• Aucun résultat trouvé

Simulation of air movement in multi-storey buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Simulation of air movement in multi-storey buildings"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 2nd Symposium on the Use of Computers for Thermal

Environmental Engineering, 1, pp. 165-171, 1974

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=445cdaef-35f0-468d-9507-b4ebfe965574

https://publications-cnrc.canada.ca/fra/voir/objet/?id=445cdaef-35f0-468d-9507-b4ebfe965574

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Simulation of air movement in multi-storey buildings

(2)

s.

%Is

National Research

Conseil national

,

'L

I

+

Council Canada

de recherches Canada

SIMULATION

OF

AIR MOVEMENT IN

MULTI-STOREY BUILDINGS

by

D.M.

Sander and

G.T. Tamura

//

Reprinted, with permission,

from

Vol. 1, Proceedings 2nd Symposium on Use of Computers for Thermal Environmental Engineering, Paris, 1974 p.

1 6 5 . 1 7 1

DBR

Paper No.

815

Division of Building Research

(3)

SOMMAIRE

Les f u i t e s d ' a i r 1 t r a v e r s l ' e n v e l o p p e e x t 6 r i e u r e d'un E d i f i c e s o n t un dl6ment i m p o r t a n t d e s c h a r g e s c a l o r i f i q u e s , de r e f r o i d i s s e m e n t e t d1humidit6 des systgmes de c h a u f f a g e , de v e n t i l a t i o n e t de c l i m a t i s a t i o n . La p r 6 d i c t i o n d e s v o i e s de d6placement d e l ' a i r e t d e s v i t e s s e s d16coulement 1 l V i n t 6 r i e u r d'un 6 d i f i c e joue 6galement un r81e i m p o r t a n t dans l a l u t t e c o n t r e l e s Gldments p o l l u a n t s cornme l a fum6e e t les o d e u r s . Le p r 6 s e n t a r t i c l e d 6 c r i t une m6thode d e c a l c u l des 6coulements d ' a i r e t des d i f f s r e n c e s d e p r e s s i o n que peuvent p r o d u i r e dans un d d i f i c e 1 p l u s i e u r s 6 t a g e s l e s e f f e t s combin6s du v e n t , d e l ' a p p e l d ' a i r e t de l ' e x p l o i t a - t i o n d e s s y s t s m e s d e t r a i t e m e n t d e l ' a i r .

(4)

ABSTRACT

Air t h a t l e a k s t h r o u g h t h e e x t e r i o r envelope of a building i s a s i g - n i f i c a n t c o m p o n e n t of t h e h e a t i n g , cooling and m o i s t u r e l o a d s of heating, ventilating, and a i r - c o n d i t i o n i n g s y s t e m s . T h e p r e d i c t i o n of a i r m i g r a - tion r o u t e s and flow r a t e s within a building i s a l s o i m p o r t a n t in r e l a t i o n t o t h e c o n t r o l of c o n t a m i n a n t s , s u c h a s s m o k e and o d o u r s . T h i s p a p e r d e s c r i b e s a p r o c e d u r e f o r c a l c u l a t i n g a i r flows and p r e s s u r e d i f f e r e n t i a l s t h a t will o c c u r in a m u l t i - s t o r e y building a s a r e s u l t of a combination of wind e f f e c t , s t a c k e f f e c t , and o p e r a t i o n of a i r - h a n d l i n g s y s t e m s .

MATHEMATICAL MODEL O F BUILDING

A i r l e a k a g e t h r o u g h t h e e x t e r n a l w a l l s and i n t e r n a l s e p a r a t i o n s of a building can be s i m u l a t e d with a r e l a t i v e l y s i m p l e m a t h e m a t i c a l m o d e l . Its b a s i c c o m p o n e n t s a r e i l l u s t r a t e d in F i g u r e 1 f o r a t y p i c a l s t o r e y of a m u l t i - s t o r e y building. T h e m a i n b a r - r i e r s t o a i r m o v e m e n t a r e e x t e r i o r w a l l s , w a l l s of v e r t i c a l s h a f t s , s u c h a s e l e v a t o r s h a f t s and s t a i r w e l l s , and t h e f l o o r c o n s t r u c t i o n . T h e m o d e l h a s been s i m p l i f i e d in t h a t i t n e g l e c t s i n t e r n a l p a r t i t i o n s on t h e f l o o r s p a c e s .

1

SIMULATION OF AIR MOVEMENT IN MULTI-STOREY BUILDINGS

SANDER

D.M.,

TAMURA

G.T.,

;r

Building Services Section

,

Division of Building Research, National Research Council of Canada Ottawa

-

CANADA

M e c h a n i c a l a i r s u p p l y and e x h a u s t d u c t s h a v e a n i m p o r t a n t effect on t h e m a s s a i r b a l a n c e a t e a c h f l o o r ; when t h e y a r e not in o p e r a t i o n t h e y p r o v i d e a d d i t i o n a l i n t e r

-

c o n n e c t i o n s between f l o o r s . T h e e f f e c t s of a i r - h a n d l i n g s y s t e m s a r e taken into

a c c o u n t by s p e c i f y i n g e i t h e r t h e e x c e s s a m o u n t of s u p p l y o v e r e x h a u s t a i r t o e a c h floor s p a c e o r t h e r a t e s of s u p p l y o r e x h a u s t a i r in t h e v e r t i c a l s h a f t s t h a t have openings in t h e i r w a l l s t o f l o o r spac e s . E a c h s h a f t m a y h a v e v e n t s t o t h e o u t s i d e located a t a n y f l o o r l e v e l . 165

C 2

(5)

Air leakages occur through any c r e v i c e s between windows and walls, c r a c k s of openable windows, joints of curtain walls, and in s o m e instances through e x t e r i d r walls. Air aleo leaks through the walls of v e r t i c a l shafts, through c r a c k s formed by elevator and s t a i r w e l l doors, joints of m a s o n r y walls and s p a c e s between pipes a r ducts and the wall. Air leakages through the floor construction occur through openings around the various s e r v i c e pipes and i n t e r s t i c e s formed by the e x t e r i o r wall and the floor constructian. In the mathematical model, t h e leakage a r e a s in the major v e r t i - c a l separations have been combined and a r e represented by equivalent openings located a t mid-height of each storey.

The value of outside p r e s s u r e at mid-height of the f i r s t s t o r e y i s taken a s the r e f e r e a c e p r e s s u r e . h t s i d e a i r p r e s s u r e s a t other levels depend on the density of outside a i r and on wind speed and direction. P r e s s u r e a inside the building a t various levels a r e interrelated by the weight of the column of inside a i r between levels and the p r e s s u r e d r o p a c r o s s intervening f l o o f s . The p r e s s u r e g r d t e n f ih the v e r t i c a l shafts can usually be taken t o be just the weight of the a i r in the shbft. P r e s s u r e l o s s e s can be mignificant, holkever, when a shaft with a relatively high r e s i s t a n c e t o a i r flow, such a s a s t a i r ehaft, i s supplied with a l a r g e amount of a i r t o keep it p r e s s u r i z e d . The mathematical model for this cage is given in Appendix A.

CAIKULATION

PROCEDURE

The simulation entails determining the p r e s s u r e in e a c h space s o that the resultant flows produce a m a s s balance in e v e r y space.

The equation for the r a t e of a i r flow through the m a j o r separations can be e x p r e s - sed a s

where

F = flow r a t e a t standard condition

K

=

flow coefficient at standard condition

A P

=

p r e s s u r e difference

x = flow exponent (0. 5 s x r I . 0 ) .

The coefficient K i s determined for a i r a t standard t e m p e r a t u r e . A c o r r e c t i o n factor C needs to be used when the t e m p e r a t u r e is f a r f r o m n o r m a l a s in the c a s e of a

(6)

w h e r e P

=

d e n s i t y of e n t e r i n g a i r po = d e n s i t y of a i r a t s t a n d a r d t e m p e r a t u r e CI = v i s c o s i t y of e n t e r i n g a i r

%

= v i s c o s i t y of a i r at standard t e m p e r a t u r e . T h e r e is no need t o c o r r e c t f o r v a r i a t i o n s of a few d e g r e e s in a i r t e m p e r a t u r e . The s e t of equations t o r e p r e s e n t t h e building a r e obtained by w r i t i n g m a s s balance equations for e a c h floor s p a c e and e a c h s h a f t .

F o r t h e i t h f l o o r , I Fo ( i s k) + F

-

F a ( i )

-

,

7 Fs (i, j) + ( i )

=

0 k = 1 b ( i ) and f o r t h e jth s h a f t , w h e r e

Fo (i, k) = flow f r o m outside through e x t e r i o r wall of s i d e k t o f l o o r ( i ) F = flow f r o m f l o o r below t o floor ( i )

b ( i )

F = flow f r o m f l o o r (i) t o floor above a ( i )

Fs (i, j)

=

flow f r o m f l o o r ( i ) t o s h a f t (j)

(i)

=

flow of a i r supplied t o floor ( i ) by a i r - h a n d l i n g s y s t e m

F

= flow f r o m outside into shaft ( j ) through vent opening v ( j l

F

=

flow of o u t s i d e a i r supplied i n t o s h a f t (j) by air-handling s h ( j ) s y s t e m

=

n u m b e r of s i d e s of e x t e r i o r w a l l = n u m b e r of f l o o r s

(7)

T h e flows a p p e a r i n g in Equations ( 3 a ) and (3b)

are

indicated i n F i g u r e 1. C o m - bining m a s s balance Equations (nos. 3a and 3b) with t h e flow Equation (no. 1 )

r e s u l t s in a s e t of s i m u l t a n e o u s n o n - l i n e a r equations. T h e o u t s i d e p r e s s u r e s and t h e p r e s s u r e d i f f e r e n c e s d u e t o column weight c a n be c a l c u l a t e d f o r a given condition; t h e unknown v a r i a b l e s a r e t h e n t h e f l o o r and s h a f t p r e s s u r e s . F o r

N

f l o o r s and J s h a f t s t h e r e a r e N

+

J equations.

T h e s e s i m u l t a n e o u s n o n - l i n e a r equatidns a r e solved by a method of s u c c e s s i v e l i n e a r a p p r o x i m a t i o n s . T h e n o n - l i n e a r function d e s c r i b e d by Equation (1) i s shown in F i g u r e 2.

In

t h e r e g i o n n e a r t h e paint (LIP F )

,

t h i s function m a y be a p p r o x i -

t ' t

mated by a s t r a i g h t l i n e that i s tangent t o t h e c u r v e a t t h i s point. T h e equation of t h i s tangent i s

w h e r e

E a c h l e a k a g e flow in Equations ( 3 a ) and (3b) c a n be a p p r o x i m a t e d by t h i s type of l i n e a r e x p r e s s i o n . The r e s u l t i n g s e t of l i n e a r equations c a n then be solved by s t a n d a r d m e t h o d s .

The i t e r a t i o n p r o c e d u r e i s a s follows. An i n i t i a l l i n e a r a p p r o x i m a t i o n i s m a d e f o r e a c h e l e m e n t and t h e r e s u l t i n g equations solved f o r floor and s h a f t p r e s s u r e s . T h e flows c o r r e s p o n d i n g t o t h e s e p r e s s u r e s a r e t h e n c a l c u l a t e d u s i n g Equation (1) and t h e flow through e a c h e l e m e n t i s c o m p a r e d with t h e flow used f o r t h e l i n e a r i z a t i o n of that e l e m e n t . If t h e d i f f e r e n c e i s g r e a t e r than t h e c o n v e r g e n c e c r i t e r i o n , t h a t e l e m e n t i s r e l i n e a r i z e d about t h e m o s t r e c e n t l y d e t e r m i n e d flow, and t h e l i n e a r s i m u l t a n e o u s equations a r e solved again. T h i s p r o c e d u r e i s r e p e a t e d until t h e flow t h r o u g h e v e r y e l e m e n t s a t i s f i e s t h e c o n v e r g e n c e c r i t e r i o n .

APPLICATION

A c o m p u t e r p r o g r a m b a s e d on t h e m a t h e m a t i c a l m o d e l t o s i m u l a t e a i r m o v e m e n t in m u l t i - s t o r e y buildings h a s been published (1) a s w e l l a s p r o g r a m s for o t h e r s p e c i f i c a p p l i c a t i o n s (2, 3). Air leakage values f o r w a l l s and i n t e r n a l s e p a r a t i o n s r e q u i r e d f o r t h e m o d e l a r e given in R e f s . 4, 5 and 6. S o m e of t h e s e d a t a h a v e been obtained by conducting m e a s u r e m e n t s in s e v e r a l r e a l buildings. T h e m a t h e m a t i c a l m o d e l h a s been applied t o t h e s t u d y of a i r and e m o k e m o v e m e n t and ways t o c o n t r o l t h e m in m u l t i - s t o r e y buildings (6, 7 and 8). It h a s a l s o b e e n used t o d e t e r m i n e i n f i l t r a t i o n r a t e s f o r t h e c a l c u l a t i o n of heating, cooling and m o i s t u r e l o a d s in a building.

(8)

R E F E R E N C E S

1. S a n d e r , D. M. and T a m u r a , G. T. A F o r t r a n IV P r o g r a m t o S i m u l a t e A i r Move- m e n t i n Multi-Storey Buildings. National R e s e a r c h Council of Canada,

Division of Building R e s e a r c h , DBR C o m p u t e r P r o g r a m No. 35, M a r c h 1973.

2. Shaw, C. Y., D. M. S a n d e r and G. T. T a m u r a . A F o r t r a n IV P r o g r a m t o S i m u l a t e S t a i r -Shaft P r e s s u r i z a t i o n S y s t e m i n Multi-Storey Buildings, DBR C o m p u t e r P r o g r a m No. 38, 1974.

3. Sander, D. M. A F o r t r a n IV P r o g r a m t o C a l c u l a t e A i r I n f i l t r a t i o n in Buildings, DBR C o m p u t e r P r o g r a m No. 37, 1974.

4. ASHRAE Handbook of F u n d a m e n t a l s , C h a p t e r 19, Infiltration and N a t u r a l Ventila- tion 1972.

5. Shaw, C. Y., D. M. S a n d e r and G. T. T a m u r a . A i r L e a k a g e M e a s u r e m e n t s of t h e E x t e r i o r Walls of T a l l Buildings, p r e s e n t e d a t t h e S p r i n g C o n f e r e n c e of

ASHRAE, Minneapolis, USA, 1973, J a n u a r y and F e b r u a r y .

6. T a m u r a , G. T. C o m p u t e r A n a l y s i s of S m o k e Movement i n Buildings, ASHRAE T r a n s a c t i o n s , Vol. 75, P a r t 11, 1969. (NRCC 11542)

7. T a m u r a , G. T. and A. G. Wilson. Building P r e s s u r e s C a u s e d by C h i m n e y Action and M e c h a n i c a l Ventilation, ASHRAE T r a n s a c t i o n s , Vol. 73, P a r t 11, 1967. (NRCC 9950)

8. T a m u r a , G. T. C o m p u t e r A n a l y s i s of S m o k e C o n t r o l with Building A i r Handling S y s t e m s , ASHRAE J o u r n a l , Vol. 14, No. 8, August 1972. (NRCC 12809)

9. T a m u r a , G. T. E x p e r i m e n t a l S t u d i e s on P r e s s u r i z e d E s c a p e Routes, Submitted f o r publication, November 1973.

APPENDIX

Simulation of P r e s s u r e L o s s e s i n V e r t i c a l Shafts

T h e p r e s s u r e l o s s e s i n a v e r t i c a l s h a f t c a n be s i m u l a t e d by dividing e a c h v e r t i c a l s h a f t i n t o s e p a r a t e c o m p a r t m e n t s of one f l o o r height with a n o r i f i c e in t h e h o r i z o n t a l s e p a r a t i o n a t e a c h f l o o r l e v e l . T h e p r e s s u r e d r o p a c r o s s t h e o r i f i c e would then r e p r e s e n t t h e p r e s s u r e l o s s i n t h e s h a f t f o r one f l o o r height. T h e s i z e of t h e o r i f i c e m u s t b e c a l c u l a t e d t o t a k e i n t o a c c o u n t t h e p r e s s u r e l o s s c h a r a c t e r i s t i c of t h e v e r t i c a l shaft.

(9)

where

b P L

=

preeeure lose for one floor height K

=

preeeure loas factor p e r floor (Ref.

9)

V H

=

velocity head

Q

=

flow r a t e through the ehaft

A

=

cross-sectional a r e a of the ehaft

P

=

a i r deneity

8

=

gravitational acceleration

This preegure loee can be aesuzqda t o s c c u r a c r o s s

the

arifiee of the horizontal

reprr&ttoa

ae followe:

where

Cd

=

coefficient of diechargs

a

=

a r e a pf orifice in the horizontal separation Combining equations (A- 1) and (A-2)

Ueing equation (A-3), the orifice opening in the horizontal separa4ion can be in- corporated in the mathematical rnQdal. Aleo a i r injection into the vertical ehaft at one or m o r e levels can be eimulataQ by epecifying a supply a i r r a t e into each fictitious compartment of the vertical ehaft.

The preeeuree in the vertical ahafte a t adjacent f l o o r s a r e now interrelated by the column weight of a i r and the preeqpre d r o p a c r o s s the orifice.

where

Pi

=

p r e r e u r e in the s t a i r ahaft at floor i h

=

floor height

It ehould be noted that with no p r e e e u r e loer in the vertical shaft a e aeeumed in the original mathematical model, the

last

t e r m in Equation (A-4) i a omitted. Ueing m a s s balance equations (3a) and (3b) arr bafare. p r e e e u r e differences and flow r a t e e through- out the building can be calculated.

(10)

F I G U R E

1

A I R F L O W S F O R A T Y P I C A L F L O O R A N D T Y P I C A L

S H A F T

F I G U R E

2

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers