• Aucun résultat trouvé

Numerical simulation of vitrification processes: glass homogeneity by gas bubbling study

N/A
N/A
Protected

Academic year: 2021

Partager "Numerical simulation of vitrification processes: glass homogeneity by gas bubbling study"

Copied!
24
0
0

Texte intégral

(1)

HAL Id: cea-02400166

https://hal-cea.archives-ouvertes.fr/cea-02400166

Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Numerical simulation of vitrification processes: glass

homogeneity by gas bubbling study

E. Sauvage

To cite this version:

E. Sauvage. Numerical simulation of vitrification processes: glass homogeneity by gas bubbling study.

Workshop on gases and bubbles in molten glasses from chemical engineering to geosciences, May 2016,

Paris, France. �cea-02400166�

(2)

Numerical simulation of vitrification

processes: glass homogeneity by

gas bubbling study

13 MAY 2016

Workshop on gases and bubbles in molten

glasses

|

E. Sauvage

(3)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 2

Modeling of air bubbling in molten glass

Summary

1- Vitrification technology presentation

2- Semi empirical approach

2-a Model

2-b Interaction with mechanical stirring

3- VOF simulation

(4)

Marcoule

(CEA)

Research center

La Hague

(AREVA)

Industrial plant

French Atomic Energy Commission (CEA)

Confinement Research Engineering Department

Waste Confinement and Vitrification Service

CEA / AREVA Joint Vitrification Laboratory (LCV)

Areva

Commercial and industrial operator of 3 vitrification plants

Current pilot of vitrification process

CEA Marcoule (inactive cell)

Cold Crucible

Melter

(5)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 4

VITRIFICATION PROCESS OPERATED

IN THE LA HAGUE PLANT



Solution fed to a rotary calciner (evaporating, drying and calcining functions)



Glass frit fed separately



Melter fed continuously / poured batchwise



Off-gas treatment unit (recycling of particulate material and purification of the gas streams)

4



Industrial French Vitrification Design / A two-step vitrification process

glass

frit

waste

solutions

CCIM

IHMM

Calciner

Off-gas treatment

(6)

VITRIFICATION PROCESS OPERATED

IN THE LA HAGUE PLANT

Furnaces technology

Cold Crucible

Inductive Melter

Inductive Hot

Metallic Melter

Oxides Average composition of industrial glass (w %) SiO2 45,6 B2O3 14,1 Al2O3 4,7 Na2O 9,9 CaO 4 Fe2O3 1,1 NiO 0,1 Cr2O3 0,1 P2O5 0,2 Li2O 2 ZnO 2,5 Oxides (PF+Zr+actinides) + Suspension of fines Actinide oxides 17 SiO2+B2O3+Al2O3 64,4

Average chemical compositions for R7T7 glass produced in the industrial facilities at La Hague

Inside view in CCIM

Characteristics:

- Molten glass mass

400 kg

270 kg

- Max throughput

36 kg/h

25 kg/h

- Max temperature

>1400°C

1100°C

- Mechanical stirring

yes

yes

- Gas bubbling

yes

yes

- Approx. life time

>2 years

0.5 year

(7)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 6

- Oil with the same kinematic viscosity as glass (at a

given temperature)

- Explored parameters: liquid viscosity, air flow rate, hole

diameter of the injector...

2 Bubbling characterization and modelisation

Air bubbling overview

Experiment in hydraulic similirarity with silicon oil

R. RIVA (CEA / Grenoble)

Hot glass

Oil

30 to 60 cm

(8)

L L G G

g

ρ µ ρ µ σ

r

ρ µ

L

L

Modelisation

Model parameters

Characteristic parameters

2-a « One mesh » model

ε

Nomenclature : Q Gas flow rate (L/h) g Gravity (m/s2)

d0 Orifice diameter (m) Vg Gas velocity (m/s)

VB Bubble rising velocity (m/s) de Equivalent diameter of bubble (m)

fz Body force imposed in the fluid (N/m3)

Cd Drag coefficient (-) Vol Volume of a bubble (m3)

p Liquid pressure (Pa)

ρ

L Liquid density (kg/m3)

µL Liquid viscosity (m2/s)

ε

G Volume fraction of gas

Known parameters

es1

(9)

Diapositive 7

es1 The liquid is driven by the rising bubbles

This driving is modelise by a constant vertical body force in the liquid es210797; 22/08/2012

(10)

= f( , ) = choice of model

3

z

cuve

inj

z

f

z

H

H

h

D

d

f

ρ ε

g

N m

= f( ) = experimental correlation

1, 23

f

e

d

=

d

2

3

e

B

Qd

V V

ε

=

2

4

(

1

)

3

e

B

d

d g

V

C

ε

+

=

2-a « One mesh » model

Snabre, P. & Magnifotcham, F. Recirculation flow induced by a bubble stream rising in a viscous liquid

The European Physical Journal B, 1998, 4, 379-38

Jamialahmadi, M. et al, Study of Bubble Formation Under Constant Flow

(11)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 9

Jamialahmadi, M. et al, Study of Bubble Formation Under Constant Flow

Conditions, Chemical Engineering Research and Design, 2001, 79, 523 - 532

2-a « One mesh » model

(12)

PIV measurement vs numerical simulation

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -300 -200 -100 0 100 200 300 Vz (m s -1) r (mm) Q100 Expt. Num. Q250 Expt. Num. Q500 Expt. Num. Q750 Expt. Num. Q1000 Expt. Num. -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0 50 100 150 200 250 300 350 400 450 Vz (m s -1 ) z (mm) Expt. Q100 Num. Expt. Q250 Num. Expt. Q500 Num. Expt. Q750 Num. Expt. Q1000 Num. 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 250 300 350 400 450 Vz (m s -1 ) z (mm) Expt. Q100 Num. Expt. Q250 Num. Expt. Q500 Num. Expt. Q750 Num. Expt. Q1000 Num.

1840 cSt

ν

=

(13)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 11

2-b Interaction with mechanical stirring

Effect of external flow induced by the mechanical stirring

Experimental set-up

PIV measurement

Deviation of the bubble train trajectory

(14)

Lagrangian equation for the trajectory :

Drag force

Added mass

Specific drag coefficient :

with

2

Re

18

24

D D p p

C

F

d

µ

ρ

=

(

) (

)

sup

p

p

D

p

p

g

du

F

u

u

F

dt

ρ

ρ

ρ

=

+

+

r

r

r

r

r

(

)

sup

1

2

p p p p i

d

u

F

u

u

u

dt

dx

ρ

ρ

ρ

ρ

=

+

r

r

r

r

Re

ρ

d u

p p

u

µ

=

16

1

Re

Cd

= +

Trajectory of bubble train

(15)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 13

With one Air Bubler

Expt.

Num.

0 rpm

20 rpm

Stirring speed

(16)

60 rpm

40 rpm

Expt.

Num.

Stirring speed

(17)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 15

Results

A Semi empirical model, simple, validated in a specific range of bubbling, easy

to set up in global calculation of the process.

The interaction of mechanical stirrer is taken into account

Drawback : not predictive outside the range of validation.

This model is used in our project of optimisation or conception of new vitrification

furnace

(18)

Modeling the gas-liquid interface

Volume Of Fluid (VOF) model equations

- Volume fraction of one phase

- Momentum equation

(

) (

)





=

+

0

.

1

L L L L L L

v

t

r

ρ

ε

ρ

ε

ρ

( ) ( )

v

v

v

p

[

(

v

v

)

]

g

t

T

r

r

r

r

r

r

ρ

µ

ρ

ρ

+

=

−∇

+

+

+

.

.

1

=

+

G

L

ε

ε

G

G

L

L

ρ

ε

ρ

ε

ρ

=

+

µ

=

ε

L

µ

L

+

ε

G

µ

G

2-b Multiphase model

(19)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 17| PAGE 17

Air jet is a Rayleigh-Plateau

instability. This instability

should be numerically excited.

Problem :

No bubbles

are formed

Air inlet

With high

frequency

modulation of

the inlet air flow

(300 Hz and 4%

magnitude)

2-b Multiphase model

Time

A

ir

v

e

lo

c

it

y

(20)

Slow motion

(real time / 10)

(21)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 19

Good qualitative agreement – No more experimental-based correlations

Drawback : Highly time consuming (1 week of calculation for 1 second simulated)

Prospects : Multiphase model

VOF model, very accurate and allowing to simulate complex configuration.

Tool extremely useful to understand phenomena

Openfoam software

~2 millions mesh

(22)

Numerical Simulation of mixing molten glass with air bubbling is well

advanced :

1 -

A Semi empirical model, simple, validated in a specific range of

bubbling, easy to set up in global calculation of the process.

• The interaction of mechanical stirrer is taken into account

Drawback : not predictive outside the range of validation.

This model is used in our project of optimisation or conception of new

vitrification furnace

2 – A multiphase flow direct simulation (with VOF model) is used for

specifics studies involving very complex interface interaction

Prospects :

Include redox aspect

(23)

Workshop on gases and bubbles in molten glasses | CEA | 13 MAY 2016 | PAGE 21

Thank you for your attention

Any questions ?

(24)

| PAGE 22

CEA | 10 AVRIL 2012

Direction de l’Energie Nucléaire DTCD

SCDV

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Marcoule| 30207 Bagnols-sur-Cèze cedex

T. +33 (0)4 66 79 XX XX|F. +33 (0)4 66 79 XX XX

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019

| PAGE 22

Références

Documents relatifs

The crystallization behavior has been clarified for representative glass compositions showing first crystallization of willemite near the ZnO-SiO 2 binary and a metastable

Cependant, comme leur composition n’est pas révélée par les fabricants (Oto et al., 2013, p. 2036), nous ne pouvons pas vérifier cette hypothèse. Les ventilateurs de domicile

One gets more realistic results from a numerical spin wave analysis 1211 based on the ground state spin configuration.. Since reasonable mean field methods should be- come

Les mortiers à base de 0,1 % et 0,5 % d’Ostapur, 0,1% d’Aluminium montrent un comportement très proche du mortier témoin avec trois zones bien distinctes : une

In order to update the data of the nuclides already present and to add new evaluations, the Laboratoire National Henri Becquerel (LNHB, France) and the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Client Base de données MySQL Serveur Script PHP Internet Requête Réponse Document Html Appel de la page Extraction de données