• Aucun résultat trouvé

Thermal performance of a supply-air window

N/A
N/A
Protected

Academic year: 2021

Partager "Thermal performance of a supply-air window"

Copied!
11
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Thermal performance of a supply-air window

Barakat, S. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=9d666156-a0f9-4793-bb69-cd5878fc87f2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=9d666156-a0f9-4793-bb69-cd5878fc87f2

(2)

Ser

TH1

National Research

Conseil national

N2la

Council Canada

de recherches Canada

no.

1482

c e

2

Institute for

lnstitut de

BLDG

Research in

recherche en

- -

Construction

construction

Thermal Performance of a

Supply-Air Window

by S.A. Barakat

ANALYZED

Reprinted from

Proceedings

12th Annual Passive Solar Conference, Solar '87

Volume 12, July 12- 16, 1987

p. 152-158

(IRC Paper No. 1482)

N R C

-

ClSTi

L I B R A R Y

Price $3.00

NRCC 28363

i

Y

B I B L I O T H ~ Q U E

I R C

CNRC - lClBT

1

(3)

D e s c r i p t i o n d ' u n e

g t u d e e x p e r i m e n t a l e v i s a n t

3

6 v a l u e r

l e

r e n d e m e n t t h e r m i q u e d ' u n e f e n s t r e

3

a e r a t i o n a v e c l e s

i n c i d e n c e s s u r l a consommation d ' g n e r g i e .

La

f e n s t r e e n

q u e s t i o n e t a i t u n e f e n s t r e

3

d o u b l e v i t r a g e f e r m e

hermgtiquement e n u s i n e s u r l a q u e l l e on a v a i t a j o u t d un v i t r a g e

s u p p l Q m e n t a i r e du c a t 6 e x t g r i e u r .

E l l e a 6 t e i n s t a l l e e s u r l e

mur

sud d ' u n

logement d ' e s s a i

de deux chambres d o n t on

e n r e g i s t r a i t d e s donnees e n permanence.

L ' a i r e n t r e l e d o u b l e

v i t r a g e e t

l e

v i t r a g e s u p p l Q m e n t a i r e 6 t a i t a s p i r e p a r d e p e t i t s

t r o u s s i t u e s e n b a s du c h 3 s s i s .

Un logement

3

deux chambres

s i m i l a i r e s i t u d

3

e a t 6 c o m p o r t a i t une f e n s t r e i d e n t i q u e

3

d o u b l e v i t r a g e fermQ hermdtiquement e n u s i n e

e t

on e n r e g i s t r a i t

l e s donnees pour

s e r v i r d e r S f 6 r e n c e .

Des

v e n t i l a t e u r s

Q t a l o n n 6 s g v a c u a i e n t d e l ' a i r

3

r a i s o n de

0,5

r e n o u v e l l e m e n t

d P a i r / h e u r e d e chaque logement.

Dans

l e

logement d e r e f e r e n c e ,

l ' a i r e x t s r i e u r d t a i t a s p i r e d i r e c t e m e n t d a n s l a piZce.

Cette

e t u d e d 6 c r i t !

*

donne d e s

d e t a i l s s u r

t a t s .

Le

rendement t h e .

a l u d a i n s i

q u e l e render

f e n s t r e

3

t r i p l e v i t r a g

(4)

T H E W PEWORPUNCE OP A SUPPLY-AIR WINDOW S.A. Barakat

I n s t i t u t e f o r Bsaearch i n C o n r t r u c t i o n N a t i o n a l Barearch Council of Canada

Ortav., Canada, K1A OR6

An e x p e r i w n t a l r t u d y t o asaerm t h e thermal p e r f o m n e e of a r u p p l y - a i r vindau and i t s impact on energy consumption l a described. The supply-air w i n d w u u a f a c t o r y - s e a l e d d o u b l e - g l u e d vindou r e t r o f i t t e d w i t h e x t r a g l a z i n g on t h e outside. It u a e i n s t a l l e d o n t h e r o u t h w a l l of a two-room t e s t u n i t t h a t war c o n t i w o c u l y monitored. V e n t i l a t i o n a i r v u drawn b a t w e n t h e s e a l e d d o u b l e g l u i n g and th. r e t r o f i t pane through i n l e t h o l e s a t th. bottom of t h e frame. Aa a d j a c e n t ,

r i m i l a r r w r o o m u n i t f i t t e d w i t h a n i d e a t i c a l factory-sealed d o u b l e g l a z e d window w u monitored a 8 a c o n t r o l . C a l i b r a t e d fa- exhausted a n a i r flow e q u i v a l e n t of 0.5 Aaf from each u n i t . In t h e c o n t r o l u n i t t h e outdoor rupply war d r a m d i r e c t l y i n t o t h e room. Ihe paper d e s c r i b e r t h e rupply-air window concept and p r e s e n t 8 d e t a i l s of t h e e x p e r i l m t a l procedure and r e r u l t s . The t h e r a v l performance of t h e two t e s t u d t r La a8ae8red, a 8 w e l l a 8 t h e c a l c u l a t e d p r f o r u n c e of a e i d l a r u n i t f i t t e d w i t h a t r i p l c g l u e d -window. I n r e c e n t y e a r s t h e r e h a s been a r t r o n g t r W a u q f r m dependence on u n c o n t r o l l e d , accidmntal a i r change Ln b u i l d i n g r toward8 c o n t r o l l e d v a n t i l a t i o n . T h i s haa g r a m o u t of t h e need t o a e t t h e requirement f o r a d a q u t a f r e r h a i r rupply w h i l e a c h i e v i n g l w energy c o a t s through t h e u s e of h e a t recovary techniques. An a d d i t i o n a l t r e n d h.8 aeon an i n c r e a r e i n t h e a r e a of g l a e s usad f o r t h e e x t e r i o r b u i l d i n g envelope. B.cognizing t h e l a r g e h e a t l o r s / g a i n a88ociated w i t h l a r g a w i n d w r , t h i s has r e p r e r e n t e d a c h a l l e n g e t o e n g i n e e r r and manufacturer8 t o reduce t h e h e a t t r a l u m l 8 r i o n through g l u i n g a r w e l l a r p t o v i d e thermal c o d o r t i n t h e i n t e r i o r apace mar windour.

A Concapt t h a t a d d r e r s e s both v e n t i l a t i o n

and window h a a t l o a s p r o b l e m i r t h e a i r f l o v window. This i r a m l t i p l e - g l a z e d window w i t h v e n t i l a t i o n a i r f l w i n g between

t h e pane8 i n one of t h e a i r spacer. 'Rro type8 of a i r - f l o v window have been conaidered i n r e c e n t y e a r r : exhaust-air windowr m d supply-air window8 (Figure I ) .

k t h e n.oa i m p l i a r , i n a n e x b u n t - a i r window t h e a i r from t h e b u i l d i n g i u f o r c e d through t h e w i n d w a i r r p a c e b e f o r e being exhausted t o t h e o u t d o o r r , r o o r t i u 8 through a h e a t recovery system. In s o m c a r e r b l i n d s a r e enclosed i n t h e a i r r p a c e f o r e o l a r c o n t r o l . During t h e c o o l i n g s e a s o n t h e a i r f l o v remover most of t h e r o l a r g a i n absorbed by t h e g l i u i o g r and t h e b l i n d b e f o r e i t r e a c h e r t h e indoor rpace a r c o o l i n g load. In t h e h e a t i n g r e u o n t h e a i r flow reduces t h e temperature d i f f e r e n c e a c r o r r t h e i n a i d e pane(s), e l i m i n a t i n g l a r g e p a r t 8 of t h e h e a t 1088. The window a l a o a c t s a 8 a r o l a r c o l l e c t o r , and i n t h i n c a a e t h e h e a t c o n t a i n e d i n t h e a i r is recovered b e f o r e t h e a i r i r d i r c h a r g e d t o outdoorr. E x h a u s t - a i r windowr b v e been t e s t e d and ured i n a number of c o u n t r i e r , p a r t i c u l a r l y i n Europe, and a r e r e p o r t e d t o have an e q u i v a l e n t h e a t t r a n s f e r c o e f f i c i e n t a s low

u 0.4 t o 0.6 W / E ~ - K depending on t h e a i r f l o w r a t e (1-4).

In t h e rupply-air window t h e a i r t o t h e r p a c e i r i n t r o d u c e d through t h e a i r rpace between t h e window panes. Iluring t h e h e a t i n g r e u o n t h e outdoor a i r a t r e a m between panes lovers t h e t e q e r a t u r e of t h e a i r rpece, s i g n i f i c a n t l y reducing h e a t 108s through t h e window o u t e r panes t o t h e outdoorr. The a i r n t r e a a is, a t t h e same tios, preheated continuouely by t h e h e a t flow through t h e i n n e r pane8 of t h e window a 8 w e l l a 8 by s o l a r energy absorbed i n t h e g l a r s panes d u r i n g t h e day. Tha magnitude of pre-heating depends on t h e a i r f l a u r a t e and t h e f o r c e d convection p a t t e r n i n t h e a i r apace. Pacovered energy reducer t h e energy r e q u i r e d t o pre-heat t h e v e n t i l a t i o n a i r and r e a u l t r i n a l o v e r s p a c e h e a t i n g

(5)

OUTDOOR INDOOR OUTDOOR

SUPPLY- AIR WINDOW EXHAUST- AIR WINDOW

Figure 1. A i r f l o w windovr

? . I ?

4

DIMENSIONS, a

(6)

t a b o r a t o r y s t u d i s r i n F i n l a n d (5) h a m i n d i c a t e d t h a p o s s i b i l i t y of d e r r l o p i n g v i a t h a t could p r r h e a t v e n t i l a t i o n a i r

t o wet the r e q u i r c r a n t of a s i n g l a f d l y base by recovering moat o f t h a hmat t r a n s f e r through t h e widow. Incoming a i r w a s hoatmd t o about 50 p e r c e n t of t h e temperature d i f f e r e n c e lmtueea t h e Indoor aad outdoor a i r . The e f f e c t of a i r i n c h arrmngewnts on tlurul comfort and

v a n t i l a t i o a a f f i c i e n c y w u a l s o examined, A t h r o r e t i u l study c a r r i e d o u t i n Norway (6) h a s i n d i c a t e d that a double-pa- n u p p l p i r window can have a h e a t l o s s c o e f f i c i e n t u

la u 0.5 u / Q ~ * K . Recent c a l c u l a t i o n 8 w i n g t h a 'VISION' window program (7) f o r a a m b e r of syrtem c o n f i g u r a t i o n 8 i n d i c a t e a s i g n i f i c a n t r e d u c t i o n i n h e a t l o s s w i t h l i t t l e e f f e c t on shading c o e f f i c i e n t . S f f e c t i v e U-values f o r supply-air windows were between 0.42 and 0.68 of t h e v a l u e s without a i r flow.

mile

supply-air windows m y r e p r e s e n t an a t t r a c t i v e and i n e x p e l u i v e a l t e r n a t i v e d u r i n g h w e renovation o r the& upgrading, o t h e r f a c t o r s should be considered: t h e e f f e c t of sir flow on l a u e r i n g t h e i l u i d e - p a o c t e q e r a t u r e , which i n t u r n a f f e c t 8 t h e m 1 comfort a d p o t e n t i a l w i n d w condenoation; t h e i n t e g r a t i o n of t h e w i n d w i n t o t h e v e n t i l a t i o n system; and t h e a d d i t i o n n l r e q u i r c u n t s f o r c l e a n i n g of t h e a i r f l o w space.

T h i s experimental cltudy war undertaken a t t h e I n s t i t u t e f o r Research i n C o n s t r u c t i o n , N a t i o n a l Research Council of Canada

(IRCINRCC) outdoor t e s t f a c i l i t y t o e v a l u a t e the performance of a supply-air window and i t 8 i w a c t on a n e r w coruumption a s c o l p a r e d t o conventional double- and t r i p l e - g l a r e d w i n d a s .

The NRCC outdoor test f a c i l i t y (8) c o r u i s t s of a r i n g l e a t o r a y , i n s u l a t e d vood f r a o c c o r u t r u c t i o n over a basement and i s d i v i d e d i n t o t u o 2 7 0 0 1 u n i t s . An shown i n

Figure 2, u c h u n i t has a south-facing window of 2.6 m2 n e t g l a s s a r e a (mnde of t h r e e s e c t i o n o ) aad a 1-r2 north-f a c i n g windor. Windows a r e double-glazed w i t h 6.4- i n t e r p a n e a i r space. A l l r o o m a r e h e a t e d t o 20.C by means of e l e c t r i c baseboard h e a t e r s c o n t r o l l e d by p r e c i s i o n c o n t r o l l e r s t o w i t h i n 0.1 C deg. The t e s t u n i t s were c o n s t n r c t e d , and measured, t o be a i r t i g h t .

Tha a i r a u p p l y windov was c o n s t r u c t e d on t h e s o u t h s i d e of t h e w e s t u n i t by r e t r o f i t t i n g the e x i s t i n g double-glazed window w i t h a n e x t r a pa- of g l a a s 66 m o u t s i d e t h e o u t e r p.ru (Figure 3). 'Phis d i v i d e d t h e window i n t o t h r e e s e c t i o n s , each of 584- width.

For e a c h s e c t i o n t h r e e 25-Q h o l e s were d r i l l e d a t t h e bottom of t h e frame of t h e r e t r o f i t pane and a t t h e t o p of t h e o r i g i n a l frame t o a l l o w a i r flow. The v e r t i c a l d i s t a a c e between t h e bottom and t o p h o l e s w u 1625 me. The t o p h o l e s v e r e l i n e d w i t h

r i g i d conduiLs through t h e w a l l i n s u l a t i o n .

Two small fa- were used t o e x t r a c t a i r

continuously from each u n i t t o t h e c o r r i d o r a t a r a t e of 11.5 L/s, t h e e q u i v a l e n t of about 0.5 a i r changes p e r hour. I n t h e vest u n i t , t h e a i r was drawn through t h e

supply-air window; t h i s t r a n s l a t e s i n t o an a i r f l a u r a t e of 6.1 L/s p e r

d

of windov a r e a , o r a n e q u i v a l e n t v e l o c i t y of 0.1 m / s . I n t h e e a s t c o n t r o l u n i t t h e a i r was a l l a v e d t o e n t e r t h e u n i t d i r e c t l y through a supply i n l e t .

Continuous measurements included t h e average indoor a i r temperature a t mid-height of each room, a i r t e P p e r a t u r e r i n t h e a t t i c and c o r r i d o r , outdoor a i r temperature, and t h e a i r c e q e r a t u r e s a t t h e i n l e t and o u t l e t of t h e s u p p l y - a i r vindow. Other measurements included s o l a r r a d i a t i o n i n c i d e n t on t h e s o u t h and n o r t h s u r f a c e s , and t h e e l e c t r i c energy consumption of each space. A i r f l o w r a t e s through t h e v e n t i l a t i o n f a n s were m n i t o r e d once a week and a d j u s t e d i f necessary. This was done by measuring t h e p r e s s u r e drop a c r o s s a c a l i b r a t e d l e n g t h of d u c t downstream of t h e f a n o u t l e t . A d a t a l o g g e r scanned and recorded t h e d a t a on a magnetic t a p e f o r processing.

AIR OUTLET

lb~--J-:;:;:{l

(7)

3. DATA ANALYSIS Data v e r e c o l l e c t e d f o r about f o u r # n t h 8 d u r i n g t h e h e a r i n g s e u o n . A number of h e a t - f l w value8 and p e r f o r m n c e p a r a n t a r s have k e n c n l c u l a t e d from t h e c o l l e c t d data. I h e y a r e i n d i c a t e d s c h e m t i c a l l y on Figure 4 and a u v r i t e d i n the f o l l d n g . 3.1 B u t u n i t ( c o n t r o l )

Envelope h a r t l o s s , Qle

-

E(UA), (Tr,-T0)bt South vindow h e a t l o s s .

&.

-

& (UA) (Tre

-

To) A t V e n t i l a t i o n h e a t Poaa. v h e r e V e n t i l a t i o n h e a t 10.8, Qw

-

f VP cp(T,

-

To) A t Envelope loam, Qlv

-

Bv + Qsv + Q, + Qe

-

Q, where

Tout

-

a i r t e a p e r a t u r e a t supply-air windcw o u t l e t , K

v

-

r u b r c r i p t d e n o t i n g v e s t u n i t (rupply-air window).

k envelope l o s s e s ( o t h e r than s o u t h vindov) and v e n t i l a t i o n Loases f o r both t h e t e s t u n i t (Qcv) and t h e c o n t r o l u n i t (Qce) a r e assumed t o be e q u a l , t h e d i f f e r e n c e i n t h e e l e c t r i c energy conaurption f o r t h e two u n i t s represents t h e d i f f e r e n c e i n t h e n e t h e a t g a i n of t h e r e s p e c t i v e v i n d w s . Heat l o s s through t h e supply-air vindov t o o u t e i d e ,

G ,

i s c a l c u l a t e d t h e r e f o r e from t h e r e l a t i o n :

-

o v e r a l l envelope h e a t 10.8 c o e f f i c i e n t , V/K

*

eouth vindov ( i n c l u d i n g frame) h e a t 108s c o e f f i c i e n t , V/K

-

room a i r t a c p e r a t u r e , K

-

outdoor a i r t e a p e r a t u r e , K

-

v e n t i l a t i o n air-flow r a t e , m3/r

-

s p e c i f i c h e a t of a i r , Y s / k g K

-

s o l a r g a i n f a c t o r f o r s o u t h double-glazed v i n d w

-

s o l a r g a i n f a c t o r f o r n o r t h double-glazed v i n d w

-

n e t s o u t h windou gla.8 a r e a , m2

-

n e t n o r t h window g l a a s a r e a ,

d

-

i n c i d e n t r a d i a t i o n on s o u t h vindov, V/ m2 Hns

-

i n c i d e n t r a d i a t i o n on n o r t h vlndav, U/ a2

P

-

energy consumption, kUh

A t = d a t a l o g g e r i n t e g r a t i o n period, h e

-

s u b s c r i p t d e n o t i n g e a s t unit.

For the c o a c r o l u n i t , t h e envelope h e a t 108s c o a f f i c i e n t , UA, obtained d u r i n g a previous r t u d y (8) 18 used f o r t h e c a l c u l a t i a t . In a d d i t i o n , t h e average s o l a r g a i n f a c t o r s t o r south- and north-facing d o u b l e g l u e d window vere obtained using d a t a from Rcfarence 9 (0.74 and 0.72, r e s p e c t i v e l y ) .

The aouth v i n d w tos8 c o e f f i c i e n t ( i n c l u d i n g fr-) i n t h n a s 2.85 ~ l d K; t h i s value w a s o b t a i n e d i n a guarded h o t bar measurement f o r a s i m i l a r v i n d w . 3.2 V e s t u n i t (supply-air vindov) I n a d d i t i o n t o a number of energy f l o w c a l c u l a t e d a 8 f o r t h e c o n t r o l u n i t , o t h e r v a l u e s a r e c a l c u l a t e d unique t o t h e p r e s e n t one:

lieat g a i n by a i r flow through vindov, Qa E

v

Cp(ToUt

-

To) A t

The h e a t l o s e through t h e i n n e r panes of t h e s u p p l y - a i r w i n d w , Qiw, may be c a l c u l a t e d a s :

Q i v

-

Q,

+ Q,

These c a l c u l a t i o n r i n c l u d e a f e v arsumptiona. k t h e envelope h e a t l o s s

c o e f f i c i e n t of t h e u n i t was not known (due t o t h e i n s t a l l a t i o n of t h e supply-air vindov), i t v a s a e e u w d , s i n c e both u n i t s a r e of s i m i l a r c o n s t r u c t i o n , t h a t t h e h e a t l o s s e s through t h e opaque envelope

coaponenta a r e e q u a l f o r both u n i t s . In a d d i t i o n , t h e n e t thermal s t o r a g e of b o t h u n i t r was assumed t o be t h e earn? ( t h i s f a

c a l c u l a t e d a s Qe f o r t h e c o n t r o l u n i t ) . As

v i l l be shown, t h i s assumption has a n i m i g n i f i c a n t e f f e c t on t h e seasonal r e s u l t s and o n l y a s m a l l e f f e c t on t h e t o t a l day o r n i g h t tiu r e a u l c s i f c a l c u l a t e d separately. A t h i r d u s u t u p t i o n i n v o l v e r the c a l c u l a ~ i ~ n of r o l a r gain. through t h e supply-air

vindou. The s o l a r g a i n f a c t o r Lor t r l p l e g l a z i n g i n used f o r c h i s c a l c u l a t i o n (0.67). It r u y i n t r o d u c e some e r r o r s i n c e t h e inward-flowing f r a c t i o n of t h e absorbed s o l a r energy i n t h e o u t e r pane may be smaller due t o added convection t o t h e v e n t i l a t i o n a i r . The e r r o r is, h w e v e r , very s m a l l ( l e e r than 0.5 percent of t h e s o l a r g a i n ) .

Dnta f o r t h e e a r t ( c o n t r o l ) u n i t v e r e a d j u s t e d t o account f o r a s l i g h t d i f f e r e n c e i n a v e r a g e indoor temperature and

(8)

(1 1.4 L/r and 11.6 L/r f o r e u t and v e s t Under t h e t e s t c o n d i t i o n r , t h e f o l l w i n g u n i t s , reopectively). &st u n i t r e s u l t s a r e o b s e r v a t i o n s were made:

I d j u s t a d f o r window h e a t l o s s and s o l a r g a i n

t o o b t a i n a n e q u i v a l e n t c o n t r o l u n i t w i t h a 1. 010 average, t h e a i r t e a p e r a t u r e rise i n t r i p l a - g l u e d v i n d w .

Tha

U-value and r o l a r t h e vindov is a p p r o l d ~ t e l y 50 p e r c e n t of g a i n f a c t o r f o r t r i p l e g l n i n g a r e t a k e n a s t h e t e q e r a t u r e d i f f e r e n c e between indoor 1.85 ~ / m 2 K and 0.68, r e s p e c t i v e l y (9). and outdoor temperatures. This r a t i o 1s

l o r n r a t n i g h t (44 p e r c e n t ) and h i g h e r d u r i n g t h e day (58 p e r c e n t ) oving t o t h e 4. BZSULTS AND DISCUSSION

Results f o r t h e t o t a l m n i t o r i n g p e r i o d a r e 8 t n u r i z . d i n Table 1; 8-18. o f t h e c o a d i t i o l u d u r i n g t h e m n i t o r i n g p e r i o d a r e g i v e n i n T a b l e 2. Of i n t e r e s t is t h e v e n t i l a t i o n a i r t e q e r s t u r e a t t h e s u p p l y v i n d w o u t l e t . To i n d i c a t e t h e e f f e c t of s o l a r r a d i a t i o n o n t h e r s s u l t s and th. p o t e n t i a l e f f e c t of t h e s u p p l y - a i r v i a d w a t o t h e r o r i e n t a t i o r u , d a t a a r e s p l i t i n t o t o t a l s d u r i n g d a y t i m (6:00 am t o 8:00 pm) and n i g h t t i m (9:OO pa

-

5:00 U ) and presented i n Tables 3 and 4, r e s p e c t i v e l y . These p e r i o d s a r e s e l e c t e d t o minimize t h e e f f e c t of thermal s t o r a g e , from day t o n i g h t , on t h e r e s u l t s .

Over th. monitoring p e r i o d ( a t o t a l of 3000 la) t h e n e t ermrgy b a l a n c s , which r e p r e s e n t s t h e n e t enargy s t o r a g e i n t h e u n i t and should approach z e r o , v a s indeed found t o k i n o i g n i f i c a n t v i t h r e s p e c t t o o t h e r ermrlpr v a l u e s ( o n l y about 6 kUh). T h i s may r e f l e c t t h e accuracy of t h e energy c o . e o w n t s c o r u t i t u t i n g t h e energy balance. Day and n i g h t ti- d a t a shov l a r g e r

(74 and 68 kUh, r e s p e c t i v e l y ) t h e n u l s t o r a g s components, an expected r e s u l t of t h e s o l a r energy e f f e c t . I d d i t l o ~ l r o i a r h e k i n g e f f a c t . Under t h e latest outdoor t e q e r a t u r e c o n d i t i o n g i v e n i n Table 2, t h i s r a t i o i s a l s o 45 percent. Thew result8 a g r e e v i t h p r e v i o u s l y r e p o r t e d l a b o r a t o r y s t u d i e s . C o r r u p o n d i n g l y , t h e h e a t g a i n by t h e v e n t i - l a t i o n a i r i n t h e supply-air vindov amounts t o about 50 p e r c e n t of t h e t o t a l ' energy r e q u i r e d t o h e a t i t t o room temperature. k

noted i n T a b l e 2, a s w e l l , under r o w runny c o n d i t i o n s t h e v e n t i l a t i o n a i r h e a t g a i n may c o n t r i b u t e t o o v e r h e a t i n g of t h e rpace. 2. Coaparad t o a t r i p l e - g l a z e d window, t h e h e a t 1088 through t h e i n n e r g l a z i n g of t h e supply-sir vlndow f n c r e u e d , but i t d i d n o t reach t h e magnitude of t h e l o u r through a double%lazed vindov. I n a d d i t i o n , most of t h i s h e a t l o a s is recovered by t h e a i r f l o v , r e s u l t i n g i n a very small o v e r a l l h a t l o s s through t h e o u t e r pane t o o u t r i d e . k i n d i c a t e d i n Tables 1 and 3, d u r i n g t h e monitoring p e r i o d less than 20 p e r c e n t of t h e h e a t flow through t h e i n n e r penes v a s a c t u a l l y l o s t t o outside. This r e p r e r e n t s l e s s than 20 percent of t h e h e a t l o r e through a t r i p l e g l a z e d window and only 15 percent of t h a t through a double-glazed window.

ENVELOPE LOSS

V€NTlUTlON LOSS ~ X C W D I N G S O V T ~ WINDOW

5. SOW GAIN S. WINDOW HEAT LOSS, a,

k

RJRCMED ENERGY CONTROL U N I T E. \ . 3. k an i n d i c a t i o n of t h e t h e n u l p e r f o n m a c e of t h e rupply-air window, an e q u i v a l e n t h e a t l o s s c o m f f i c i e n t (U-value) c a n be bared on t h e n e t h e a t l o s s through t h e o u t e r pane o v e r a l l n i g h t ti= hours. The average c a l c u l a t e d h e a t l o s e c o e f f i c i e n t is about 0.45 w/m2 K, v h i c h a g r e e s v i t h p r e v i o u s t h e o r e t i c a l v a l u e s (6). 4. Gvsr t h e monitoring pariod energy conrumption of t h e u n i t with t h e r u p p l y r i r v i n d a r w u 25 p e r c s n t l e s s than t h a t of t h e c o n t r o l u n i t f o r a d o u b l c g l a z s d window and 20 p e r e s n t l e s s than t h a t of a n e q u i v a l e n t c o n t r o l u n i t f o r a t r i p l e - g l u s d vindov. A t n i g h t t h e s e r a t i o s ware about 22 and 17 p e r c s n t , b ) SUPPLY-AIR W I N D O W U N I T

.'

