• Aucun résultat trouvé

Multiple ionization cross sections for swift ion impact on ne-like molecules

N/A
N/A
Protected

Academic year: 2021

Partager "Multiple ionization cross sections for swift ion impact on ne-like molecules"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01875650

https://hal.archives-ouvertes.fr/hal-01875650

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Multiple ionization cross sections for swift ion impact on ne-like molecules

Mariel E. Galassi, Veronica Tessaro, Benoit Gervais, Michael Beuve

To cite this version:

Mariel E. Galassi, Veronica Tessaro, Benoit Gervais, Michael Beuve. Multiple ionization cross sec-tions for swift ion impact on ne-like molecules. 10TH INTERNATIONAL SYMPOSIUM ON SWIFT HEAVY IONS IN MATTER & 28TH INTERNATIONAL CONFERENCE ON ATOMIC COLLI-SIONS IN SOLIDS - SHIM-ICACS 2018, Jul 2018, Caen, France. 0010. �hal-01875650�

(2)

1 2 3 4 5 6 10-2 10-1 100 101 O8+ (1 MeV/u) + Ne

Exp. Gray et al PRA 22, 849 (1980) EM  q ( 1 0 -1 6 c m 2 ) q 0,1 1 10 10-8 10-6 10-4 10-2 q=5

Exp. Andersen et al, PRA 36, 1987 Exp. DuBois et al, PRA 29, 1984 Exp. Cavalcanti et al, JPB 35, 2002 EM EM_NP q=4 q=3 q=2q / 1

Projectile energy (MeV)

MULTIPLE IONIZATION CROSS SECTIONS BY ION IMPACT

ON Ne-like MOLECULES

Mariel E. Galassi

1,*

, Veronica Tessaro

1,2

, Benoit Gervais

3

and Michael Beuve

2

(1) Instituto de Física de Rosario (CONICET-UNR) Av. Pellegrini 250, 2000 Rosario, Argentina

(2) IPNL, Université de Lyon, CNRS/IN2P3 UMR 5822, Université Lyon 1, France

(3) CIMAP, UMR 6252, Caen, France

Exponential Model (EM): single particle probability for ionization

i i i i r b i i

n

n

i

r

e

p

b

p

2 2 ) ( / 0

2

)

(

)

(

Processes for target electron loss:

 Single and multiple Ionization

 Electron capture Not considered in this work

 Auger-like ionization processes Very important at high projectile energy!

Ne, CH

4

, NH

3

and H

2

O

Single and Multiple Ionization Cross Sections (MICS) by ion impact on Ne and Ne-like

molecules are calculated in the framework of the Independent Electron Model (IEM) and taken into

account post-collisional effects like Auger and Coster-Kronig processes. The single particle probabilities

in the MICS, are represented by decreasing exponential functions, called the Exponential Model (EM).

The net ionization cross sections by atomic o molecular orbital required as input by the EM, are

calculated using the CDW-EIS approximation. The MICS calculated with the EM probabilities are in very

good agreement with experimental data and present better agreement than other more complex

theoretical models

Abstract

Conclusions

Independent Electron Model

The collision is seen as a product of independent interactions between the projectile and the

target electrons. Electron correlation is not considered

Q- fold Ionization Cross Section

Theoretical Model

Multiple ionization Cross Sections

Multiple Ionization Cross Sections of Ne, H2O, NH3 and CH4 by ion impact were obtained applying the Independent Electron Model and taken into account post-collisional effects.

The results obtained using EM single particle probabilities + post-collisional effects are in very good agreement with experimental data.

Post-collisional effects dominates the Double Ionization Cross Sections for energies higher than 1 MeV for proton impact, but it depends on the ionization degree.

We will continue investigating the applicability of the EM–MICS model to describe the fragmentation channels of Ne-like molecular targets.

bP

q

b

db

q

2

(

)





0

)

(

6

6

0

)

0

(

1

6

6

1

)

,

(

0

)

(

8

8

0

)

0

(

1

8

8

1

)

,

,

(

2 3 2 3 3 2 1 3 2 1 3 2 3 2 1

s s s s s s

q

q

q

m

q

q

q

q

q

q

m

)

,

,

,

(

)

1

(

)

(

1 2 3 3 1 3 2 1

q

q

q

p

p

q

N

b

P

i Ni qi i q i q q q q i i i q

P

     





 

 

     

   

j j j q j q q q j j s j s

q

q

m

q

m

q

q

q

0 1 1 3 2 3 2 1 3 2 1 1 1 2 1

)

,

(

)

,

,

(

)

,

,

,

(

P

Post-collisional correction

Carlson et al. Phys. Rev. 151 (1966) 151-47

Atomic Orbital Populations Binding energy (eV) 1s 2 -891,4 2s 2 -52,5 2p 6 -23,13

Ne

The parameter pi0 is determined to reproduce CDW-EIS total cross sections for single-electron emission per electron for each orbital

0,1 1 10 10-4 10-3 10-2 10-1 100 101q [1 0 -1 6 cm 2 ]

Projectile Energy [MeV/u] EM

Montanari and Miraglia, JPCS 388 (2012) Exp. Andersen, PRA 36 (1987)

Exp. Dubois, PRA 36 (1987)

q=1

q=2

q=3

He

2+

+ Ne

O

8+

+ Ne

H

+

+ Ne

Galassi M E, Rivarola R D, and Fainstein P D 2007 Phys. Rev. A 75 052708

H

+

+ CH

4 0,1 1 10 10-4 10-3 10-2 10-1 100 101q [ 10 -1 6 c m 2 ]

Projectile Energy [MeV] EM

CDW-EIS Gulyas et al, JPB 46 (2013) Knudsen et al, JPB 28 (1995)

Luna et al, JPB 36 (2003)

Ben-Itzhak et al, PRA 49 (1994)

q=1

q=2

(*) galassi@fceia.unr.edu.ar

Ne post-collisional Auger Probabilities

Molecular Orbital

Populations Binding energy (eV) C1s (2) 2.00 C1s -290.7 2a1 (2) 1.133 C2s + 0.867 H1s -22.9 1t2 (6) 3.399 C2p + 2.601 H1s -12.6

CH

4

H

+

+ H

2

O

0,1 1 10 10-5 10-4 10-3 10-2 10-1 100

Exp. Cavalcanti et al, JPB 36, 2003 Exp. DuBois et al, PRA 29, 1984 EM CDW-EIS BGM Spranger et al, JPB 37, 2004 q=3 q=2 q=1q (10 -1 6 c m 2 )

Projectile energy (MeV)

0,1 1 10 100

10

-6

10

-4

10

-2

10

0

Ne

Exp. Cavalcanti et al Exp. Dubois et al EM

H2O

EM

q=3

q=2

q=1

H

+

Impact

q

(

10

-1 6

c

m

2

)

Projectile energy (MeV)

H

+

+ NH

3 10-1 100 101 102 10-5 10-4 10-3 10-2 10-1 100 101 q=3 q=2  q (10 -16 c m 2 )

Projectile Energy [MeV] Rudd Rao Lynch EM EM_NP q=1

NH

3

Molecular Orbital Populations Binding energy (eV) 1a1 (2) 2.00 N1s -405,6 2a1 (2) 1.207 N2s + 0.067 N2p + 0.726 H1s -31.13 1e (4) 2.31 N2p + 1.69 H1s -17.19 3a1 (2) 0.238 N2s + 1.719 N2p + 0.043 H1s -10.16 0,1 1 10 1E-5 1E-4 1E-3 0,01 0,1 1 10 Exp. Tavares et al (2015) Exp Rudd (1987) EM EM_NP Gulyas et al PRA(2016) BGM Murakami et al (2012) B1 Champion et al (2018) q=3 q=2q [ 10 -1 6 cm 2 ]

Projectile Energy [MeV] q=1

H+ + H2O (vap)

Acknowledgements

This work was partially supported by the following institutions: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR) (PID-ING 515 and AVEdocente), LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). We also acknowledge the financial support by ITMO Cancer in the framework of Plan Cancer 2009–2013.

Références

Documents relatifs

A three-dimensional unsteady heat transfer CFD model has been developed in ANSYS Fluent with the aim to numerically analyze the continuous wave (CW) LP of H13 tool steel.

2014 This paper reports on measurements of electron impact direct ionization and dissociative ionization total cross sections of arsenic As4 and As2 molecules and

The cosmic ray experimental simulations performed here ex- tend previous studies at lower ion energies ( Mennella et al. 2011 ), giving insight into the astrophysical impli- cations

– A Note on Generating Sets for Aggregation Clones on Finite Lattices Radom´ır Halˇ as, Radko Mesiar and Jozef P´ ocs. 17:00–17:30

Finally, the link has to be made between the low energy case, where charge exchange takes place at large impact parameters with very large probabilities, and the higher

TRiP98 is a TPS for scanned ion beams which can handle calculation and optimization of absorbed and biological effective dose distributions of complex ion radiation fields in

ls2s nl and ls2p nl which can contribute to net ionization by sequen- tial emission of two electrons (REDA) or by single autoionization plus field ionization (when entering

in the forward direction of very inelastic transfer reactions, inelastic scattering and a-particle