• Aucun résultat trouvé

80-646-08StochasticcalculusIGeneviŁveGauthier ChangeofmeasureandGirsanovtheorem

N/A
N/A
Protected

Academic year: 2022

Partager "80-646-08StochasticcalculusIGeneviŁveGauthier ChangeofmeasureandGirsanovtheorem"

Copied!
68
0
0

Texte intégral

(1)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Change of measure and Girsanov theorem

80-646-08 Stochastic calculus I

Geneviève Gauthier

HEC Montréal

(2)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

An example I

Let ( , F , fF

t

: 0 t T g , P ) be a …ltered probability space on which

a standard Brownian motion W

P

= W

tP

: 0 t T is constructed.

The stochastic process S = f S

t

: 0 t T g represents the evolution of a risky security price and satis…es the stochastic di¤erential equation

dS

t

= µS

t

dt + σS

t

dW

tP

.

Let’s also assume that the interest rate r is constant. The discount factor is therefore

β ( t ) = exp ( rt )

which implies that d β ( t ) = r exp ( rt ) dt.

(3)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

An example II

Let’s set, for all 0 t T , Y

t

= β

t

S

t

i.e. Y

t

represents the present value at time t of the risky security.

Using Itô’s lemma (more precisely the multiplication rule), we obtain

dY

t

= ( µ r ) Y

t

dt + σY

t

dW

tP

. Indeed,

dY

t

= d β

t

S

t

= β

t

dS

t

+ S

t

d β

t

+ d h β, S i

t

= β

t

µS

t

dt + σS

t

dW

tP

+ S

t

( r β

t

dt )

= ( µ r ) β

t

S

t

dt + σβ

t

S

t

dW

tP

.

(4)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

An example III

In its integral form, such a stochastic di¤erential equation becomes

Y

t

= Y

0

+ ( µ r )

Z

t 0

Y

s

ds + σ Z

t

0

Y

s

dW

sP

.

(5)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

Refresher

Itô process

Let W

P

be a ( fF

t

g , P ) Brownian motion.

An Itô process is a process X = f X

t

: 0 t T g taking its values in R such that:

X

t

X

0

+

Z

t

0

K

s

ds +

Z

t

0

H

s

dW

sP

with K = f K

t

: 0 t T g and H = f H

t

: 0 t T g , processes adapted to the …ltration fF

t

g ,

P h R

T

0

j K

s

j ds < i = 1 P h R

T

0

( H

s

)

2

ds < i = 1

Damien Lamberton and Bernard Lapeyre, Introduction au calcul

stochastique appliqué à la …nance, Ellipses, page 53.

(6)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

Example (suite) I

Recall that W

P

is a ( fF

t

g , P ) Brownian motion.

In a risk-neutral world ( , F , fF

t

: t 0 g , Q ) , the stochastic process Y = f Y

t

: 0 t T g should be a ( fF

t

g , Q ) martingale.

Thus, under the risk-neutral measure, the trend of Y

should be nil, i.e. we want the drift coe¢ cient to be 0.

(7)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

Example (suite) II

Let’s set

W

tQ

= W

tP

+

Z

t

0

γ

s

ds and note that

1

W

Q

is not a P martingale (its expectation varies in time) and

2

dW

tQ

= dW

tP

+ γ

t

dt . As a consequence

Y

t

= Y

0

+ ( µ r ) Z

t

0

Y

s

ds + σ Z

t

0

Y

s

dW

sP

Y

t

= Y

0

+

Z

t

0

( µ r σγ

s

) Y

s

ds + σ Z

t

0

Y

s

dW

sQ

.

In order to get rid of the drift term, it is su¢ cient to set µ r σγ

s

= 0 , γ

s

= µ r

σ .

(8)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

Example (suite) III

Recall that

Y

t

= Y

0

+ σ Z

t

0

Y

s

dW

sQ

Note that, under the measure P , the process W

Q

is not a standard Brownian motion since the law of W

tQ

under the measure P is N

µσr

t, t .

The process Y will not be a ( fF

t

g , P ) martingale since the stochastic integral is constructed with respect to W

Q

which is not a ( fF

t

g , P ) martingale.

Indeed,

E

P

h W

tQ

i

= µ r

σ t

varies in time.

(9)

Change of measure

Example 1 Radon- Nikodym th.

Girsanov th.

Multidimensional References

Example (suite) IV

Recall that W

P

is a ( fF

t

g , P ) Brownian motion, Y

t

= Y

0

+ σ

Z

t

0

Y

s

dW

sQ

where

W

Q

( t ) = W

P

( t ) + µ r σ t.

So we want to …nd the probability measure Q to be placed on the space ( , F , fF

t

g ) such that W

Q

is a

Q standard Brownian motion.

By changing the probability on the set Ω , we transform

the drift coe¢ cient so that the trend becomes zero and we

integrate with respect to a ( fF

t

g , Q ) martingale. As a

result, the process Y will be ( fF

t

g , Q ) martingale.

(10)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem I

A way to construct new probability measures on the measurable space ( Ω , F ) when we already have a

probability measure P existing on that space is as follows:

Let Y be a random variable constructed on the probability space ( Ω , F , P ) such that

8 ω 2 Ω , Y ( ω ) 0 and E

P

[ Y ] = 1.

For all event A 2 F , I

A

denotes the indicator function of that event:

I

A

( ω ) = 1 if ω 2 A 0 otherwise.

For all event A 2 F , let’s set

Q ( A ) = E

P

[ Y I

A

] .

Then Q is a probability measure on ( Ω , F ) .

(11)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem II

Proof. We must verify that (P1) Q ( Ω ) = 1,

(P2) 8 A 2 F , 0 Q ( A ) 1,

(P3) 8 A

1

, A

2

, ... 2 F such that A

i

\ A

j

= ∅ si i 6 = j,

Q S

i 1

A

i

=

i 1

Q ( A

i

) .

(12)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem III

Veri…cation of (P1). But, since for all ω, I

( ω ) = 1 and because we have assumed that E

P

[ Y ] = 1,

Q ( Ω ) = E

P

[ Y I

] = E

P

[ Y ] = 1,

which establishes condition ( P 1 ) .

(13)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem IV

Veri…cation of (P2). The second condition is just as easy to prove: since Y is a positive random variable, Y I

A

is a positive random variable too, and Q ( A ) = E

P

[ Y I

A

] 0.

Moreover,

Q ( A ) = E

P

[ Y I

A

] E

P

[ Y I

]

= E

P

[ Y ]

= 1.

(14)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem V

Veri…cation of (P3). As we have established in an exercise in the …rst chapter, 8 A

1

, A

2

, ... 2 F such that A

i

\ A

j

= ∅ if i 6 = j ,

I

Si 1Ai

= ∑

i 1

I

Ai

.

As a consequence, Q [

i 1

A

i

!

= E

P

h

Y I

Si 1Ai

i

= E

P

"

Y ∑

i 1

I

Ai

#

= ∑

i 1

E

P

[ Y I

Ai

]

= ∑

i 1

Q ( A

i

) .

(15)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem VI

De…nition

Two probability measures P and Q constructed on the same measurable space ( Ω , F ) are said to be equivalent if they have the same set of impossible events, i.e.

P ( A ) = 0 , Q ( A ) = 0, A 2 F .

(16)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem VII

Question. Given two equivalent probability measures P and Q , does there exist a non-negative valued random variable Y such that

Q ( A ) = E

P

[ Y I

A

] ?

Note the di¤erence between such a problem and the result we have just proven.

In the latter, Y and P were given to us and we have constructed Q .

In this case, P and Q are given to us and we need to …nd Y , which is less easy.

The existence of such a variable is established in the next

theorem which is a version of the famous Radon-Nikodym

theorem.

(17)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem VIII

Theorem

Radon-Nikodym theorem . Given two equivalent probability measures P and Q constructed on the measurable space ( Ω , F ) , there exists a positive-valued random variable Y such that

Q ( A ) = E

P

[ Y I

A

] .

Such a random variable Y is often denoted by

ddQP

.

Such a theorem still does not tell us how to …nd our

risk-neutral measure. Actually, it is the next result that

will provide us with the recipe to construct our measure

and it involves the Radon-Nikodym derivative.

(18)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem IX

A few thoughts about the discrete case

Assume that Ω only contains a …nite number of elements.

Let Y = β

T

X be the present value of the attainable contingent claim X . Si F

0

= f Ω , ∅ g , then its price at time t = 0 is

E

Q

[ Y ] = ∑

ω2Ω

Y ( ω ) Q ( ω )

= ∑

ω2Ω

Y ( ω ) Q ( ω ) P ( ω ) P ( ω )

= E

P

Y Q

P

(19)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional References

Radon-Nikodym theorem X

Consider the binomial market model: S

(1)

represents the evolution of the riskless asset and S

(2)

models a risky asset. The unique risk-neutral measure is denoted by Q , P being the ”real”measure.

ω S(1)0 (ω) S(2)0 (ω)

! S(1)1 (ω) S(2)1 (ω)

! S(1)2 (ω) S(2)2 (ω)

!

P Q dQdP

ω1 (1;2)0 (1,1;2)0 (1,21;1)0 14 0,360 1,44

ω2 (1;2)0 (1,1;2)0 (1,21;3)0 14 0,540 2.16

ω3 (1;2)0 (1,1;4)0 (1,21;1)0 14 0,015 0,06

ω4 (1;2)0 (1,1;4)0 (1,21;5)0. 14 0.085 0,34

The Radon-Nykodym derivative is somewhat the memory

of the change of measure. For each path, it remembers

how we have changed weights.

(20)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem I

Let’s focus on a bounded time interval: t 2 [ 0, T ] . Let W = f W

t

: t 2 [ 0, T ] g represent a Brownian motion constructed on a …ltered probability space

( Ω , F , fF

t

g , P ) such that the …ltration fF

t

g is the one generated by the Brownian motion, plus it includes all zero-probability events, i.e. for all t 0,

F

t

= σ ( N and W

s

: 0 s t ) .

The next theorem will enable to construct our risk- neutral

measures.

(21)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem II

Theorem

Cameron-Martin-Girsanov theorem. Let

γ = f γ

t

: t 2 [ 0, T ] g be a fF

t

g predictable process such that

E

P

exp 1 2

Z

T 0

γ

2t

dt < . There exists a measure Q on ( Ω , F ) such that (CMG1) Q is equivalent to P

(CMG2)

ddQP

= exp h R

T

0

γ

t

dW

t 12

R

T

0

γ

2t

dt i

(CMG3) The process f W = n W f

t

: t 2 [ 0, T ] o de…ned as f

W

t

= W

t

+ R

t

0

γ

s

ds is a ( fF

t

g , Q ) Brownian motion.

(ref. Baxter and Rennie, page 74; Lamberton and Lapeyre, page 84)

(22)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem III

The condition E

P

h

exp

12

R

T

0

γ

2t

dt i

< is a su¢ cient

but non-necessary condition. It is know as the Novikov

condition.

(23)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem IV

Consider the stochastic di¤erential equation dX

t

= b ( X

t

, t ) dt + a ( X

t

, t ) dW

t

where W represents a Brownian motion on the …ltered probability space ( , F , fF

t

g , P ) .

We assume that the drift and di¤usion coe¢ cients are such that there exists a unique solution to the equation, which we denote X .

We want to …nd a probability measure Q , such that, on

the space ( , F , fF

t

g , Q ) , the drift of X is e b ( X

t

, t )

instead of b ( X

t

, t ) .

(24)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem V

Let’s go!

dX

t

= b ( X

t

, t ) dt + a ( X

t

, t ) dW

t

= e b ( X

t

, t ) dt + a ( X

t

, t ) b ( X

t

, t ) e b ( X

t

, t ) a ( X

t

, t )

! dt + a ( X

t

, t ) dW

t

provided that a ( X

t

, t ) is di¤erent from 0.

= e b ( X

t

, t ) dt + a ( X

t

, t ) d W

t

+

Zt

0

b ( X

s

, s ) e b ( X

s

, s ) a ( X

s

, s ) ds

!

= e b ( X

t

, t ) dt + a ( X

t

, t ) d W f

t

where f

W

t

= W

t

+

Z

t

0

γ

s

ds and γ

t

= b ( X

t

, t ) e b ( X

t

, t )

a ( X

t

, t ) .

(25)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Girsanov theorem VI

If E

P

h

exp

12

R

T

0

γ

2t

dt i

< ∞ then by the

Radon-Nikodym and Cameron-Martin-Girsanov theorems, Q ( A ) = E

P

exp

Z

T

0

γ

t

dW

t

1 2

Z

T

0

γ

2t

dt I

A

, A 2 F and W f = n f W

t

: t 2 [ 0, T ] o is a ( F , Q ) Brownian

motion.

In practice, we don’t need to determine the measure Q . It

is su¢ cient for us to know it exists, and to know the

stochastic di¤erential equation of the process of interest

on the space ( Ω , F , fF

t

g , Q ) .

(26)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 I

Girsanav theorem

Let’s go back to the Black-Scholes market model. The stochastic process Y = f Y

t

: 0 t T g constructed on the space ( , F , fF

t

g , P ) used to construct the

Brownian motion represents the evolution of the present value of a risky security where

dY

t

= ( µ r ) Y

t

dt + σY

t

dW

tP

.

(27)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 II

Girsanav theorem

But, in a risk-neutral world ( Ω , F , fF

t

g , Q ) , the trend of Y should be zero, i.e. we want the drift coe¢ cient to be zero. Thus

dY

t

= ( µ r ) Y

t

dt + σY

t

dW

tP

= σY

t

µ r

σ dt + σY

t

dW

tP

= σY

t

d W

tP

+ µ r

σ t = σY

t

dW

tQ

where

W

tQ

W

tP

+ µ r

σ t = W

tP

+

Z

t 0

µ r

σ ds.

(28)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 III

Girsanav theorem

In the present case,

8 s, γ

s

= µ r

σ .

(29)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 IV

Girsanav theorem

Recall the Cameron-Martin-Girsanov theorem. Let γ = f γ

t

: t 2 [ 0, T ] g be a fF

t

g predictable process such that

E

P

exp 1 2

Z

T

0

γ

2t

dt < . There exists a measure Q on ( Ω , F ) such that (CMG1) Q is equivalent to P

(CMG2)

ddQP

= exp h R

T

0

γ

t

dW

t 1 2

R

T

0

γ

2t

dt i

(CMG3) The process f W = n W f

t

: t 2 [ 0, T ] o de…ned as W f

t

= W

t

+ R

t

0

γ

s

ds is a ( fF

t

g , Q ) Brownian motion.

(30)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 V

Girsanav theorem

Let’s verify that the condition on the process γ is indeed satis…ed:

E

P

exp 1 2

Z

T

0

γ

2t

dt

= E

P

"

exp 1 2

Z

T 0

µ r σ

2

dt

!#

= exp 1 2

µ r σ

2

T

!

< .

(31)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 VI

Girsanav theorem

Let’s apply Girsanov theorem : d Q

d P = exp

Z

T

0

γ

t

dW

tP

1 2

Z

T 0

γ

2t

dt

= exp

" Z

T 0

µ r

σ dW

tP

1 2

Z

T

0

µ r σ

2

dt

#

= exp

"

µ r

σ W

TP

1 2

µ r σ

2

T

# .

This implies that Q [ A ] = E

P

"

exp µ r

σ W

TP

1 2

µ r σ

2

T

! I

A

#

, A 2 F .

(32)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 VII

Girsanav theorem

Moreover, under the measure Q , the evolution of the present value of the risky security satis…es the equation

dY

t

= σY

t

dW

tQ

where W

Q

is a Q Brownian motion.

We can also deduce the stochastic di¤erential equation satis…ed by the evolution of the risky security price S :

dS

t

= µS

t

dt + σS

t

dW

tP

= µS

t

dt + σS

t

d W

tQ

µ r σ t puisque W

tQ

W

tP

+ µ r

σ t

= µS

t

dt + σS

t

dW

tQ

σS

t

µ r σ dt

= rS

t

dt + σS

t

dW

tQ

.

(33)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 VIII

Girsanav theorem

(34)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 IX

Girsanav theorem

Note that we don’t really need to calculate Q , we simply need to know that it exists then toestablish what is the equation satis…ed by the processus of interest, i.e. the evolution of the risky security price. Indeed, on ( Ω , F , fF

t

g , Q ) ,

dS

t

= rS

t

dt + σS

t

dW

tQ

where W f is a Q Brownian motion.

But the unique solution to that equation is S

t

= S

0

exp r σ

2

2 t + σW

tQ

.

(35)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 X

Girsanav theorem

Since the price of a call option, the strike price of which is K and the maturity of which is T , is given by

E

Q

[ exp ( rT ) max ( S

T

K ; 0 )]

= E

Q

exp ( rT ) max S

0

exp r σ

2

2 T + σW

TQ

K ; 0

= E

Q

max S

0

exp σ

2

2 T + σW

TQ

K exp ( rT ) ; 0

=

Z

max S

0

exp σ

2

2 T + σz Ke

rT

; 0 f

Z

( z ) dz.

where f

Z

( ) represents the probability density function of a normal random variable with zero expectation and variance T . The rest of the calculation is a pure application of the

properties of the normal law.

(36)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 XI

Girsanav theorem

Since

S

0

exp σ

2

2 T + σz > Ke

rT

, σ

2

2 T + σz > ln Ke

rT

S

0

= ln K rT ln S

0

, z >

ln S

0

ln K + r

σ22

T

σ d

2

p

T

(37)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 XII

Girsanav theorem

Z

max S

0

exp σ

2

2 T + σz Ke

rT

; 0 f

Z

( z ) dz

=

Z

d2p T

S

0

exp σ

2

2 T + σz Ke

rT

f

Z

( z ) dz

=

Z

d2

pT

S

0

exp σ

2

2 T + σz f

Z

( z ) dz Z

d2

pT

Ke

rT

f

Z

( z ) dz

= S

0

Z

d2p T

p 1 2π

p 1

T exp z

2

2T σz + σ

2

T

2

2T dz

Ke

rT

Z

d2

pT

p 1 2π

p 1

T exp z

2

2T dz

(38)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 XIII

Girsanav theorem

= S

0

Z

d2

pT

p 1 2π

p 1

T exp ( z σT )

2

2T

! dz

Ke

rT

Z

d2p T

p 1 2π

p 1

T exp z

2

2T dz Let’s set u = z p σT

T and v = p z T

= S

0

Z

d2 σp T

p 1

2π exp u

2

2 du Ke

rT

Z

d2

p 1

2π exp v

2

2 dv

= S

0

1 N d

2

σ p

T Ke

rT

( 1 N ( d

2

))

(39)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 XIV

Girsanav theorem

where N ( ) is the cumulative distribution function of a

standard normal random variable.

(40)

Change of measure Radon- Nikodym th.

Girsanov th.

Example 1

Multidimensional References

Example 1 XV

Girsanav theorem

But the symmetry of N implies that 1 N ( x ) = N ( x ) . Then

S

0

1 N d

2

σ p

T Ke

rT

( 1 N ( d

2

))

= S

0

N d

2

+ σ p

T Ke

rT

( N ( d

2

))

(41)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 I

Let’s assume that W

P

and W f

P

represent two standard Brownian motions constructed on the …ltered probability space ( , F , fF

t

g , P ) .

Note that n e

B

tP

: t 0 o where B e

t

ρW

tP

+

q

1 ρ

2

W f

tP

is a standard Brownian motion such that

Corr

P

W

tP

, B e

tP

= ρ.

Exercise: prove it.

(42)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 II

The instantaneous exchange rate

dC

t

= µ

C

C

t

dt + σ

C

C

t

dW

tP

enables us to model the number of Canadian dollars per unit of foreign currency at any time.

Suppose also that the stochastic di¤erential equation dS

t

= µ

S

S

t

dt + σ

S

S

t

d B e

tP

= µ

S

S

t

dt + σ

S

ρS

t

dW

tP

+ σ

S

q

1 ρ

2

S

t

d W f

tP

models the evolution of a foreign risky asset price.

(43)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 III

Lastly, the Canadian instantaneous interest rate r and the foreign instantaneous interest rate v are assumed to be constant. As a consequence, the discount factor is

β

t

= exp ( rt ) .

and the value in foreign currency of an initial investment

equal to one foreign currency unit is B

t

= exp ( vt ) .

(44)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 IV

Let’s put ourselves in the shoes of a Canadian investor.

C

t

S

t

gives us the Canadian dollar value of a risky asse at time t ,

C

t

B

t

gives us the Canadian dollar value, at time t , of one foreign currency unit invested in a foreign bank account U

t

= β

t

C

t

S

t

gives us the Canadian dollar present value of the risky asset at time t.

V

t

= β

t

C

t

B

t

gives us the Canadian dollar present value, at time t, of one foreign currency unit invested in a foreign bank account.

We wish to …nd a measure Q , such that the stochastic

processes U and V are ( fF

t

g , Q ) martingales.

(45)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 V

Recall:

dC

t

= µ

C

C

t

dt + σ

C

C

t

dW

tP

, dB

t

= vB

t

dt

d β

t

= r β

t

dt

First, let’s determine the stochastic di¤erential equation satis…ed by the Canadian dollar present value of one foreign currency unit invested in a foreign bank account V = βCB under the measure P . Itô’s lemma allows us to write

dC

t

B

t

= C

t

dB

t

+ B

t

dC

t

+ d h B, C i

t

= C

t

( vB

t

dt ) + B

t

µ

C

C

t

dt + σ

C

C

t

dW

tP

= ( v + µ

C

) C

t

B

t

dt + σ

C

C

t

B

t

dW

tP

.

(46)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 VI

Thus,

dV

t

= d β

t

C

t

B

t

= β

t

dC

t

B

t

+ C

t

B

t

d β

t

+ d h β, CB i

t

= β

t

( v + µ

C

) C

t

B

t

dt + σ

C

C

t

B

t

dW

tP

+ C

t

B

t

( r β

t

dt )

= ( µ

C

+ v r ) β

t

C

t

B

t

dt + σ

C

β

t

C

t

B

t

dW

tP

= ( µ

C

+ v r ) V

t

dt + σ

C

V

t

dW

tP

.

(47)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 VII

Recall:

dS

t

= µ

S

S

t

dt + σ

S

ρS

t

dW

tP

+ σ

S

q

1 ρ

2

S

t

d W f

tP

, dC

t

= µ

C

C

t

dt + σ

C

C

t

dW

tP

,

dB

t

= vB

t

dt,

d β

t

= r β

t

dt .

(48)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 VIII

Second, let’s determine the stochastic di¤erential equation satis…ed by U = βCS under the measure P . Itô’s lemma allows us to write

dC

t

S

t

= C

t

dS

t

+ S

t

dC

t

+ d h S , C i

t

= C

t

µ

S

S

t

dt + σ

S

ρS

t

dW

tP

+ σ

S

q

1 ρ

2

S

t

d W f

tP

+ S

t

µ

C

C

t

dt + σ

C

C

t

dW

tP

+ σ

S

ρS

t

σ

C

C

t

dt

= ( µ

S

+ µ

C

+ σ

S

σ

C

ρ ) C

t

S

t

dt + ( σ

S

ρ + σ

C

) C

t

S

t

dW

tP

+ σ

q

1 ρ

2

C

t

S

t

d W f

tP

.

(49)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 IX

Applying Itô’s lemma again, we obtain

dU

t

= d β

t

C

t

S

t

= β

t

dC

t

S

t

+ C

t

S

t

d β

t

+ d h β, CS i

t

= β

t

( µ

S

+ µ

C

+ σ

S

σ

C

ρ ) C

t

S

t

dt + ( σ

S

ρ + σ

C

) C

t

S

t

dW

tP

+ σ

S

p

1 ρ

2

C

t

S

t

d W f

tP

+ C

t

S

t

( r β

t

dt )

= ( µ

S

+ µ

C

+ σ

S

σ

C

ρ r ) β

t

C

t

S

t

dt + ( σ

S

ρ + σ

C

) β

t

C

t

S

t

dW

tP

+ σ

S

q

1 ρ

2

β

t

C

t

S

t

d W f

tP

= ( µ

S

+ µ

C

+ σ

S

σ

C

ρ r ) U

t

dt + ( σ

S

ρ + σ

C

) U

t

dW

tP

+ σ

S

q

1 ρ

2

U

t

d f W

tP

.

(50)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 X

We have

dV

t

= ( µ

C

+ v r ) V

t

dt + σ

C

V

t

dW

tP

, dU

t

= ( µ

S

+ µ

C

+ σ

S

σ

C

ρ r ) U

t

dt

+ ( σ

S

ρ + σ

C

) U

t

dW

tP

+ σ

S

q

1 ρ

2

U

t

d W f

tP

which allows us to write

dV

t

= ( µ

C

+ v r σ

C

γ

t

) V

t

dt + σ

C

V

t

d W

tP

+

Z t 0

γ

s

ds dU

t

= µ

S

+ µ

C

+ σ

S

σ

C

ρ r

( σ

S

ρ + σ

C

) γ

t

σ

S

p

1 ρ

2

e γ

t

U

t

dt + ( σ

S

ρ + σ

C

) U

t

d W

tP

+

Zt 0

γ

s

ds + σ

S

q

1 ρ

2

U

t

d W f

tP

+

Zt

0

e γ

s

ds .

(51)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 XI

So, we want to solve the linear system

µ

C

+ v r σ

C

γ

t

= 0 µ

S

+ µ

C

+ σ

S

σ

C

ρ r ( σ

S

ρ + σ

C

) γ

t

σ

S

q

1 ρ

2

γ e

t

= 0

the unknowns of which are γ

t

and γ e

t

. In matrix form, we write

σ

C

0

σ

S

ρ + σ

C

σ

S

p 1 ρ

2

γ

t

e

γ

t

= µ

C

+ v r

µ

S

+ µ

C

+ σ

S

σ

C

ρ r .

The solution is

γ

t

= µ

C

+ v r σ

C

e

γ

t

= µ

S

v + σ

S

σ

C

ρ σ

S

p 1 ρ

2

ρ ( µ

C

+ v r ) σ

C

p 1 ρ

2

(52)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 XII

So, let’s set W

tQ

= W

tP

+ R

t

0

γ

s

ds and W f

tQ

= f W

tP

+ R

t

0

γ e

s

ds where

γ

s

= µ

C

+ v r σ

C

e

γ

s

= µ

S

v + σ

S

σ

C

ρ σ

S

p 1 ρ

2

ρ ( µ

C

+ v r ) σ

C

p 1 ρ

2

.

We can then write dV

t

= σ

C

V

t

dW

tQ

dU

t

= ( σ

S

ρ + σ

C

) U

t

dW

tQ

+ σ

S

q

1 ρ

2

U

t

d W f

tQ

.

Is it possible to …nd a measure Q such that W

Q

and W f

Q

are ( fF

t

g , Q ) Brownian motions simultaneously?

(53)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Girsanav theorem I

Let W = W

(1)

, ..., W

(n)

be a Brownian motion with dimension n, i.e. its components are independent standard Brownian motions on the …ltered probability space

( Ω , F , fF

t

g , P ) Theorem

Cameron-Martin-Girsanov theorem. For all i 2 f 1, ..., n g , γ

(i)

= γ

t(i)

: 0 t T is a fF

t

g predictable process such that

E

P

exp 1 2

Z

T

0

γ

(ti)

2

dt < ∞ .

There exists a measure Q on ( , F ) such that

(CMG1) Q is equivalent to P

(54)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Girsanav theorem II

(CMG2)

ddPQ

= exp ∑

ni=1

R

T

0

γ

(ti)

dW

t(i) 12

R

T

0

ni=1

γ

(ti)

2

dt (CMG3) For all i 2 f 1, ..., n g , the process

f

W

(i)

= W f

t(i)

: 0 t T de…ned as f

W

t(i)

= W

t(i)

+ R

t

0

γ

(si)

ds is a ( fF

t

g , Q ) Brownian motion.

(ref. Baxter and Rennie, page 186)

(55)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 (continued) I

Since the functions γ and γ e are constant, the Novikov condition is satis…ed and Girsanov theorem

(multidimensional version) allows to conclude there exists

a martingale measure Q such that W

Q

and W f

Q

are

( fF

t

g , Q ) Brownian motions.

(56)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 (continued) II

An interesting fact, on the space ( Ω , F , fF

t

g , Q ) , we have the stochastic di¤erential equation satis…ed by the instantaneous exchange rate

dC

t

= µ

C

C

t

dt + σ

C

C

t

dW

tP

= µ

C

C

t

dt + σ

C

C

t

d W

tQ

µ

C

+ v r σ

C

t

= ( r v ) C

t

dt + σ

C

C

t

dW

tQ

.

The di¤erence between the domestic and foreign

instantaneous interest rates can be recognized in the drift

coe¢ cient.

(57)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 (continued) III

Again on the space ( Ω , F , fF

t

g , Q ) , the stochastic di¤erential equation for the evolution of the risky asset Canadian dollar price is

dCtSt

= (µS+µC+σSσCρ)CtSt dt + (σSρ+σC)CtSt dWtP+σS

q

1 ρ2CtSt dWftP

= (µS+µC+σSσCρ)CtSt dt

+ (σSρ+σC)CtSt d WtQ µC+v r σC

t

+σS

q

1 ρ2CtSt d WftQ µS v+σSσCρ σS

p1 ρ2

ρ(µC+v r) σC

p1 ρ2

! t

!

= rCtSt dt+ (σSρ+σC)CtSt dWtQ+σS

q

1 ρ2CtSt dWftQ

(58)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 (continued) IV

where the last equality is obtained by simplifying the drift coe¢ cient

( µ

S

+ µ

C

+ σ

S

σ

C

ρ ) ( σ

S

ρ + σ

C

) µ

C

+ v r σ

C

σ

S

q

1 ρ

2

µ

S

v + σ

S

σ

C

ρ σ

S

p 1 ρ

2

ρ ( µ

C

+ v r ) σ

C

p 1 ρ

2

!

.

(59)

Change of measure Radon- Nikodym th.

Girsanov th.

Multidimensional Example 2 Girsanov Example 2 (continued) Example 3 References

Example 2 (continued) V

Again under the risk-neutral measure Q , the Canadian dollar value of one foreign currency invested in a foreign bank account satis…es

dC

t

B

t

= ( v + µ

C

) C

t

B

t

dt + σ

C

C

t

B

t

dW

tP

= ( v + µ

C

) C

t

B

t

dt + σ

C

C

t

B

t

d W

tQ

µ

C

+ v r σ

C

t

= v + µ

C

σ

C

µ

C

+ v r

σ

C

C

t

B

t

dt + σ

C

C

t

B

t

dW

tQ

= rC

t

B

t

dt + σ

C

C

t

B

t

dW

tQ

.

Références

Documents relatifs

EQUIVALENCE OF GAUSSIAN RADON MEASURES In this section we prove the equivalent-singular dichotomy for Gaussian.. Radon measures for later

On donne aussi des conditions n6cessaires et suffisantes pour la convergence des amarts uniformgment intggrables a valeurs dans les espaces de Frechet

It is proved in ([6], Theorem 1) that if a Banach space E posses- ses Radon-Nikodym (R — N) property, then the Banach space Lp(&amp;rX), 1 &lt; p &lt; °°, of Bochner

We proposed a novel metric, based on a simple structure from factor analysis, for the measurement of the interpretability of factors delivered by matrix de- composition

Chercher des exercices des partiels des ann´ees pr´ec´edents (les ´enonc´es sur disponibles sur le site d’enseignement du DMA – http://www.math.ens.fr/enseignement –

Par exemple, celles qui v´erifient : ”les intervalles ]x i , x i+ [ sur lesquelles la fon ion e con antes sont `a bornes ration- nelles, et les valeurs α i de la fonion sur

Ensuite nous introduisons la propri´ et´ e de Radon-Nikodym relative RN-Λ, une g´ en´ eralisation de la propri´ et´ e de Radon-Nikodym analytique... Cela contraste avec le r´

sous-espaces des ultraproduits de X (voir par exemple [Be]), et puisque la propriété de Radon-Nikodym analytique est une propriété héréditaire, pour montrer qu’un