• Aucun résultat trouvé

Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

N/A
N/A
Protected

Academic year: 2021

Partager "Single-frequency diode-pumped semiconductor laser tuned on a Cs transition"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-00534735

https://hal-iogs.archives-ouvertes.fr/hal-00534735

Preprint submitted on 10 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, David Holleville

To cite this version:

Benjamin Cocquelin, Gaëlle Lucas-Leclin, Patrick Georges, Isabelle Sagnes, Arnaud Garnache, et al.. Single-frequency diode-pumped semiconductor laser tuned on a Cs transition. 2010. �hal-00534735�

(2)

Single-frequency diode-pumped

Single-frequency diode-pumped

semiconductor laser tuned on a Cs transition

semiconductor laser tuned on a Cs transition

B. Cocquelin, Gaëlle Lucas-Leclin and P. Georges

Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau, France

I. Sagnes

Laboratoire de Photonique et de Nanostructures, Marcoussis, France

D. Holleville

LNE/SYRTE - Observatoire de Paris , Paris, France

A. Garnache

Institut d’Électronique du Sud, Montpellier, France

(3)

Lasers in

Lasers in

Cesium atomic clocks

Cesium atomic clocks

Need for high-power and narrow-linewidth sources emitting at the Cesium D2 line (852 nm)

a single OP-VECSEL ?

Scheme of an atomic fountain

Microwave interrogation : FCs = 9 192 631 770 Hz F = 3 F = 4 Cs D2 line λ = 852 nm F = 5 4 3 2 Cs atomic levels Optical Detection Δν << 5 MHz Extended-cavity laser diodes Atoms cooling Popt > 200 mW DFB/DBR diodes, MOPA, … 9.192 GHz 60 0 M H z Atom cooling Popt > 200 mW DFB/DBR diodes, MOPA, …

(4)

OP-VECSEL

OP-VECSEL

at

at

850 nm

850 nm

Pump module External mirror Semiconductor structure S u b st ra te Bragg mirror QW λP ≅ 700 nm λL ≅ 850 nm

• High power in Optically Pumped-VECSEL

30 W @ 980 nm, M2 = 3 (Coherent - Photonics West '04)

1.0 W in-well pump / 0.7 W @ 850 nm, M2 = 5 (University of Strathclyde)No spatial hole-burning : single-frequency in simple linear cavity

500 mW @ 1003 nm (Jacquemet et al, App.Phys. B 86, 503 (2007))

42 mW @ 870 nm, ∆νL ≅ 3 kHz (Holm et al, IEEE PTL 11, 1551 (1999)) • Linearly polarized, circular TEM beam

(5)

Design of

Design of

the

the

semiconductor

semiconductor

structure

structure

• λL = 852 nm

• Barriers absorption at λP ≤ 720 nm

eb ≅ 2 µm ⇒ ηP = 85%

• AR coating (Si3N4) at air/SC surface for :

maximum pump transmission

+ reduction of microcavity etalon effect • Structure grown by MOCVD

Reflectivity Photoluminescence Stop band 70 nm Rmax ≅ 99.97% 1.0 0.2 0.4 0.6 0.8 0.0 0.8 0.9 1.0 1.1 0.7 0.6 Energy Quantum wells Bragg Mirror |E|2 Substrate GaAs 350 µm 32.5 pairs λ/4 Al0.22Ga0.78As/AlAs R ≥ 99.95% Active Layers 29λ/4 GaAs NQW= 7 ; LQW = 8 nm Barriers Al0.22Ga0.78As InGaP Caping Layer (20 nm)

(6)

Design

Design

optimization

optimization

• Low threshold pump intensity Ith for high opt-opt efficiency

⇒ NQW= 7 is optimal for ~ 2% losses

0 1 2 3 4 5 0 5 10 15 20 T = 0.5% T = 1% T = 2% 10°C 40°C I th ( kW /c m 2 ) NQW 190 105 Itr (W/cm2) 830 1000 g0(cm-1) 40°C 10°C T(°C) Experimental parameters ! Ith = NQWItr " exp T 2#NQWLQWg0 $ % & & ' ( ) ) Threshold intensity

(7)

Single-frequency

Single-frequency

s

s

etup

etup

• Compact plane-concave cavity : Lext ≅ 10 mm

• Single-transverse mode pump laser diode :

Pmax= 120 mW (245 mA) at λP = 658 nm

• 52 x 52 x 58 mm3 integrated setup for improved mechanical stability

Pump Diode Output coupler + PZT Single-mode Laser Diode GaAs DBR QW Active Structure Output coupler T = 1% - RC = 12 mm WP = 20 µm Active Structure PZT

(8)

Single-frequency emission

Single-frequency emission

• Low threshold: 4.1 kW/cm²

• Good beam quality : M² < 1.2 and linear polarization

Output coupler T = 1% - RC = 12 mm η = 17% Ith ≅ 4.1 kW/cm2 PL = 17 mW (pump limited) T = 280 K 0 5 10 15 20 0 50 100 150

Incident Pump Power (mW)

O u tp u t P o w er ( mW ) 850.5 851.0 851.5 852.0 852.5 W av ele n g th (n m )

(9)

Europhotons ‘08 Single-frequency diode-pumped semiconductor laser at the Cs line 8

Single-frequency emission

Single-frequency emission

Output coupler T = 1% - RC = 12 mm PL = 17 mW (pump limited) T = 280 K 0 5 10 15 20 0 50 100 150

Incident Pump Power (mW)

O u tp u t P o w er ( mW ) 850.5 851.0 851.5 852.0 852.5 W av ele n g th (n m ) 0 1 2 3 4 5 F P s ig n a l (V ) FSR = 37.5 GHz

Scanning Fabry-Perot spectrum

• Single frequency operation without intracavity λ-selective element :

checked with a high Finesse (F = 130) 37.5-GHz-FSR scanning Fabry-Perot SMSR > 25 dB tSM " TC # FSR $ % & ' ( ) 2 " 1ms

Single-mode spectrum in for Lext = 10 mm

Jacquemet et al, App.Phys. B (2006)

TC = photon lifetime (~ 10 ns) Γ = gain bandwidth (~ 10 nm)

(10)

With

With

an intracavity

an intracavity

etalon

etalon

Output coupler T = 1% - RC = 12 mm

• Increased losses at θ ≠ 0° ⇒  laser power : P = 7 mW @ 852.14 nm

etalon

25-µm thick (≅ 9 nm FSR) silica etalon

⇒ λ independent of operating conditions (T°, PP) + improved long-term stability

10-4 10-3 10-2 10-1 1 840 845 850 855 860 Wavelength (nm) λ = 852.14 nm (Cs) 9 nm

(11)

Single-frequency tunability

Single-frequency tunability

• more than 15 GHz continuous tunability (without mode-hops)

by translating the external cavity mirror with PZT

Output coupler T = 1% - RC = 12 mm

Frequency-shift measurement with a low-finesse static 1.5-GHz-FSR Fabry-Perot etalon

⇒ Tuning over the Cs-absorption spectrum (9 GHz)

0

-5 +5

Laser frequency shift (GHz)

P h o to d et ec te d s ig n al Cs absorption 1.5 GHz > 15 GHz FP transmision

(12)

Extended-cavity laser diode Δν = 130 kHz PD

Beat-note set-up

Beat-note set-up

Stabilization of the laser frequency

- at side of a Doppler-free Cesium line (5 MHz FWHM)

- on PZT voltage - 2-stage integration electronics - low-frequency servo loop (F < 2 kHz)

OP-VECSEL G PD Cs cell Fast photodiode RF analyzer 10-11 10-9 10-7 S δV ( V /H z 1 /2 )

With low-frequency gain

With optimized gain

10-5

(13)

Extended-cavity laser diode Δν1/2 = 130 kHz ΔνL = 15 kHz PD

Linewidth measurement

Linewidth measurement

• FWHM linewidth ≅ 500 kHz : low-frequency noise contribution

• Lorentzian linewidth ≅ 70 kHz related to white noise floor RBW = 10 kHz SW. T = 10 ms AVE = 10 OP-VECSEL PD Cs cell Fast photodiode RF analyzer

(14)

Towards higher

Towards higher

power

power

T = 1.1 % External Mirror

HR @ 852 nm R = -100 mm

WP = 40 µm

• 330 mW at PP = 1.1 W

⇒ Thermal-limited output power

⇒ High output power on a GaAs substrate

G aA

s

λ = 855 nm (Δλ ≅ 1 nm)

Laser Diode Pump 5 W @ 690nm Ø = 100 µm 450 mW under QCW pumping 100 200 300 400 O u tp u t P o w er ( mW ) 845 850 855 860 W av el en g th ( n m ) T = 273 K ηext = 36% Ith ≅ 3.2 kW/cm2

• Single transverse mode

Silica etalon • 120 mW single-frequency tS = 350 µm H E A TS IN K

(15)

Conclusion

Conclusion

– Design & fabrication of a AlGaAs/GaAs structure at λ = 852 nm optimized for low power/high efficiency operation

7 QWs

low threshold Ith ≤ 4 kW/cm2

– Single-frequency operation in a simple linear cavity

without λ-selective element : 17 mW with a 25-µm thick etalon : 7 mW

– Validation on a Cs atomic line

>15 GHz continuous tunability

frequency lock-in on an absolute reference (atomic line) comparison with an independent laser source : ΔνL = 500 kHz (-3dB / 10 ms sweep time)

– Increase of the single-frequency power under high power pumping

120 mW without specific thermal management

(GaAs substrate, no intracavity heatspreader)

⇒ evaluation of the spectral properties

+ thermal management for power scaling

at 852.14 nm Specifications alreadyadequate for optical

detection in atomic clocks

Références

Documents relatifs

MOTS CLEFS : lettre de liaison de sortie ; communication ville-hôpital ; médecin traitant ; continuité des soins ; parcours de soins ; messagerie sécurisée de santé. ---

This kind of structure 15 (see figure 1 ) has been demonstrated previously under solid-state laser pumping, and enabled obtaining a diffraction-limited output, a

close to the value obtained with a single pumping laser; however all the atoms can be brought in the upper level if the two laser lights are considered broadband

Currently, available laser sources show intrinsic limitations in fulfilling all the required properties : Extended-Cavity Diode Lasers (ECDL) do not deliver more than ~50 mW

Afin mettre en œuvre la politique de tri et de recyclage des emballages ménagers de la collectivité et d’assurer le suivi avec l’éco-organisme en charge de la

In a cross-sectional study of patients hospitalized on the general internal medicine wards of the Bern University Hospital, we investigated possible factors for nutritional risk

Il est donc intéressant de relever que pour les enseignants de secondaire II dans le canton de Vaud, nous sommes encouragés dans notre formation à faire usage de la rétroaction

If the relatlve absorption strengths are known, it is easily shown that the relative populations of the magnetic substates of the metastable atoms can be determined