• Aucun résultat trouvé

On the order and type of integral functions of several complex variables

N/A
N/A
Protected

Academic year: 2022

Partager "On the order and type of integral functions of several complex variables"

Copied!
7
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

R. K. S RIVASTAVA

V INOD K UMAR

On the order and type of integral functions of several complex variables

Compositio Mathematica, tome 17 (1965-1966), p. 161-166

<http://www.numdam.org/item?id=CM_1965-1966__17__161_0>

© Foundation Compositio Mathematica, 1965-1966, tous droits réser- vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

161

of several complex variables

by

R. K. Srivastava and Vinod Kumar

1.

Let1)

be a function of two

complex

variables z, and Z2’ where the coeffi- cients amn are

complex

numbers. The series

(1.1) represents

an

integral

function of two variables

z1, z2 , if it

converges

absolutely

for all values of

|z1|

oo and

|z2|

oo. M. M.

Dzrbasyan (1,

p.

1)

has shown that the necessary and sufficient condition for the series

(1.1)

to

represent

an

integral

function of

variables z,

and z2, is

Let Gr

be the

family

of closed

polycircular

domains in space

(z1, Z2) dependent

on

parameter

r &#x3E; 0 and possess the

property

that

(z1, Z2) ~ Gr,

if and

only

if

(zl/r, z2/r) ~ G1.

The maximum modulus of the

intégral

function

f(z1, Z2)

is denoted

by

and the function will be called G - order and G -

type

respec-

tively,

if

Denote

A. A.

Goldberg (2,

p.

146)

has

proved

the

following

theorems.

1 For simplicity we consider only two variables, though the results can easily

be extended to several complex variables.

(3)

162

THEOREM A. All orders pg be

equal

and

THEOREM B.

G-type TG

satisfies the correlation

In this paper we shall obtain the relations between two or more

integral

functions and

study

the relations between the coefficients in the

Taylor expansion

of

integral

functions and their orders and

types.

2.

THEOREM

1. Let

f1(z1, z2)

=

03A3~m,n=0 amnzm1zn2

and

f2(z1, z2)

=

03A3~m,n=0 bmnzm1zn2

be two

integral functions o f

non-zero

tinite

orders

pl and P2

respectively.

Then the

function

where 2

is an

integral function

such that

where p is the order

of f(zl’ z2).

PROOF: Since

/1 (Zl Z2)

and

t2 (Zl Z2)

are

integral functions, therefore, using (1.2),

we have

Hence

t(Zl , z2)

is an

integral

function.

Now

using (1.5)

for the functions

/1 (zl, z2)

and

f2(z1, z2),

we have

and

(4)

Therefore,

for an

arbitrary

e &#x3E; 0, we

get

and

Thus,

for

or,

Therefore,

if

Hence

COROLLARY. Let

fs(z1, Z2)

=

03A3~m,n=0 a(s)mnzm1zn2,

where s = 1, 2, ...,

p be p

intégral

functions of non-zéro f inite orders 03C11, P2, ..., PlI

respectively.

Then the function

is an

integral

function such that

where p is the order of

f(z1, z2).

THEOREM 2. Let

f1(z1, z2) = 03A3~m,n=0 amnzm1zn2

and

f2(z1, z2) =

03A3~m,n=0bmnzm1zn2 be

two

integral functions o f finite

non-zero orders

03C11 and P2

respectively.

Then the

function f(z1, Z2)

=

03A3~m,n=0 cmn zm1zn2,

where

is an

integral function,

such that

where p is the order

o f f(zl’ z2).

(5)

164

PROOF : Since

/1 (Zl z2)

and

12(ZI’ Z2)

are

integral funetions, therefore, using (1.2),

we have for an

arbitrary e

&#x3E; 0 and

large

R

and

Therefore,

for

Thus,

if

then,

for

large

m + n

or,

Hence

f(z1, x2)

is an

integral

function.

Now,

from

(2.1)

and

(2.2),

we have for

sufficiently large (m+n)

or,

Thus,

if

log

or,

COROLLARY: Let

fs(z1, z2)

=

03A3~m,n=0 a(s)mnzm1zn2,

where s = 1, 2, ..., p be p

integral

functions of finite non-zéro orders pi? 03C12,..., Pv

respectively.

Then the function

where

is an

integral

function such that

(6)

where p is the order of

f(z1, z2).

THEOREM 3. Let

f1(z1, z2)

=

03A3~m,n=0amnzm1zn2

and

t2 (Zl Z2)

=

03A3~m,n=0 bmnzm1zn2

be two

integral functions o f finite

non-zero orders

03C11, P2 and

finite

non-zero

types3 T1, T2 respectively.

Then the

function

where

is an

integral function

such that

where p and T are the order and

type O!!(ZI’ Z2) respectively

and

PROOF: We can prove, as in the

proof

of Theorem 1 that

f(z1, z2)

is an

integral function,

when

Further, using (1.6)

for the functions

fl(zl, z2)

and

t2(Zll Z2)’

we

have

From

(2.3)

and

(2.4),

we

get

for an

arbitrary -

&#x3E; 0

for m+n &#x3E;

kl

and

Thus,

for

The types Ti and TI correspond to the same family of closed polycircular

domains Gr.

(7)

166

Therefore,

if we obtain

or,

where p, Tare

respectively

the order and

type

of

f(z1, %2). Hence,

COROLLARY 1. Let

fs(z1, Z2)

=

03A3~m,n=0a(s)mnzm1zn2,

where s = 1,

2, ..., p be p

intégral

functions of f inite non-zéro orders 03C11, 03C12, ... , 03C1p and f inite non-zéro

types T1, T2, ... , Tp respectively.

Then the function

f(z1, Z2)

=

03A3~m,n=0 amnzm1zn2,

where

|cmn| ~

|(03A0ps=1|a(s)mn|)1/p|

is an

intégral

function such that

where p and T are the order and

type

of

f(z1, xz) respectively

and

lP

=

03A3ps=1 1/P..

COROLLARY 2. If in the above theorem the functions

fi(xl, z.)

and

f2(z1) z2)

are of the same finite non-zero

order,

then

COROLLARY 3. The result of the

corollary

2 can be extended to p

integral

functions.

We are

grateful

to Dr. S. K. Bose for the

suggestion

and

guidance

in the

preparation

of this paper.

REFERENCES M. M. DZRBASYAN,

[1] On the theory of some class of integral functions. Izv. Akademi. Nauk Ar-

myanskoi. S.S.R. VIII, No. 4, 1955, pp. 1-23.

A. A. GOLDBERG,

[2] Elementary remarks on the formulae defining order and type of functions of several variables. Doklady Akademi Nauk Armyanskoi S.S.R., 29 (1959),

pp. 145-151.

Department of Mathematics and Astronomy, (Oblatum 21-5-64) Lucknow University, Lucknow (India)

Références

Documents relatifs

Compositio Mathematica, tome 16 (1964), p. Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Compositio Mathematica, tome 14 (1959-1960), p. Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de

Compositio Mathematica, tome 14 (1959-1960), p. Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention