9) S n_> (2n) n n! ~ ,

with equality holding i/ and only i/ the matrix (5) has only zero elements, except in its /irst 2 n columns which ]orm a square matrix with elements positively proportional to a right-orthogonal matrix.

T h e section-headings describe the c o n t e n t s of the paper. T h e discussion s t a r t s with an a c c o u n t of i n d i s p e n s a b l e properties of c o n v e x p o l y g o n s a n d curves.

w 1. On c l o s e d c a r v e s c o n v e x in E 2 , and t h e v o l u m e s o f their c o n v e x h u l l s 3. O n c o n v e x p o l y g o n s . L e t

(1.1) II = P o P 1 ... P ~ , Pt = (x~l, xl2 . . . . , x,m)

be a polygon with vertices in Era. W e a s s u m e t h a t l-I s p a n s Era, which is the case p r o v i d e d the m a t r i x

(1.2) x = l l l , x . , x , 2 . . . x,~ll, ( i = 0 . . . k; k > m ) , is of r a n k m + 1. W e i n t r o d u c e the following

Definition 1. We say that the polygon H is convex on Em provided it sparbs Era and crosses no hyperplane more than m times. I / in this definition we do not require that I-I should span Era, then we say that II is convex in Em.

The c o n v e x i t y of H in (or on) Em e v i d e n t l y m e a n s the following: I f l ( P ) =

= l ( x l . . . Xm) is a n a r b i t r a r y linear function of the coordinates, t h e n in the sequence

(4)

146 I . J . SCHOENBERG

of n u m b e r s l(P0), l(P1) . . . l(Pk), we s h o u l d h a v e a t m o s t m changes of signs. N o w t h e i m p o r t a n t difference b e t w e e n " c o n v e x i t y i n E ~ " a n d " c o n v e x i t y o n Era" becomes a p p a r e n t . I n d e e d , for " c o n v e x i t y on Era" the following l e m m a is identical, except i n t e r m i n o l o g y , to a t h e o r e m of F. G a n t m a k h e r a n d M. K r e i n 4 :

L e m m a 1. The polygon II is convex on Em i / a n d only i / t h e matrix X , de/ined by (1.2) is el rank m + 1 and all its non-vanishing minors o/ order m + 1 are o/ the same sign.

This l e m m a seems i n t u i t i v e l y clear for t h e case of t h e p l a n e E z , for it says t h a t t h e c o n v e x i t y of II o n E2 requires t h a t n o t w o a m o n g t h e t r i a n g l e s P~ Pa P~ (a </~ < ~) s h o u l d have opposite o r i e n t a t i o n s .

W e are n o w c o n f r o n t e d w i t h a basic d i s t i n c t i o n d e p e n d i n g o n t h e p a r i t y of t h e d i m e n s i o n n u m b e r m. I f m is even we r e a d i l y see t h a t if [I is c o n v e x o n E z , t h e n also the closed p o l y g o n

[I1 = P0 P I "'" P a P0

is convex on Era. I n d e e d , if Jr ( l ( P ) = 0 ) is a h y p c r p l a n e a n d I I crosses Jr less t h a n m times, t h e n also Il I will n o t cross ~ more t h a n m times. However, if H crosses :r e x a c t l y m times, t h e n P0 an(l Pk are n e v e r on opposite sides of zr (m b e i n g even), so t h a t the last side l ' k P0 does n o t cross ~r. F o r t h e closed p o l y g o n

IIx

it does n o t m a t t e r which v e r t e x is t a k e n to be t h e first, as long as t h e correct cyclic order of the vertices is preserved. The c o n v e x i t y of I I l m a y also be described in a w a y which ignores ab i n i t i o which vertex m i g h t be the first:

111

s h o u l d n e v e r cross 7r more t h a n m times, as we go once a r o u n d the polygon. Notice t h a t the n u m b e r of such crossings is a l w a y s e v e n . T h e same indifference to cyclic p e r m u t a t i o n s is also s h a r e d b y the criterion of L e m m a 1: Cyclic p e r m u t a t i o n s of t h e rows of t h e m a t r i x X will n o t change t h e c o m m o n sign of its m i n o r s of t h e odd order m + 1.

T h e s i t u a t i o n is q u i t e different if m is odd. I n this case it can be s h o w n t h a t t h e first a n d t h e last v e r t e x of a polygon, c o n v e x o n E , , , c a n n e v e r coincide.

/*. O n c o n v e x c u r v e s . T h e a b o v e d e f i n i t i o n s a n d results e x t e n d r e a d i l y to con- t i n u o u s arcs a n d closed curves. I n view of o u r p a r t i c u l a r a i m we restrict t h e discus- sion to even d i m e n s i o n s m = 2 n a n d closed curves. T h e basic d e f i n i t i o n is as follows:

4 See their recent book [4], Theorem 3, page 297. Also proved in [14], Theorem 1. AN~. WHXT~EY and the author were unaware of the book by GANTMAKHER and KREIN when [14] was published.

However, the priority clearly belongs to the Russian authors. See also footnote 5 for the connection with tha work of J. HJELMSLEV.

(5)

AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES 1 4 7

D e f i n i t i o n 2. The closed curve

'(1.3) C: x~=x~(t) ( i = l . . . 2 n ; 0 _ < t _ < 2 z ) ,

where the continuous /unctions x~(t), de/ined /or all t, have the period 2 ~ , is said to be convex on E2n provided C spans E2n and all closed polygons inscribed in C are convex in E2n. I] in this de/inition we do not require that C should span E2n, then we say that C is convex in E2n. 5

A c r i t e r i o n is g i v e n b y

L e m m a 2. The closed curve C, de/ined by {1.3), is convex on E.~n i/ and only i]

the determinants

(1.4) A = d e t I] 1, x l (t,), . . . , x.~ ~ (t~)][ (t o < t I < . . . < t2 ~ < t o + 2 ~ )

do not all vanish and the non-vanishing ones have the same sign.

P r o o f . L e t u s i n s c r i b e i n C a c l o s e d p o l y g o n [ I - P 0 P I . . - P k P 0 c o r r e s p o n d i n g t o t h e p a r a m e t e r v a l u e s

(1.5) t0 < tl < . . . < t k < t 0 + 2 z .

The conditions are necessary. A s s u m e C c o n v e x o n E , ~ . L e t I f s p a n E 2 n . B u t t h e n , b y L e m m a l , t h e m a t r i x

x = II 1, x , (t,) . . . x . . (t,)[I (i = 0 , 1 . . . . , k)

5 P r o f e s s o r W. FENCHEL kindly called to m y a t t e n t i o n t h e f u n d a m e n t a l p a p e r [7] of HJELMSLEV.

]~JELMSLEV ([7], p p . 4, 6, 7, 23, 41) calls t h e p o l y g o n IT, of ( l . l ) , nmnotone, p r o v i d e d t h e m a t r i x (1.2) satisfies t h e c o n d i t i o n s of L e m m a I. B y L e m m a l we t h u s see t h a t II is c o n v e x on Ern if a n d only if ] I is m o n o t o n e in t h e sense of HJELMSLEV. Similarly, in view of o u r D e f i n i t i o n 2 a n d L e m m a 2 we see t h a t t h e curve (1.3) is c o n v e x on E2n if a n d only if it is m o n o t o n e in t h e sense of HJELMSLEV ([7], p. 60). W e should also p o i n t o u t t h e c o n n e c t i o n w i t h tile c o n c e p t of a n arc of o r d e r m in Em d u e to C. JUEL; see MARCHAUD [9] a n d SCHERK [13], also for references. Arcs of o r d e r m in Em are c o n v e x on Em b u t n o t c o n v e r s e l y . A t h e o r e m of ]-IJELMSLEV ([7], p. 62) s h o u l d be especially q u o t e d , b e i n g closely r e l a t e d to o u r L e m m a 2. I t s s t a t e m e n t for t h e closed c u r v e (1.3) in E 2 n is as follows:

1] no subarc o/ C is in a E2n-1, then C is of order 2n if and only i/ all determinants (1.4) arepositive or all are negative. One m a y e v e n o m i t in t h e s t a t e m e n t t h e a s s u m p t i o n c o n c e r n i n g tile s u b a r c s of C.

I n [15] I h a v e r e c e n t l y said (p. 227) t h a t b y t h i s t h e o r e m HJ~-LMSLEV h a s e s s e n t i a l l y a n t i c i p a t e d t h e result of GANTMAKHER--KREIN. T h i s view w a s p e r h a p s e x a g g e r a t e d .

I also owe to W . FENCHEL t h e following r e f e r e n c e : E . EOEI~VXRY, On the smallest convex cover of a simple arc o/ space-curve, P u b l . m a t h . D e b r e e e n , 1 (1949), 65-70, in w h i c h its a u t h o r solves t h e p r o b l e m of t h e p r e s e n t p a p e r for o p e n arcs in E a . As y e t u n s o l v e d is t h e p r o b l e m for t h e p a r t i c u - larly i n t e r e s t i n g case of closed c u r v e s in E a (see [1], f o o t n o t e on p. 111).

(6)

1 4 8 I . j . SCHOENBERG

has all non-vanishing minors of order 2 n + 1 of the same sign. Given two non- vanishing d e t e r m i n a n t s Ax, A2, of t h e form (1.4), we m a y so choose the p a r a m e t e r values (1.5), t h a t A 1 a n d A 2 are a m o n g the minors of X. B u t t h e n

A1A2>0.

The conditions are suf/icient. This follows directly b y L e m m a 1 a n d Definitions 1 and 2.

Remarks. 1. Our old definition of a closed p o l y g o n convex on E2n agrees with t h e new definition if applied to the p o l y g o n considered as a closed curve.

2. L e m m a 2 m a y be rephrased in geometric terms as follows: T h e continuous closed curve P = P ( t ) in E2n is c o n v e x on E2n if a n d o n l y if it has the following properties: If P0, P a , . . . , P2n are 2 n + 1 points on C, in correct cyclic order corre- sponding to increasing values of t, t h e n the 2 n - d i m e n s i o n a l simplices [P0, P1 . . . P2n]

should n o t be all degenerate a n d the non-degenerate ones should have the same orientation.

3. I t seems n a t u r a l a n d useful to classify the curves convex on E,,n into posi- tively convex and negatively convex curves, d e p e n d i n g on t h e c o m m o n sign of the de- t e r m i n a n t s A, or the c o m m o n orientation of t h e simplices [P0, Px, .--, P2n].

4. An a d a p t a t i o n of these definitions and results to open arcs in even or odd- dimensional spaces seems perfectly straight-forward. As an example we m e n t i o n t h a t one full t u r n (but no longer arc) of a r i g h t - h a n d e d circular helix in E a is positively convex on E 3 )

5. L e m m a 2 applies easily to show t h a t the curve Co, defined b y (2), is posi- tively convex on E,,,. Indeed, in this case the d e t e r m i n a n t (1.4), familiar from the problem of trigonometric interpolation, m a y be e v a l u a t e d explicitly a n d we find

2 2 n' ~ , , A = -n-i- H sin ! > 0.

I~>Y

5 . C o n v e x c u r v e s a r e r e c t i f i a b l e . 7 W e n e e d t h e following

D e f i n i t i o n 3. The bounded real /unction / (t), a < t < b, is said to be non-oscillatory provided there is a fixed natural integer N such that for every real c the f u n c t i o n / ( t ) - c changes sign at most N times in the range [a, b].

W i t h this definition we h a v e

* I n this e x a m p l e w h i c h c a n be w i d e l y g e n e r a l i z e d w e are e s p e c i a l l y close to P6LYA'S p a p e r [12].

7 T h e c o n t e n t s of A r t i c l e 5 w h e r e d e v e l o p e d in t h e c o u r s e of a c o n v e r s a t i o n w i t h TH. S. MOTZKIN.

H e r e w e are close to MARCHAUD's w o r k [9], C h a p i t r e I.

(7)

A N I S O P E R I M E T R I C I N E Q U A L I T Y F O R C L O S E D ' C U R V E S 1 4 9

L e m m a 3. I / /(t) is non-oscillatory in the range [a, b], then [(t) is o[ bounded variation, in /act

(1.6) T o t a l v a r i a t i o n of [(t) < N (sup [ - i n f / ) .

ProoL L e t a 0 = t o < t t < ..- < tk = b a n d let P~ = (t~, / (6)) be t h e c o r r e s p o n d i n g p o i n t s on t h e g r a p h x = [(t). Consider t h e p o l y g o n PoP1 ... P~ a n d its o r t h o g o n a l p r o j e c t i o n Po P~ 9 .. P ' k i n t o t h e s e g m e n t I = [ i n f / _ < x < s u p / ] of t h e x-axis. Since P o P 1 .. P k m a y cross a h o r i z o n t a l line x = c a t m o s t N t i m e s we c o n c l u d e t h a t t h e k o p e n (or void) s e g m e n t s PoP~ P I P ' , ' 2, . . . , P k - 1 ' P' k m a y c o v e r a p o i n t of I a t m o s t N t i m e s .

k 1

P:P:+I < - N ' m ( I )

~ffiO o r

k - 1

I / ( t v + l ) - / ( t ~ ) l < N ( s u p / - i n f 1),

~ 0

whence (1.6) follows on t a k i n g t h e s u p r e m u m of t h e left side.