L Figure 4. Erurgy b e l u ~ c e r e s p e c t i v e l y , a n i n d i c a t i o n of t h e ~ e r f o n u n c e a t t a i n a b l e f o r s i i l a r windows o r i e n t e d o t h e r than routh.

(9)

TABU 1. Seaaorul eturgy.balance (3000 h) bit

S u p p l y a i r Double-glued Triple-gluad

b u u r e n n t rindor Winda Window

Av outdoor a i r t a w , 'C -5.3 -5.3 -5.3

A r indoor a i r t a w , 'C ' 20.5 20.2 20.5

Av vane a i r o u t l e t t a w , 'C 8.2

-

Vent a i r heat gain, kUh 567.0

-

Vent haat l o a s , kUh 1081.0 1081.0 1081.0

8UVOlope heat 10.8

( e x e l rout h windw)

,

kUh 1286.0 1286.0 1286.0

South windw molar gain, kYh 543.0 590.0 543.0

k r t h vindar molar gain, kUh 71.0 71.0 71.0

Total p u t c h u d e n e r a , kUh 1870.0 2506.0 2352.0

Energy from storage, kUh -6.0 -6. 0 -6.0

South windw heat loor,* kYh 117.0 794.0 593.0

Heat 10.8 though inner

panma of aouth v i n d w , kUh 684.0 794.0 593.0

*Includes f r . u loma and molar energy contribution

TABLE 2. Supply window o u t l e t t e q e r a t u r e under d i f f e r e n t conditions

D.1

16 20 56 16

T i m 06:OO 00:OO 13:15 12:OO

Outdoor tamparacure, 'C -25.0 -10.0 1.9 -20.0

South molar radiation, id/& 0.9 0.0 880.0 950.0

Wind opead, m/r calm 1.4 calm 2.8

lbom t e q e r a t u r a , 'C 20.2 20.2 27.3 21.5

Supply-air vindou o u t l e t temperature, 'C -4.6 5.0 32.8 17.1

TABLE 3. Nlght energy balance (1219 h) U n i t

S ~ ~ p p l ~ l i t Double-glared Triple-glared

!haauramot window Windw Window

Av outdoor a i r tecp, 'C -6.0 -6.0 -6.0

k indoor a i r tecp, 'C 20.1 20.0 20.1

Av vane a i r o u t l e t t e q , 'C 5.6

-

Vent a i r heat pain, kYh 198,O

-

Vantilation heat 1008, kUh 446.0 446.0 446.0

Envelop. heat l o r e

(excluding mouth windor), kYh 53010 530.0 530.0

South r i n d w molar gain, kUh 0.0 0.0

North window molar gain, kUh 0.0 0.0

Total purchued energy, kYh 958.0 1234.0 1152.0

Enarm from rtoraga, kYh 68. 0 68.0 68.0

South windav hear lor@,* kYh 50. 0 326.0 244.0

h a t lo88 though

inner

pa-8, kwh 248.0 326.0 244.0

Window e f f o c t i r e hoar

loaa c o e f f i c t e n t , V / ~ K 0.44 2.85 2.13

(10)

TABLE 4. Daytipc energy balance (1781 h)

-- - --

hit

Supply-air Double-glazed Triple-glazed

vindov Window Uindov

Av outdoor a i r t e q , 'C -4.8 -4.8 -4.8 Av indoor a i r temp, 'C 20.7 20.3 20.7 Av vent a i r o u t l e t temp, 'C 10.0

-

Vent a i r h e a t g a i n , kUh 370.0

-

V e n t i l a t i o n h e a t l o s s , kUh 636.0 636.0 636.0 Envelope h e a t l o s s

(excluding s o u t h vindow), kUh 787.0 1224.0 1106.0 South window s o l a r g a i n , kUh 543.0 590.0 543.0 North window s o l a r g a i n , kUh 71.0 71.0 71.0 T o t a l purchamed energy, kUh 913.0 1273.0 1202.0 Energy from s t o r a g e , ' kUh -74.0 -74.0 -74.0 *Negative i n d i c a t e s energy i n t o s t o r a g e