T h i s r e s u l t c l e a r l y i m p l i e s

L e m m a 4. A closed curve C convex in E2n is necessarily recti[iable.

I n d e e d , let C be d e f i n e d b y t h e e q u a t i o n s (1.3), say. N o w / ( t ) = x , ( t ) b e i n g con- t i n u o u s is also b o u n d e d in t h e r a n g e [0, 2 ~r]. H o w e v e r , t h i s f u n c t i o n is also n o n - o s c i l l a t o r y , w i t h N = 2 n in D e f i n i t i o n 3, b e c a u s e C m a y cross t h e h y p e r p l a n e xt = c a t m o s t 2 n t i m e s . B y L e m m a 3 all xl(t) are of b o u n d e d v a r i a t i o n , which p r o v e s L e m m a 4.

6. O n t h e v o l u m e of p o l y h e d r a s p a n n e d b y c o n v e x p o l y g o n s . L e t II be a closed p o l y g o n c o n v e x on E2n. W e wish to e x p r e s s t h e v o l u m e of t h e c o n v e x p o l y h e d r o n K ( H ) in t e r m s of v o l u m e s of simplices. W e r e s t r i c t o u r discussion t o t h e first s i g n i f i c a n t case w h e n n = 2. T h e s i m p l i f i c a t i o n in n o t a t i o n s t h u s a f f o r d e d is c o n s i d e r a b l e , it being o b v i o u s a t all t i m e s how t h e g e n e r a l case is to be t r e a t e d .

L e m m a 5. Let II = Po P t . . . Pm Po be a closed polygon in E 4 which is convex on E 4.

Let K = K ( H ) denote its convex hull, V (K) the volume o/ K. Let 0 be a point in the interior o/ K. The volume o/ K is given by the [ormula

1 V [0, P~, P , + I , P j , Pj+,], ( P r o + , = Po),

(1.7) V ( K ) = ~ ,.j-o

where the summand is the volume o/ the simplex of vertices O, P,, Pt+l, PJ, Pj+I, it being zero i/ the simplex is degenerate.

B u t t h e n

(8)

150 i . g . SCHOE~BERG Proof. (i) B y L e m m a 1 we k n o w t h a t t h e m a t r i x

(1.s)

x = II 1, x~,, x,~, x,~, x . l l , ( i = o, 1 . . . . , m ) ,

is of r a n k 5 a n d t h a t all n o n - v a n i s h i n g m i n o r s of o r d e r 5 a r e of t h e s a m e sign.

T h e r e is no r e s t r i c t i o n in a s s u m i n g t h e s e m i n o r s t o be p o s i t i v e , i.e. t h e p o l y g o n M to be p o s i t i v e l y c o n v e x on E 4. H o w e v e r , we shall a s s u m e for t h e m o m e n t t h a t (1.9) A l l 5th o r d e r m i n o r s of X are p o s i t i v e ,

s h o w i n g l a t e r how t h i s r e s t r i c t i o n can b e r e m o v e d . To a b b r e v i a t e o u r n o t a t i o n l e t

D (x, x~, xi, xk, x~) =

1 x~ x2 x3 z4

1 X i l Xt2 Xi 3 Xi 4

1 xjl xj.~ xj3 xj4 1 Z k l Xk2 X k 3 X k 4

1 xt~ x~2 xt3 x~4

T h e a s s u m p t i o n (1.9) i m p l i e s t h a t e v e r y f o u r p o i n t s P t , P j , P k , Pz (0_< i < j < k < l < m) d e t e r m i n e u n i q u e l y a 3 - f l a t ,~ (i, j, k, l), of e q u a t i o n D (x, xi, xj, x~, x l ) = 0, c o n t a i n i n g no o t h e r p o i n t t'v since D ( x , . , x , , xj, x ~ , x l ) * O if v ~ : i , j, k , l . W e n o w a s s e r t t h e following: A l l 3-dimensional /aces o/ K ( [ [ ) are precisely in the 3-/lats

(l.10)

z c ( i , i i

1, j, j + 1),

~ ( 0 , i, i + l , m),

( 0 < i < i + 1 < j < j + l _ < m ) , ( 0 < i < i-t l < m ) .

Indee(l, t h a t these 3-flats c o n t a i n 3-faces of K (H) is seen as follows: T h e a s s u m p - t i o n (1.9) i m p l i e s t h e i n e q u a l i t i e s

(1.11)

w h i c h show

D ( x , , xt, xt+l, xj, xj+~)>O if ) , ~ = i , i + l , j , j + l , D ( x , , x o , Xt, X~+l,xm)<O if v ~ : O , i , i + l , m ,

t h a t e a c h of t h e p l a n e s (1.10) l e a v e all t h e o t h e r v e r t i c e s s t r i c t l y on one side. T h e 3-flats (1.10) a r e t h e r e f o r e p l a n e s of s u p p o r t o f K ( H ) . On t h e o t h e r h a n d n o n e of t h e 3-flats t h r o u g h f o u r of t h e p o i n t s , o t h e r t h a n t h e 3 - f l a t s (1.10), can p o s s i b l y be a p l a n e of s u p p o r t of K ( 1 ] ) , for such a 3 - f l a t is seen t o h a v e s o m e of t h e vertices oll one of its sides a n d o t h e r s on t h e o t h e r side. W e c o n c l u d e s t h a t s From this result and its extension to E2n it is easy to derive the following: The curve C convex on Ez n is on the boundary o/ its convex hull K (C). This is closely related to a result of W. GUSTI~ [5].

(9)

AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES 151 the 3-dimensional faces of K (II) are the simplices [Pc, P~+I, Pj, Pj+I], where the pair (i, j) runs over the set S of pairs (i, j) defined b y the conditions

O < _ i < i + l < j < j + l < _ m or O < i < i + l < j = m . We m a y summarize the situation b y the relation

B o u n d a r y of K ( I I ) = ~. [P~, P ~ I , Pj, Pj+~], (Pm+l =P0)- s

I f 0 is a point interior to K = K ( I I ) we obtain, b y central projection from O, the relation

(1.12) K = Z [0, Pc, P,+,, Pj, Pi+l]

s

which describes a dissection of K into 4-dimensional simplices. On passing to volumes we obtain

V ( K ) = ~ V [ 0 , P c , P , + I , Pj, Pj+l].

s

Let us observe now t h a t all simplices on the right-hand side of (1.12) are positiveJy oriented. Indeed, by ( l . l l ) we see t h a t if (i, j ) E S then all determinants D ( x ~ , x~, x , ~ , xj, xj+l) i f * i , i + l, ], j + l) are positive. B u t then also D ( x , xi, xi~j, xi, x i + l ) > 0 if the point (x) is in the interior of K, this d e t e r m i n a n t being a linear combination with positive coefficients of non-negative determinants some of which must be positive.

On choosing the point 0 as the origin of the coordinate system we have V ( K ) = ~ V [O, Pc, P, , , , I s , PJ+,] = 4i 1 ~s D (O' x ' ' x , . , , zj, xj, ,).

Finally, the last expression m a y be written as

1 m

(1.13) V ( K ) = 2TT.v ~ (let

I1 .,

9 9 t , / - O

since all new terms entering into the double s u m m a t i o n will vanish if t h e y have coincident rows while the duplication of old terms is offset by the new factor 2! in the denominator. Now (1.13) is precisely the relation (1.7) we wished to establish.

(ii) We now wish to remove the assumption (1.9) on which we relied heavily in our previous discussion. We do this b y the following simple device. We need the matrix

]]q('-"l],.Jo0 . . . ( 0 < q < 1).

I t follows from a theorem of P61ya 9 t h a t all minors of this matrix, of all orders, are positive. Moreover, this matrix clearly converges to the unit matrix as q-~0.

9 See [11], Problem 76, page 49.

(10)

152 I . J . S C H O E N B E R G

Dividing the elements of each row b y the sum of all elements in t h a t r o w we o b t a i n a new m a t r i x which we d e n o t e b y Hq. R e t u r n i n g to the m a t r i x (1.8) we form t h e p r o d u c t

X * = H q X = l l l , x*l, x,,,, * x~:~, x . ll,-0 . . . m

a n d easily infer the following: T h e new m a t r i x X*, whose elements d e p e n d on q, enjoys the p r o p e r t y (1.9) a n d defines a closed p o l y g o n

II* = P ~ P~' . . . P * P~) in Ed,

whose vertices are as close to those of H as we wish, provided q is sufficiently small.

L e t K * = K ( l l * ) . B y our previous discussion we k n o w t h a t V ( K * ) m a y be expressed b y the analogue of (1.13), Also V ( K * ) - + V ( K ) , as q->0. B y c o n t i n u i t y we see t h a t (1.13) again holds even if t h e condition (1.9) is disregarded.

7. T h e v o l u r a e V ( K ( C ) ) e x p r e s s e d a s a n i n t e g r a l . We are n o w t u r n i n g to the m a i n result of this section:

Theorem 1. Let C be a closed curve convex on E2n de/ined by (1.14) C : x , = x , ( t ) , ( i = 1 . . . 2 n ; 0_< t_< 2 z ) .

We assume the x~ (t) to be absolutely continuous in [0, 2 z~], a condition which is auto.

matically /ul/illed i/ the parameter t is proportional to the arc-length along C. Then the volume o/ the convex hull K (C) m a y be expressed by the /ollowing Lebesgue integral

2 ~ 2 ~

(1.15)

V ( K ( C > )

n! (2n)!~ f fdetllx'(t')'x;(t')

. . . . , x , ( t n ) , x : ( t n ) l l d t , d t n ,

0 0

where e = + 1 or - 1 depending on whether C is positively or negatively convex on E 2 , . 1~

Proo|. Again, to simplify our n o t a t i o n we assume t h a t n = 2 . L e t us assume t h a t C is positively convex on E 4. Divide the range [0, 2z~] in 2 k equal parts b y the pohlts

t ~ = 2 ~ t v / 2 k, ( v = 0 , 1 . . . m = 2 ~ - 1),

a n d let P , be the corresponding point on C. The inscribed p o l y g o n I I = P0 P I . " P ~ P0 being positively convex on E , , p r o v i d e d k is sufficiently large, b y ( 1 . 1 3 ) w e have

1

V ( K ( H ) ) = 2.T~.

,.~.o det [[z:(t,),

x:(t,+,), x,(tj),

a0 We lose no generality by restricting our discussion to curves convex on E2n, for if C is con- tained in a lower-dimensional flat space, then both sides of (1.15) evidently vanish.

(11)

A N I S O P E R I M E T R I C I N E Q U A L I T Y F O R C L O S E D C U R V E S 153 Subtracting the first and third column of the determinant from those just ahead we obtain

t t + l t]+l

1 ~ det

I[ xr (tt), f x: (T1)dr,, xv (tt), f x: (32)d~'211

V ( K ( I I ) ) = ~ ~.j-0

tt t i

and finally (1.16)

t I + l tj+l

, ff , ,

V ( K ( I I ) ) = 2t 4! det

IIx,(t,),

x,(vx), x,(tj),

x,(~,)]l dv~ d , 2.

t,j~O tt t I

A passage to the limit in this relation, as k-->c~, presents no difficulties. On the left side V ( K ( H ) ) ~

V (K(C)).

Indeed, the inclusion K ( H ) c

K(C)

implies t h a t

(1.17) V (K (H)) _< V (K (C)).

On the other hand the increasing sequence of sets K ( I I ) converges to a limit which includes the set

Ko(C )

of interior points of

K(C).

This r e m a r k and (1.17) imply

measure of

Ko(C ) <_

lim V(K(II))__<

V (K (C))

k--~ oo

and the equality of the extreme terms implies the desired conclusion.

There remains to show t h a t the sum S oll the right-hand side of (1.16) con- verges to a double integral which we m a y write as

j =

ti-el tJ+l

f , J - O ti tj

I n order to show t h a t

S ~ J ,

we expand each of the two determinants into 4! terms and find for their difference the expression

:~

+ x:, (~1) x', (T~) Ix,. (t,) x,. (tj) - x,. (~1) x,,

(~)].

Given e > 0 , the equi-uniform continuity of all products x,(vl)x,(v2) shows t h a t all square brackets will be in absolute value less t h a n e, each within its respective cell

t,<-vl <-tt+l, tj<-v2<-tj+l,

provided t h a t k is sufficiently large. B u t then

2~ 2~

I S - J l - < 2 e

~, f .f i x',(v')l'ix:,(v2)ldv'dv2=A'e"

0 0

(12)

154 I . J . SCHOENBERG

This concludes a proof of T h e o r e m 1 for n = 2 . The alterations necessary to deal with the general case of E,2~ are deemed to be obvious in every respect.

8. A p r o o f t h a t T h e o r e m I I i m p l i e s t h e i s o p e r i m e t r i c i n e q u a l i t y of T h e o - r e m I. L e t the curve C, defined b y (1), be positively convex on E2n. L e t us assume, moreover, t h a t t h e p a r a m e t e r t = 2 ~ t

s / L ,

where s is t h e arc length along C. F o r these functions x~ (t) we have t h e inequality (4) of T h e o r e m I I which we t a k e for g r a n t e d for the m o m e n t . B o t h sides of (4) h a v e a geometric m e a n i n g which we wish to derive. B y (1.15), the r i g h t - h a n d side of (4) is equal to

nn n!

( 2 n ) !

V ( K (C)).

Since

2 n

7 \d t/ 4 n ~

holds almost everywhere, the left-hand side of (4) equals

2 ~

(f-)" 4--xzdt

=(2~) ~L ~ .

0

T h u s (4) reduces to the isoperimetrie inequality (3) with e q u a l i t y only if C is similar to C o.

w 2. F u r t h e r properties o f

F(K(C))

and r e f o r m u l a t i o n o f T h e o r e m I I in t e r m s o f F o u r i e r series

9. A n e x p r e s s i o n f o r

V(K(C))

i n t e r m s of a r e a s of 2 - d i _ ~ e n s i o n a l p r o j e c - t i o n s of C. Assuming the curve C to be positively c o n v e x on Ezn, we have f o u n d the expression

2~t 2 ~

(2.1) . . . . 1 | - . . | det llxt(tl), x~ (tl), xt (tn), x~ (tn)ll dtl ... dtn.

n! (2n)! ~ , ....

0 0

We n o w e x p a n d t h e d e t e r m i n a n t , b y a r e p e a t e d application of L a p l a c e ' s rule, b y second-order minors formed from t h e pairs of columns (1, 2), (3, 4), ..., ( 2 n - l , 2 n ) , obtaining a sum

x,,,(q) x.,(2) x,,,~(t.) '

t t t

x~, (q) x~, (2) x~. (t.) xv,, (t.) [ :~ + lx",(t') x"(tO

xv, (tO x;, (tl)

which after integration becomes

(2.2)

2 n ~ • (/uj, u~) A (ft2, v2) ... A (~tn, u,),

(13)

AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES 1 5 5

where A (i, j) represents the area of the projection of C on the plane x~0xj, while

(2.3) /~1, vl,/~2, ~2 . . . /~n, vn

is an arrangement of the set of numbers 1, 2, ..., 2 n into pairs such t h a t / ~ < u s . I t is clear t h a t those arrangements (2.3) which differ only in the order of their pairs will contribute identical terms to the sum (2.2), there being n! such. Thus (2.2) re- duces to

(2.4) 2 n n ! ~ -~ A (/t~l, v1) . . . A (/~, u~)

where we sum only over such arrangements (2.3) in which the n pairs are arranged lexicographically: / ~ l < / ~ < ... <ju~. The sign of each term of (2.4) is ( .1) I, where I is the number of inversions in the permutation

... 2 n

The number of terms in (2.4) is obtained b y first counting pairs indiscriminately and then dividing by n ! , to throw out their order. We thus find in (2.4)

( ? ) (2 2 - 2 ) . . . ( ; ) ( ; ) / n ! 2n(2nZ-1.3.5n! .... ( 2 n - 1 )

terms. On replacing the integral in (2.1) by its equivalent expression (2.4)we obtain the following

Theorem 2. I[ the closed curve C is positively convex on E.~, then 2"

(2.5) V (K (C)) = (2 n)~ Z ( - 1)' A (/ta, v~) A (/~2, ~2) ..- A (/~,, v,),

where A (i, j) denotes the area o/ the projection o/ C on the plane x t O x j , while the summation runs over all 1 9 3 . 5 ... (2 n - 1) permutations /~x, vx,/~2, v2 . . . /un, vn, o/

the numbers 1, 2 . . . 2 n, such that /~ < v~ and /~1</~2< ... </~,. Finally the exponent I is the number o/ inversions in the corresponding permutation.

Examples. 1. For n = 2 , (2.5) becomes

V (K (C)) = ~ {A (1, 2) A (3, 4) - A (1, 3) A (2, 4) + A (1, 4) A (2, 3)}.

2. Let us evaluate V ( K ( C o ) ) for the curve C o defined by the equations (2) of our Introduction. For this case we find on inspection that

2n

A(/~,v)= fx,(t) x:(t)dt=O, (/~<~),

0

(14)

156 I . J . S C H O E N B E R G

unless /t is odd a n d ~ = # + l, w h e n

7~ 7~

A ( 1 , 2 ) = z e , A ( 3 , 4 ) = ~ . . .

A ( 2 n - l , 2 n ) = -'n

T h e sum (2.5) reduces n o w to one t e r m o n l y

2 n 2 n ~n

V (K (Co)) = {-2 n)! A

(1, 2) A (3, 4) ... A (2 n - 1, 2 n) ~-

n !

(2

Also t h e length of C o is easily found f r o m (2):

2~

0

These values are seen to verify the isoperimetric relation (3) w i t h t h e e q u a l i t y sign holding.

1 0 . R e f o r m u l a t i o n o f T h e o r e m I I i n t e r m s o f F o u r i e r s e r i e s . W e r e t u r n to T h e o r e m I I of t h e I n t r o d u c t i o n a n d e x p a n d xt (t) in its Fourier series

(2.6) x, (t),,, ~ [ cos vt sin ~t~

~.,~a,~- ;- § ) ,

where we a s s u m e the c o n s t a n t t e r m to vanish w i t h o u t loss of generality.

(2.7) x~ (t) ~ ~_ ( - air sin v t + b,v cos vt),

y - [

a n d P a r s e v a l ' s relation gives

whence

B u t t h e n

x, dt = ~ Ca~, + b~,),

0

(2.8)

x~ ~ d t = ~ ~ ~ (a~2,+b~,).

| - I i , - I O

W e also wi~h to express t h e r i g h t - h a n d side of (4) in t e r m s of t h e F o u r i e r coefficients air, bi,. This can b e done in t w o w a y s leading to f o r m a l l y different b u t necessarily e q u i v a l e n t expressions.

A. W e wish t o show t h a t the integral

2n 2~

(2.91

J = aet

0 9

(15)

(2.10)

where (2.11)

A N I S O P E R I M E T R I C I N E Q U A L I T Y F O R C L O S E D C U R V E S

m a y be expressed as

1

J = (2 ze) n

n!j,< "~<Jn'" Jl J2"'" in n (Jl, J2 . . . in),

D ( j l ,

j., . . . in) : det

[[a.,,

b , . , a,h, b,h, ..., a,,n,

b.nl [

157

Introducing now the new expressions

Formally, there is no difficulty whatsoever. Indeed, if we introduce the expansions (2.6) and (2.7) into (2.9), writing the d e t e r m i n a n t as a sum of determinants obtained from the individual terms of the Fourier series, on using the orthogonality properties of the trigonometric system we find the expansion (2.10). A proof of the validity of (2.10), which includes a proof of the absolute convergence of the n-fold series (2.10), follows from the following r e m a r k : The integral J is essentially the constant t e r m of the n-fold Fourier expansion of the determinant under the integral sign.

As we operate throughout within the class L2, we will

actually

obtain t h a t constant t e r m b y introducing formally the Fourier expansion of each element and gathering all terms which contribute to it. This, however, is precisely w h a t was done above.

I n terms of the quantities S and ~ , defined b y (7) and (8), aml using (2.8) and (2.10), the inequality (4) becomes

~n Sn_> ( 2 ~ n ) ~ n! ~ ,

which is equivalent to (9). The equivalence of the Theorems I I and I I I is now a p p a r e n t if we refer to t h e Riesz-Fischer theorem.

B. An alternative expression for J , or equivalently for q) . . . . 1 J ,

(2 :~)~ n !

m a y now be derived b y observing the following: In Theorem 2 we have expressed V(K(C)) in terms of the A(i, j) b y the formula (2.5). I t is clear t h a t this result a m o u n t s to a similar expression for the integral J without a n y reference to curves convex on E~n. I n fact, b y (2.1) and (2.5) we find

J = 2 n n! ~ ( - 1) n A (/L I , vl) ... A (~n, vn), while Parseval's relation gives

2~

A (i, j) = x~ xj dr = ze ~ (aik btk - a t k btk).

k - 1 0

(16)

158 I . J . SCttOE:NBERG (2.12) (i, ] ) : ~ ]c ( a ~ b j ~ - % ~ b ~ ) , 1

k ~ l

we find, on combining the last four relations, the desired expression (2.13) q~ = ~ ( - - l ) I (/~/1, Yl) (/t/2, ~2) "'* (/t/n, Yn),

which will be found useful in the next section.

w 3. A proof of Theorem III

11. A f i r s t s p e c i a l c a s e of T h e o r e m I I I . Let us first establish tlle following L e m m a 6. Let

(3.1) D = det

I[c.II

be a real determinant o/ order m. Then

( 3 . 2 )

~

C~ ~ 7n m D 2,

\d, j = t /

with the equality sign i/ and only i[ the elements o[ D are proportional to the elements o[ an orthogonal matrix.

Proof. By H a d a m a r d ' s inequality 11 we have

By the inequality between the arithmetic and geometric mean we have

Notice t h a t (3.3) and (3.4) imply (3.2). Moreover, equality in (3.2) implies the equality signs in both (3.3) and (3.4). Equality ill (3.3) shows t h a t the rows of D are ortho- gonal to each other and the equality in (3.4) requires t h a t

t ) 1

which concludes a proof of L e m m a 6.

The special case of Theorem ] I I which we have in mind is the case when all columns of the matrix M vanish except the first 2 n columns. The inequality (9) reduces then to

11 See [6].

(17)

A N I S O P E R I M E T R I C I N E Q U A L I T Y F O R C L O S E D C U R V E S 159

/

(3.5) E (a~, + bPv) -> (2 n)" D 0 , ~ . . . n).

U ~ I v - 1

However, this inequality is implied b y (3.2) for m = 2 n and IIc~,ll = M. Moreover, the equality sign in (3.5) does not only imply, b y L e m m a 6, t h a t the elements of M are proportional to those of an orthogonal matrix, but even t h a t t h e y are

positively

pro- portionM to a

right-orthogonal

matrix. This establishes Theorem I I I in this special ease.

12. A n algebraic l e r n m a . L e t

(3.6) :~ = I1o.11,.~-, ... 3.

be a real skew-symmetric matrix, which means t h a t ~ ' = - ~. We first establish the following identity in x:

- x I E I

(3.7) = (P~ (x")) ~',

E' - x l

where

Pn (z)

is a real polynomial of degree n.

Proof. B y matrix multiplication we find

i/Ollx, = Y.' x l E' - x l 0 E ' E - x Z l [

and passing to determinants we have

I - x I E ]

9 ~ " = ( - x ) ~" 1,2.' ,= - x 2 I I ,

E' - x l

whence the identity in x

(3.8) Z ' =

[E'E-x~'I["

The right-hand side of this identity m a y now be factored. Indeed, b y tile skew- s y m m e t r y of E we have

( E ' - x I )

( E - x I ) = E ' Z - x ( E + E ' ) + x 2 I = Z E ' + x 2 I ,

whence

(3.9)

On the other hand

4 ( x ) = I ~ - x l I

11 -- 533807. Acta m a t h e ~ t i e a . 91. I m p r i m 6 lo 27 o e t o b r e 1954.

(18)

160 I . J , SCHOENBERG

is an even polynomial in

x,

because

~ ( - x ) = ly~ + x i t = I - x - x ~ [ = I ~ ' - x ~ [ = I y ~ - x I I = +

(~).

Thus

] E - x l l = P , ( - x 2 ) ,

and b y (3.9) we have

I E ' E + x 2 I I = ( P , (-x~))2.

Replacing x 2 b y - x 2 we now obtain, via (3.8), the identity (3.7) which we wished to establish.

We m a y now state our

L e m m a 7.

I f E is a real skew.symmetric matrix o/ order 2 n, then the symmetric matrix

(3.10) . Q = '~v, E ,

Z 0

o/ order 4n, has at most n distinct and positive characteristic values.

Indeed, the identity (3.7) gives precise information on the characteristic values of tile matrix {3.10). I t shows t h a t t h e y are all of multiplicity 2 and in pairs sym- metric with respect to the origin, from which the conclusion of L e m m a 7 follows.

13. A s e c o n d s p e c i a l c a s e of T h e o r e m I I I : T h e m a t r i x M h a s o n l y a f i n i t e n u m b e r o f n o n - z e r o c o l u m n s . W e a s s u m e t h r o u g h o u t t h i s Article 13 t h a t

a i j = b t j = 0 , ( i = 1 , . . . , 2 n ; j = m + l , m + 2 , ...),

where m is a fixed n u m b e r > n. L e t us normalize the problem by requiring t h a t (3.11)

We are to show, then, t h a t

2 n

S -~ ~_ (a~, + b~)= 2n.

v - I t - 1

1

(3.12) ~5 < n!

with equality only under conditions as stated in Theorem I I I . This will be shown b y maximizing the function

~b= qb(atv, bt,)

subject to the relation (3.11), a procedure which requires the first partial derivatives of the function ~b. These derivatives are obtained as follows:

Let us denote b y a ~ j ( i < j ) the sum of those terms of the expression (2.13)which contain (i, j) as one of their n factors,

with that factor (tx~, vs)= (i, ~) removed. Let i

be fixed ( = 1, ..., 2n). On replacing the removed factors, (2.13) m a y now be written as

(19)

A N I S O Y E R I M E T R I C I I ~ E Q U A L I T Y F O I l C L O S E D C U R V E S 161

i 1 2 n

(3.13) ~ = ~ (j, i) 0.~, + ~ (4 j) 0.,.

J = l j = i + l

Indeed, this w a y of writing ~b represents a classification of the original terms of the s u m (2.13) where all terms h a v i n g

(j,i)

as a f a c t o r ( j < i ) f o r m t h e class

(j,i) aj~,

a n d all terms h a v i n g (i, j) as a f a c t o r ( i < j) form the class (i, j)(~j. Thus in the case when n = 2

~ = (1, 2) ( 3 , 4 ) - ( 1 , 3 ) ( 2 , 4 ) + ( 1 , 4) (2,3);

if i = 3 , t h e classification (3.13) a m o u n t s to writing

r = (1, 3) a13 + (2, 3) a~3 + (3, 4) %4 where

o'13 = - (2, 4), 0"23 = (1, 4), aa4 = (1, 2).

W e m a y also write (3.13) as

t - 1 2 n

= Z (4 j) ( - ~J,) + ~ (i, j) ~,j.

J - I J = i + l

If we e x t e n d the m e a n i n g of t h e s y m b o l au b y agreeing t h a t it be s k e w - s y m m e t r i c in its subscripts, we m a y write the last relation as

2 n

(3.14) (/) = ~ (i, j) a,j, (i = 1, ..., 2 n).

j - I

However,

(3.15) (i, j) = ~ ~ (a,k bjk -- aj~ b,k), 1

k - I

a n d atj is i n d e p e n d e n t (for all j) of the variables a,k, b,k ( k = 1, ..., m), b y its con- struction. F r o m the last t w o relations we obtain the partial derivatives

D~5 ,~n 1 ~ '~n 1

- - = ~ o,, k a,~.

8a~k j_~ Gu k bjk, ~b~ j.,

L e t us now assume t h a t t h e elements of the m a t r i x M are such as to make ~b assume its absolutely m a x i m a l value subject to the condition (3.11), or

S n = ( 2 n ) n.

The L a g r a n g e multiplier rule assures us of the existence of two c o n s t a n t s # a n d ~, n o t both vanishing, such t h a t all first partial derivatives of the function

vanish. 12 W e therefore h a v e the 4 n m e q u a t i o n s

12 See CARATH~ODORY'S book [3] for the formulation of the multiplier rule in the form needed here.

(20)

1 6 2 I . J . SCHOENBERG

k ~ G - - _~ u ~ a~ j btk - 2 n ,~ k S n - l at~ = O, (3.16)

~ G

k o b ~ k -: / ~ ( ~ u a s k - 2 n ~ l c S ~ - l b ~ k = O ,

( i = 1 . . . 2 n ; k = l . . . m).

I f we m u l t i p l y these e q u a t i o n s b y a~k/]c a n d b~k/k, r e s p e c t i v e l y , a n d a d d t h e m all t o g e t h e r , we o b t a i n , in v i e w of (3.15) a n d (3.14):

O = , u ~ a~j (i, j) - 2n,~ S ~ = 2 n /t q ~ - 2 n , ~ S n

t , ] o r

(3.17) /~ (/) = 2 S ~ .

H o w e v e r , t h e m a x i m a l v a l u e ~5 is c l e a r l y p o s i t i v e (because r e > n ) a n d so is S = 2 n.

W e conclude t h a t b o t h c o n s t a n t s /~, 2 are n o n - v a n i s h i n g a n d we m a y t h e r e f o r e a s s u m e t h a t /~ = 1 a n d hence t h a t 2 is positive.

T h e e q u a t i o n s (3.16), w i t h /t = 1, m a y be i n t e r p r e t e d as follows: I n t e r m s of t h e m a t r i c e s

II 0:11

Z '

a n d t h e c o l u m n v e c t o r s

(3.19) V k = ( a l k . . . a,~n,k, blk . . . b.,.n.k), ( k - - 1 . . . m), t h e 4 n m e q u a t i o n s (3.16) m a y be w r i t t e n as m m a t r i x r e l a t i o n s

(3.20) ~ vk = (2 n) ~ k 2 vk, (k = 1, . . . , m).

W e h a v e t h e r e f o r e r e a c h e d t h e following c o n c l u s i o n : I [ the elements o/ M m a x i - m i z e q5 subject to the condition (3.11), then there exists a positive constant ,~ satis/yinff the relations (3.20).

These r e l a t i o n s s h o w t h a t if v k * 0, t h e n (2n) ~ k 2 is a c h a r a c t e r i s t i c v a l u e of t h e m a t r i x .Q. B y L e m m a 7 we k n o w t h a t ~2 can h a v e a t m o s t n d i s t i n c t p o s i t i v e c h a r a c t e r i s t i c values. W e c o n c l u d e t h a t a t m o s t n a m o n g t h e v e c t o r s ( 3 . 1 9 ) a r e non- v a n i s h i n g . L e t t h e s e be a m o n g t h e n v e c t o r s vj . . . vjn ( l _ < j l < "'" < j n < - m ) . B u t t h e n , t h e e x p a n s i o n (8) r e d u c e s to a single t e r m :

1

= D ( J l , - - - , i n ) . h .-- h

S i n c e ~ > 0 , we c o n c l u d e t h a t n o n e of t h e v e c t o r s vj . . . vj, v a n i s h e s .

(21)

AN I S O P E R I M E T R I C I:NEQUALITY FOR CLOSED CURVES 1 6 3

N o w t h e s o l u t i o n of our p r o b l e m is c l e a r : 1. I f 71 = 1 . . . . , ~ = n, t h e n o u r p r o - b l e m has a l r e a d y b e e n s o l v e d {Article l l ) . 2. I f i n > n , t h e n b y t h e i n e q u a l i t y (3.5) a p p l i e d to D {]1, "-', ]-) we f i n d

n ! S n

n! ~b = )'t "~-- )~ D (]1, . . . , ] , ) < D (?'1, . . . , ?',) ~ (2 n) ~ = 1

whence ~b< 1 I n ! , in c o n t r a d i c t i o n to t h e f a c t t h a t t h e m a x i m a l v a l u e of ~b s h o u l d be a t l e a s t l / n ! , b y t h e r e s u l t in t h e special case d i s c u s s e d in A r t i c l e l l . T h i s c o m p l e t e s a proof of T h e o r e m I I I for a " f i n i t e " m a t r i x M , or if we wish, a p r o o f of T h e o r e m I I for t h e ease w h e n t h e x~(t) a r e t r i g o n o m e t r i c p o l y n o m i a l s .

14. C o m p l e t i n g a p r o o f of T h e o r e m I I I . L e t us now d r o p t h e a s s u m p t i o n of a f i n i t e m a t r i x M . L e t a g a i n

{3.21) S = 2 n

h o l d a n d l e t us show t h a t

(3.22) Sn ~ (2 n)n n ! q5

a l w a y s holds, w i t h t h e e q u a l i t y sign o n l y as s t a t e d in T h e o r e m I I I . 1. We can never have the reverse inequality

S" < (2 n) ~ n ! r

I u d e c d , if t h i s i n e q u a l i t y were correct, let us t r u n c a t e t h e m a t r i x M b y r e p l a c i n g all c o l u m n s b e y o n d t h e 2 r u t h one b y zero columns. F o r m s u f f i c i e n t l y large, t h e r e v e r s e i n e q u a l i t y w o u l d still hold, in c o n t r a d i c t i o n w i t h t h e f i n i t e case a l r e a d y s e t t l e d . 2. We can have the equality sign in {3.22) only in the case described by Theorem I I I . I m l e e d , let us a s s u m e t h a t

S ~ = (2 n) ~ n ! qS.

~Te m a y c l e a r l y a s s u m e M t o h a v e i n f i n i t e l y m a n y n o n - z e r o columns. W e now p r o - ceed as follows: L e t m be a f i x e d n u m b e r > 2 n a n d let us " u n f r e e z e " t h e first 2 m c o l u m n s of t h e m a t r i x M in such a w a y t h a t (3.21) is p r e s e r v e d . To these 4 r a n v a r i a b l e s we a p p l y t h e m u l t i p l i e r rule as a b o v e , t h e r e b e i n g no difference from t h e p r e v i o u s case e x c e p t t h a t t h e f i n i t e s u m s (3.15) now b e c o m e i n f i n i t e series. E v e r y t h i n g is t h e s a m e as in A r t i c l e 13, w i t h t h e e x c e p t i o n of t h e r e l a t i o n (3.17) which now b e c o m e s

# r ~ - 1 S ~ , w h e r e

(22)

164 I. J . SCHOENBERG

2n ~ 1

r

= y~ a . ~ ( a ~ bjk - aj~ b~),

i , j ~ l k = l 2 n

b ~

k=l i=l

However, since r a n d Sm-+S, as m - > ~ , i t is clear t h a t o n choosing m suffi- c i e n t l y large, we h a v e ~bm > 0, S~ > 0, hence a g a i n /z = l, )~ > 0. :But t h e n we find, as before, t h a t a t m o s t n a m o n g t h e vectors (3.19) m a y be non-zero. F o r s u f f i c i e n t l y large m, this conclusion c o n t r a d i c t s o u r a s s u m p t i o n t h a t M has i n f i n i t e l y m a n y n o n -

zero columns.

References

[i]. T. ]~ONNESEN antt W. FENCHEL, Theoric dcr konvcxen K6rper, Ergebnisse der Mathe- matik, 3, Heft l (1934).

[2]. C. CARATH/~ODOltY, 1Jber den Variabilit/4tsbereich der Fourierschen K o n s t a n t e n yon positivcn harmonischen F u n k t i o n e n , Rendiconti di Palermo, 32 ( 1911 ), 193-217.

[3]. - . . . . , Variatio,~srech~ung und partielle Di]lerentialgleichungen erster Ordnung, Leipzig, ]935.

[4]. 1~'. (~ANTMAKHI':I~. a n d M. ](1~EIrr Oscillator!! matrices and kernels and small vibrations o]

mechanical systems (in Russian), 2nd Ed., Moscow, 1950.

[5]. W. Gus'rIN, S(qs c)f finite p l a n a r order, Duke Math. Journal, 14 (1947), 51-66.

[6]. J. :HADAMARD, Rdsolution d ' u n e question relatiw~ a u x ddterminants, Bulletin des sciences matbdmatiques, (2), 17 (1893), 241)--248.

[7]. J. HJELMSLEV, l n t r o d u e t i o n ~k la thd~ri(~ des suites m(ul(~toncs, Oversigt over det Kgl.

1)anske Videnskaber~es Selskabs Forbandlinffer, 1914, 1-74.

[8]. A. HUaWlTZ, Nut le probl6me des is()pbrim6tres, Comptes Re~dus, 132 (1901), 401-403;

also in Math. IVerke I, 490-491.

[9]. A. MARC~AUD, Sur les continus d'ordre bornS, Acta Mathematics, 55 (1930), 67-115.

[10]. J. VON NEUMANN and I. J. SC~OENBERr Fourier integrals a n d metric geometry, Trans- actions o] the Amer. Math. Society, 50 (1941), 226-251.

[11]. G. I)6LYA a n d G. SZE(~5, ~4u/ffaben und Lehrsdtze aus der AnalYsiS, I I , Berlin, 1925.

[12]. G. P6LYA, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Transactions of the Amer. Math. Society, 24 (1922), 312-324.

[13]. PETER SC~ERK, ~ b e r (liffcrenzierbarc K u r v e n un(| BSgen, Casopis pro p~stovdni Mate- matiky a Fysiky, 66 (1937), 165-191.

[14]. :I. J. SCHOENBERG a n d A~NE WItITNEY, A theorem on polygons in n dimensions with applications to variation-diIninishing a n d cyclic variation-diminishing linear trans- formations, Compositio Mathematics, 9 (1951), 141-160.

[15]. I . J . SC~IOENnER~, On smoothing operations a n d their generating functions, Bulletin o/

the Amer. Math. Society, 59 (1953), 199-230.

Références

Documents relatifs

Further results in this direction can be found in the paper of Freitas and Henrot [14], where, dealing with the linear case, the authors solved the shape optimization problem for

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

The elimination of self-intersection points relies on the previous result on drops, since the presence of at least one such point would make the energy not smaller than the double

Corol- lary 1 above is still true in this context but extending the results hereafter to such geometries would require a deeper study of α T (ω) on manifolds with boundary, which

In particular, it can be applied to the variational problem of minimal or constant mean curvature (CMC for short) surfaces in a homogeneous space using the isometries of the

[28] ——— , “Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation”, Commun.. Singer

When restricted to locally convex curves, this gives Theorem 1.8 which states that a locally convex curve in S 3 can be decomposed as a pair of curves in S 2 , one of which is

Therefore, to prove Lemma 3.2 (a), it is enough to prove that no minimal gallery between two chambers Ci,C2 of the same regularity component, passes through the critical locus.. (We