An experimental study h a s k e n performed a t a n outdoor t e s t f a c i l i t y t o a s s e s s t h e p o t e n t i a l performance of a supply-air vindov and its i a p a c t on energy consumption. The v i n d w was a factory-sealed double-glazed v i n d w r e t r o f i t t e d v i t h a n a d d i t i o n a l pane on t h e outside. Air f l w through t h e vindov recovered a l a r g e f r a c t i o n of t h e h e a t l o s s ; t h i s represented about 50 percent of t h e energy r e q u i r e d t o h e a t v e n t i l a t i o n a i r . The e f f e c t i v e U-value of t h e v i n d w v a s found t o be i n t h e o r d e r of 0.5 W/mZ K. The o v e r a l l reduction i n purchased energy of t h e aupply-air vindov u n i t r e l a t i v e t o a s i m i l a r double-glazed vindow u n i t o r t o a

t r i p l e g l u e d v i n d w u n i t is about 25 and 20 percent, i e s p e c t i v e l y . This i n d i c a t e s a good p o t e n t i q l f o r supply-air v i n d w s ; more work is needed t o optimize any d e s i g n based on t h i s concept and on t h e i n t e g r a t i o n of t h e vindov v i t h t h e b u i l d i n g system.

(1) Sodergren, D. and Bostroo, T.

' V e n t i l a t i n g v i t h t h e Exhaust A i r Window,' ASHRAE J o u r n a l ( A p r i l 1971).

( 2 ) Cabrielason. J. 'Extract-air Windov. A b y t o B e t t e r Heat Economy i n Buildings,' Proc. 10th World Energy Conference, I s t a n b u l , Turkey (September 1977). ( 3 ) Wiart, L.B. and S u v a c h i t t a n o n t , S.

'Performance and E c o n o d c Analysis of Air P l w Windove i n A T r o p i c a l Climate." Energy Research,

2,

441-447 (1985).

( 4 ) Chapman, W.F. 'Less Ref r i g e r a t i o n : More c l a s s , A Compatible I d e a ? , " ASHRAE J o u r n a l (February 1979).

( 5 ) Korkala, T., Saarnio. P., and S i i tonen, V. 'Air I n t a k e Arrangements of t h e Supply-Air Windov from t h e View of Comfort and V e n t i l a t i o n E f f i c i e n c y , ' Proc. Windws i n Buildings, Sweden (June 1984).

( 6 ) T j e l f l a a t , P.O., and Bergensen, 8. 'Improved Thermal I n s u l a t i o n i n Uindws by Laminar Air Plovs,' Proc. Thermal

Performance of t h e E x t e r i o r Envelopes of Buildings 111 (December 1985).

( 7 ) Wright, J.L. ' E f f e c t i v e U-values and Shading Coef f i c i e n t s of Prebeat/Supply Air Glazing Systems,' Proc. S o l a r

Energy Society of Canada Conference ( J u l y 1986).

( 8 ) Barakat, S.A. lRCC Passive S o l a r Test F a c i l i t y , D e s c r i p t i o n and Data Reduction,' National Research Council of Canada, Division of Building Research, BR Note 214 (1984).

( 9 ) Barakat, S.A. "Solar Heat Gains through Uindovs i n Canada,' National Research Council of Canada, Division of Building Research, NRCC 18674 (1980).

(11)

T h i s paper

i s being d i s t r i b u t e d i n r e p r i n t

form by

t h e I n s t i t u t e f o r Research

i n

C o n s t r u c t i o n .

A

l i s t of b u i l d i n g p r a c t i c e

and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from

t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s

S e c t i o n ,

I n s t i t u t e f o r

Research i n C o n s t r u c t i o n , N a t i o n a l Research

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

K I A

0R6.

C e

document e s t d i s t r i b u e sous forme de

t i r e - 2 - p a r t

p a r

1' I n s t i t u t de r e c h e r c h e e n

c o n s t r u c t i o n .

On

p e u t o b t e n i r une l i s t e

d e s p u b l i c a t i o n s de 1' I n s t i t u t p o r t a n t s u r

l e s t e c h n i q u e s ou l e s r e c h e r c h e s en

matisre

d e bdtiment e n G c r i v a n t

3

l a S e c t i o n d e s

p u b l i c a t i o n s ,

I n s t i t u t

de

r e c h e r c h e

en

c o n s t r u c t i o n ,

C o n s e i l

n a t i o n a l

d e

r e c h e r c h e s du

Canada,

Ottawa

( O n t a r i o ) ,

K l A

OR6.

Figure

Figure  1.  A i r f l o w   windovr
Figure  2,  u c h  u n i t   has  a  south-facing  window  of  2.6  m2  n e t   g l a s s   a r e a   (mnde  of  t h r e e   s e c t i o n o )   aad  a  1-r2  north-f  a c i n g   windor
TABLE  2.  Supply  window  o u t l e t   t e q e r a t u r e   under  d i f f e r e n t   conditions
TABLE  4.  Daytipc  energy  balance  (1781  h)

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers