• Aucun résultat trouvé

A f - - ~ ~ and [~f] = y. [Ox~l 9

N/A
N/A
Protected

Academic year: 2022

Partager "A f - - ~ ~ and [~f] = y. [Ox~l 9 "

Copied!
19
0
0

Texte intégral

(1)

On the uniqueness of summable trigonometric series and integrals

TORBJ6RN HEDBERG Institut ~Iittag-Leffler

1. Introduction

The aim of the present work is to give some generalizations of a well-known theorem b y Z y g m u n d and Verblunsky, which in one of its original forms can be stated as follows [13, p. 352]:

Let ~ ~_~ a,e i€ be a trigonometric series with complex coefficients and suppose that an = o(n), n ~ ~ . I f the series is Abel summable to an everywhere finite function f E LI(T) then the given series is the Fourier series of f.

This theorem has been generalized in various directions. Verblunsky [13, p. 356]

proved it under weaker conditions on the Abel sums of the series and Shapiro [8]

has obtained analogous results in higher dimensions under the assumption t h a t

~R_<l~l<~+l la~] = o(R) as _R tends to infinity. Results have also been obtained for trigonometric integrals of one variable b y Verblunsky [12] and of several variables b y Shapiro [7]. In these theorems summation b y the Abel-Poisson or b y the Ces~ro meShod is used.

In this paper the theorem wilt be formulated in a more general form and proved for a class of summation methods which contains the Abel-Poisson method as a special case. Many of the earlier results will appear as corollaries.

The method of proof will consist in replacing summation using a given kernel H b y summation using a kernel K, which is a certain linear combination of H and its dilatations. The properties of K will be such t h a t we then can deduce our results directly.

I wish to express m y gratitude to professor Yngve Domar, who suggested the problem, for his kind interest and support.

(2)

224 ~ K I v F6~ ~ATEMATIK. Vol. 9 No. 2 2. Notations and definitions

T h e p o i n t s in t h e n-dimensional Euclid~an slo~ee I t ~ or in t h e n-dim3nsional t o r u s T ~ will be d e n o t e d b y x = (xl, x~ . . . x,). W e shall w r i t e l x l - = r =

(x~ + x~ + . . . + ~n)'~.

I f F is a n y g i v e n f u n c t i o n on R ~ a n d if R > 0 t h e n we define t h e f u n c t i o n FR b y t h e r e l a t i o n ~ R ( x ) = R"F(Rx) for all x E R%

I f a f u n c t i o n F has d e r i v a t i v e s a l m o s t e v e r y w h e r e t h e n we d e n o t e t h o s e d e r i v a t i v e s b y [OF/Oxl] etc. B y OF/Ox 1 etc. we m e a n d e r i v a t i v e s in d i s t r i b u t i o n a l sense.

W e d e n o t e t h e L a p l a c i a n b y A, i.e.

[a sl

A f - - ~ ~ and [~f] = y. [Ox~l 9

for t h e o p e n ball w i t h c e n t r e x a n d r a d i u s ~, IB(Q)I will W e w r i t e B(x, q)

d e n o t e its v o l u m e .

A r e a l - v a l u e d f u n c t i o n H o n R ~ is said to belong to t h e class 9 ( if:

(i) H is n o n - n e g a t i v e a n d t w i c e c o n t i n u o u s l y differentiable

(ii) H is radial, i.e. t h e r e exists a f u n c t i o n H 0 on [0, Jr m) such t h a t H(x) =

H0(lxl)

for all x e R ~

(iii) H is i n t e g r a b l e a n d d f i ~ , H dx = 1

i f

IB(R)I [FIdx = 0(1) as R--> oo.

~(0, R)

d e n o t e s t h e I ) i r a e measure, i.e. t h e m e a s u r e given b y t h e u~nit mass at t h e origin.

T h r o u g h o u t G will s t a n d for t h e f u n c t i o n d e f i n e d b y t h e following r e I a t i o n 1

G(x)--cn ix[2_ n if n > 3

= c z . I o g l x [ i f n = 2 where t h e c o n s t a n t s cn are chosen so t h a t A G = 8.

(iv) dHo/dr is n o n - p o s i t i v e

(v) dPtto/drP-~ O(r -(n+2+~)) as r--~ oo for some e > 0.

I n t h e sequel we shall n o t use t h e n o t a t i o n T/o, b u t write a b u s i v e l y tt(x) = H(r ) a n d H ' f o r H 0 = dHo/dr.

A locally i n t e g r a b l e f u n c t i o n _F on R ~ is said t o belong t o t h e class c ~ if:

(3)

O N T H E I ~ N I Q U E N E S S O F S U M M A B L E T R I G O N O M E T E I C S E B I E S A N D I N T E G I : ~ S 2 2 5

T h e F o u r i e r t r a n s f o r m o f a f u n c t i o n F or a m e a s u r e tt is d e n o t e d b y _F a n d respectively, b o t h w h e n t h e t r a n s f o r m is d e f i n e d in t h e o r d i n a r y sense a n d in t h e d i s t r i b u t i o n a l sense.

3. Some lemmas

B e f o r e we can p r o v e o u r m a i n t h e o r e m s we n e e d some lemmas. T h e first one is f u n d a m e n t a l for t h e m e t h o d o f p r o o f in this p a p e r a n d contains t h e m a i n n e w idea.

LEMMA 3.1. Suppose that H is a given function in the class 9g. Consider the function K defined by the relation K(x) = 2 H,(x) -~ for all x E R " ~ { 0 } . Then _K satisfies the following conditions:

(i) K is non-negative and twice continuously differentiable for x = O.

(it) K is radial.

(iii) K is integrable and f i( ~ K dx = 1.

(iv) A K = A -- M~, where A is the function defined by A(x) -= -- 2H'([xl)/lxl for x + O and where M = I R ~ A dx"

Proof. (i)--(iii) are obvious. T o p r o v e (iv) we choose a n a r b i t r a r y f u n c t i o n (p e C ~ ( l t ' ) . T h e result t h e n follows f r o m t h e following equalities:

oo

f f

( A K , q)} = ( K , Aq)} = 2 Aq:(x)dx H,(lx]) ta - -

ilr* 1

T

f f .x

= 2 lim dt Aq)(x)H(Jx]) ta --

T---> 00

1 i i n

T

f f I(x)

= 2 1 i r a q) dx A ~ dt =

T--> m

i i n 1

T

= 2 T--,limo~ ~ dx -[t \ lxl / dt---

R n 1

w i t h A a n d M

= lim f (-- q)Ar + q)A)dx = ( A -- Md, q))

T---> ao I1 n

d e f i n e d as in (iv) a b o v e .

(4)

226 ~_~KIv FSR ~ATE~_~TIK. Vol. 9 No. 2

I n o u r n e x t l e m m a we a s s u m e t h a t n > 2, b u t t h e r e s u l t also holds for n = 1 w i t h o b v i o u s m o d i f i c a t i o n s o f t h e s t a t e m e n t a n d its 10roof.

LEMMA 3.2. Let B C 1t 2 be an open ball, let G be the function defined in section 2, let H ~. 9~ and define, as in lemma 3.1, the function K by K(x) ~ 2 dt/t a for all x e I ! ~ { 0 } .

I f F E ~ satisfies the following conditions:

(i) F is u p p e r semi-continuous in B

(ii) limR..~ ( F * AKR)(x ) > f(x) for all x e B, where f is integrable, is finite in the ball B and has compact support,

then A ( F -- f , G ) > 0 in B, i.e. F - - f , G is an almost subharmonic function in B, Proof. L e t 2'0 be d e f i n e d b y F0(x ) ~ F(x) for x e B a n d zero otherwise, A trivial e s t i m a t e gives

2H'(r)

[ ~ K ] ( x ) = - -

O(r -(n+~+~))

as r - + oo a n d we h e n c e easily o b t a i n t h a t

lira (AKR * (.F -- Fo))(x ) ---- 0 for all x E B .

R-~oO

2' 0 t h e r e f o r e also satisfies (i) a n d (ii) a n d we m a y h e n c e w i t h o u t loss o f g e n e r a l i t y assume t h a t F v a n i s h e s outside B.

Assume n o w t h a t (ii) holds w i t h strict i n e q u a l i t y for all x E B a n d t h a t f is u p p e r semi-continuous. L e t /~a be d e f i n e d b y /~TR(x ) ---KR(x) for all x in s o m e ball B(O, ~) w i t h Q g r e a t e r t h a n t w o t i m e s t h e r a d i u s o f B a n d zero otherwise.

T h e n

l i m Y , A K 7 R = l i m F * A K R for all x E B .

Since f is u p p e r s e m i - c o n t i n u o u s a n d f i n i t e t h e r e exists for e a c h x o E B a n d each s > 0 a 8 > 0 such t h a t f(x)

<f(xo)

§ e w h e n e v e r ]x - - Xo] < 8. H e n c e

A F ~ 9 ( f , G)(xo) -~ (F~ , f)(x) < f(Xo) § 2e for all R larger t h a n some _R o d e p e n d i n g u p o n x 0 a n d s.

Using t h e finiteness o f

f

again we conclude t h a t

lira ((F - - f * G) * d/~R)(x) > 0 for all x E B . (3.1}

R-->o~

F u r t h e r m o r e , since

f

is b o u n d e d a b o v e , we can easily p r o v e t h a t - - f * G a n d h e n c e also F - -

f ,

G is u p p e r semi-continuous. Suppose, still on t h e a s s u m p t i o n t h a t (ii) holds w i t h strict i n e q u a l i t y , t h a t / 7 _ f , G is n o t s u b h a r m o n i c in B .

(5)

O N T I I E U N I Q U E N E S S O F S U M M A B L E T R I G O N O M E T R I C S E R I E S A I ~ D I I ~ T E G i R A L S 227

T h e n we can f i n d a h a r m o n i c f u n c t i o n u such t h a t ~b = F - - f * G ~- u has a m a x i m u m in some interior point x o of B. B u t t h e n (iv) of l e m m a 3.1 gives li--mR_~ (O 9 A/~R)(x0) <_ 0 which contradicts (3.1) since 1-TmmR~ ~ (u 9 AKR)(xo) = O.

T h e result n o w follows in t h e p a r t i c u l a r case we h a v e considered.

To prove t h e general case we choose, using t h e Vitali-Carath6odory t h e o r e m [4, p. 75], a non-decreasing sequence {fk}k%~ of u p p e r semicontinuous functions satisfying:

(i) f k - - > f a.e. a n d in L l - n o r m as /c--> oo

(ii) f , < f in B.

T h e first p a r t o f this p r o o f tells us t h a t A(F -- fk * G) ~ 0 in B. B u t fk * G converges t o f , G in t h e distributional sense a n d t h u s A ( F - - f * G) > O, which proves t h e lemma.

The following two lemmas are simple generaliza$ions of l e m m a s of Shapiro [9, p. 69--70] a n d our proofs are essentially t h e same as his.

LEMMA 3.3. Let F be an arbitrary function in 9~]i, let F be its Fourier transform and assume H E 9g.

Define the functions ~ and U by

and

2H'(Ix[)

~(x) = - - Mlx[ for x E R n ~ { 0 }

U(x) = { Co i f [x[ <- I otherwise

where the constants C a n d M are chosen such that U(O) = ~(0) = 1.

I f F is a measure such that [F[({x; N < Ix[ < 2N}) = o(1) as 25 ----> r ( F , zR - - F , UR) tends to zero uniformly in R" as R---> ~ .

then

Proof. P u t V = n - - U. Since r V E L I ( R n) we k n o w t h a t V E C I ( R n) a n d since V(0) = 0 we i m m e d i a t e l y see tha+~ If(r) = O(r) as r--~ O. :Furthermore, since H E 9~, it follows t h a t dn/dr = d/dr(-- 2 H ' ( r ) / M r ) E Li(Rn). Since d U / d r

A

is a b o u n d e d measure we can conclude t h a t V(r) = O(r -1) as r - + oo.

A

P u t / , = F . T h e n

l / (;) P

<

1t n

f

-< fz dl l(x) + o(1).

2N< Lx I < 2 N + 1

(6)

228 .Al~:iv ~ 6 g :~A:rE:~A'rI~:. V o l . 9 N o . 2

A

U s i n g t h e f a c t t h a t V(r) = O(r) as r - - > 0 we o b t a i n

: f (;)I <.,(x, = = o<,

+ .

2N<R 2N<R

2N< 1~[ < 2N+ 1

A

F u r t h e r b e c a u s e V(r) = 0 ( r -x) as r - - ~ m it follows t h a t

alibi(x) = ~ , o = o ( 1 ) as R - + m , 2N>R 2N--< I~I<2N+ 1 2N>R

a n d t h e l e m m a is p r o v e d .

:L:EMMA 3.4. With the same assumptions and notations as in lemma 3.3 l i m s u p IF * UR(x) -- F * UR(y)I ) = O.

R-->o~ Ix--yI<R-L

T h e p r o o f is similar t o t h e p r e c e d i n g o n e a n d is t h e r e f o r e o m i t t e d '

4. The main theorems

As b e f o r e let H b e a n a r b i t r a r y f u n c t i o n in t h e class 9 ( . W r i t e f , ( x ) a n d f*(x) f o r t h e lower a n d u p p e r limits r e s p e c t i v e l y o f (F * AHR)(x ) as _R t e n d s t o

infinity,

T } t ~ o ~ M 4.1. Let F be a bounded continuous function on R n. I f (i) f . and f * are finite for all x E R ~

(ii) f . ~ Z, where Z is a locally integrable function, then f . = f * a.e. and A F = f . .

Proof. I t is sufficient to p r o v e t h a t f . = f * a.e. a n d A F = f , in a n a r b i t r a r y o p e n ball B C R ~. W e c a n w i t h o u t loss o f g e n e r a l i t y a s s u m e t h a t F v a n i s h e s o u t s i d e B, b e c a u s e i f we define a f u n c t i o n F 0 b y ~ 0 ( x ) = F ( x ) f o r x e B a n d F o = 0 otherwise, t h e n limR+ ~ ((F - - Fo) 9 AHR)(x ) = 0 for all x e B. C l e a r l y we c a n also a s s u m e t h a t Z h a s c o m p a c t suppor~ a n d we define as b e f o r e t h e f u n c t i o n s _K a n d ~ b y t h e r e l a t i o n s

K ( x ) = 2 H , ( ~ l g , x e m \ { 0 }

~(x) -

where we choose M so t h a t

f

R ~ 1

2 H ' ( l x [ )

-M lzl , . e m \ { o }

~ d x = 1.

(7)

ON T I I E SYNIQU/iil'qESS O:F S]Y]Yn~A:BLE TI:tIGONOMETI%I0 S E R I E S A N D I I ~ T E G I : t A L S 2 2 9

T h e n t h e following useful relation holds.

T

f e'

2 ( F 9 A H , ) - ~ = M ( F 9 ~: - - F , ~ r ) = .F 9 [ A K ] - - M F 9 ~ r . ( 4 . 1 ) 1

The p r o o f is a direct application o f F u b i n i ' s theorem:

T T

f

2 ( F 9 A H O ~ = 2 -~ F ( x - - y ) A H , ( y ) d y =

1 1 R n

T

/ f f

= 2 F ( x - - y ) d y A H , ( y ) -~ = M F ( x - - y ) ( x ( y ) - - z T ( y ) ) d y

R n 1 R n

where t h e last e q u a l i t y follows from t h e p r o o f o f l e m m a 3.1.

l~elation (4.1) also holds if F e ~ , which will be of use later.

I f we n o w in (4.1) let T t e n d to i n f i n i t y it follows f r o m t h e c o n t i n u i t y of F in B t h a t t h e last expression in (4.1) t e n d s to ( F , A K ) ( x ) for all x E B. A f t e r a change of scale we o b t a i n

oo

f

~1r (F 9 AH~)(x) ~ = ( f 9 ~ K , ) ( x ) f o r x r B .

R

F r o m this we conclude t h a t Z ~ f* ~ ~o, ~ ~* ~ f * in B , where ~ , (x) a n d

~*(X) are the lower a n d upper limits of F , A K R ( x ) as R t e n d s to iufinity.

W e can assume t h a t Z is finite for all x E B. L e m m a 3.2 t h e n shows t h a t t h e function r satisfies A ~ > 0 .

H e n c e A F .~ Z ~ ~u where # = A ~b is a positive measure (see e.g. [5, p. 29]) a n d hence F 9 2 H R = (/~ ~- Z) * HR.

B u t limR_~0 g * HR = Z a.e. W e also claim t h a t lim/~ 9 H R exists a.e. a n d equals some locally integrable f u n c t i o n g.

To prove this we shall use t h e wellknown f a c t [4, p. 149] t h a t

lim d#

,~o IB(r) IR( '

exists for almost all x a n d equals a locally integrable function, which we denote b y g.

:By a simple calculation we obtain

oo

R n 0 [x--yl_<r

--- f H;(r) r f d,(V)=,B(1), f

o I x - y l < , . o i~,_~.l<,.

(8)

230 ARKIV F6R I~IATE~CIATIK. Vol. 9 No. 2

Using t h e L e b e s g u e d o m i n a t e d c o n v e r g e n c e t h e o r e m we n o w easily get t h a t l i m t t 9 HR(x) = g(x) a.e.

R--> o~

F r o m this it follows t h a t f , = f * a.e. in B a n d t h a t f , a n d f * are locally i n t e g r a b l e a n d so l e m m a 3.2 gives

A ( F - - f * * G ) = 0 in B and, since B is a r b i t r a r y , t h e t h e o r e m follows.

Remark 4.1. T h e a b o v e t h e o r e m r e m a i n s t r u e e v e n if c o n d i t i o n (ii) is r e p l a c e d b y (ii') f * > X, where g is a locally integrable function.

F o r a m e t h o d o f p r o o f see [13, p. 358].

I n o u r n e x t t h e o r e m we shall r e p l a c e t h e c o n d i t i o n F c o n t i n u o u s b y a c o n d i t i o n o n t h e F o u r i e r t r a n s f o r m o f F . This will give us a generalization o f t h e results o f V e r b l u n s k y [13, p. 352] a n d Shapiro [8, T h e o r e m 1].

THEOI~,M 4.2. Let F belong to the class c)]l and let F denote the Fourier transform of F (in the distributional sense). I f

(i) 2 is a measure satisfying ]FI({x;-N < Ix I < 2N}) = o(1) as N--> ~ , (ii) f , and f * are finite for all x C R',

(iii) f , ~ Z, where g is a locally integrable function, then f , = f * a.e. and d F = f , .

Proof. L e t B G R" be an a r b i t r a r y ball. I t is sufficient t o p r o v e t h a t f , = f * a.e. a n d d F = f * in B.

L e t B o be a b o u n d e d n e i g h b o u r h o o d o f B. W e claim t h a t it suffices to consider an F w h i c h vanishes outside B 0. T o show this we choose a f u n c t i o n h E C ~ ( R ' ) w h i c h equals 1 on B a n d vanishes outside B 0. D e f i n e F 0 -~ F h . W e t h e n get Y0 = ~ * ~ w h e r e h e C~ ") a n d w h e r e

A

h(x) = 0 ( l x l - P ) as x--> ~ for all p .

(4.3)

L e t E N -~- {x E Rn; 2 N < lxl < 2 N+I} a n d d e n o t e t h e m e a s u r e _F b y #. T h e

A

f u n c t i o n F o t h e n satisfies

lFoIdx

A = o ( 1 ) a s N - ~ ~ ,

E N

(4.4)

since

(9)

OIff THE UNIQLrEI~ESS OF SUMMABLE 5rRIGOIqO~CIETRIC S E R I E S AI~D INTEGRALS 231

o<_ f <_ f f =

EN Rn EN

f f

= dl/,[ Ih(x -- y)ldx -4- d]/*l Ih(x -- y)dx q-

[yl<2 N - 1 EN 2N--1 < l y t ~ 2 N + 2 EN

f

dl~t }h(x -- y)ldx = 11 --k h -t- I a ,

[yl_~2N+2 EN

where, using (i) and (4.3)

N--2

Ix < ]/~[(U E k ) s u p I/~(x)[ = o ( 1 ) as N---> oo

1 x _ > 2 N - - 1 N + 1

/2 _< I~I(U E~) sup I~(x)E = o(1) as _ ~

N--1 R n

I~ _< ~ (~,(Ek) sup I~(x)l)= o(1) as N - + ~o.

k=N+2 ix]>_2k--1

We can thus as claimed take F and Z to vanish outside B 0.

As we n o t e d above, relation (4.1) holds also for F E ~]~. F u r t h e r m o r e , (ii)shows t h a t 2 f l ( F , AH,) dt/t a converges to a finite limit for all x C B as T tends to infinity. F r o m (4.1) it follows t h a t limr+~ (F * Zr)(X) must exist and take finite values for all x E B . B u t we also know t h a t ( F , Zr)(X) tends to F(x) for almost all x. We can therefore assume t h a t limr+~ F * z r = F for all x and t h a t F is finite everywhere.

I f we again set ~v*(x) and q , (x) equal to the upper and lower limits respectively o f ( F * A K R ) ( x ) then we get as before z - - < f , ~ , - - < q * < f * in B.

The remaining p a r t of the p r o o f is now an a d a p t a t i o n of the arguments used b y Verblunsky and Shapiro.

Choose an everywhere finite upper semi-continuous function u _< Z.

I f q~ = F - u * G were upper semi-continuous we could as in l e m m a 3,2 conclude t h a t ~ was subharmonic.

L e t therefore D be the set o f all points in B where r is not u p p e r semi- continuous. We claim t h a t D is the e m p t y set.

Assume t h a t D is n o n - e m p t y . B y the Baire category t h e o r e m t h e r e exists a ball B ' = B ( x o, 2d) such t h a t x0 C D and such t h a t F * A H a ( x ) is uniformly b o u n d e d for x C/3 n B ' (where 13 denotes the closure of D).

F r o m this it follows b y relation (4.1) t h a t F 9 z r converges u n i f o r m l y in 13 n B ' and hence t h a t the restriction F I S n w is continuous.

(10)

232 Al~XlV 1r/51~ MATEMATIK. VO1. 9 No. 2 Choose now an arbitrary number M > [ - - u , G)(%).

Since - - u , G is upper semi-continuous and since FtgnB, is continuous we can assume t h a t d has been chosen so t h a t

qb(x) < M @ F(Xo) for all x E/7) 13 B ' . (4.5) Let x be an arbitrary point in B " - ~ B ( x o, d) not belonging to D and let x' C D 13 B ' be one of the points minimizing the distance to x from /7) gl B'.

P u t R = I X - X'[ - 1 and let U be as in lemma 3.3.

Let e > 0 be given. Since R > d -1 we can assume t h a t d has been chosen so t h a t

I F , U~(x) - - F ( x ' ) ] < I F , UR(x) - - F , UR(x')I --r (4.6) IF 9 UR(x') -- F 9 zR(x')] -~ tF * ~ ( x ' ) -- F(x')] < e .

T h a t this assumption is allowed follows from lemmas 3.3 and 3.4 and from the fact t h a t 2' 9 ~R converges uniformly to F on D 13 B'. We m a y also assume t h a t I F @ o ) - - F ( y ) [ < e for all y E D f ? B ' (4.7) and, since - - u * G is upper semi-continuous, t h a t

( - - u , G ) , UR(y) < _ M for all y E B ' . (4.8) Since ~b is upper semi-continuous in the ball B(x, Ix -- x']) we have t h a t ~b is subharmonic there and hence t h a t

+ ( x ) < r 9 u ~ ( x ) = ~' 9 V ~ ( x ) - (u 9 ~ ) 9 U . ( x ) .

(4.9)

:From (4.6)--(4.9) it follows t h a t

qb(x) < M ~ F ( x o ) - ~ - 2 e for all x e C D F I B

and together with (4.5) this gives a contradiction. We conclude t h a t r is upper semi-con~imlous in B.

Thus A ~ > 0 in B and using she same argument as in the proof of theorem 4.1 we get t h a t f , = f * a.e., t h a t f , and f * are locally integrable and t h a t A ( F - - f * * G ) = 0 in B.

This proves the theorem.

5. Application on trigonometric series and integrals

The preceding theorems can be applied to the t h e o r y of summation of trigono- metric series and integrals. In the particular case when H is the Poisson kernel t h e y will give us some of the classical results b y Zygmund, Verblunsky and Shapiro.

(11)

O N T I t E U ~ I Q U E I ~ E S S O F S U M M A B L E T R I G O N O I ~ E T I ~ I C S E R I E S A N D I N T E G R A L S 233

W e shall d e n o t e t h e p o i n t s in Z" b y m = (m I . . . . m.) a n d w r i t e 2,112 (m, x) ~1 m~xi.

Iml = (m~ + m~ + . . . + ~,,~) , =

W e s t a r t b y defining t h e s u m m a t i o n m e t h o d s in question a n d b y m a k i n g some r e m a r k s .

DE]~INITIOlV 5.1. Let H E 9g and let ~ e z " a~ e ~(~'~) be a given trigonometric series with complex coefficients.

The series is said to be summable-(H) at the point x E R" i f

R ~ o o r n C Z n

exists and is finite.

I f we h a v e t h e condition a~ = 0([m] k) for some k t h e series defines a periodic d i s t r i b u t i o n on R ~ which we d e n o t e b y f. W e can write

I n general this s h o u l d be i n t e r p r e t e d as an e q u a l i t y b e t w e e n t w o distributions. I n all eases we shall consider, h o w e v e r , t h e series on t h e left h a n d side will be a b s o l u t e l y c o n v e r g e n t for all R > 0 a n d we s i m p l y d e f i n e f 9 H R as its sum.

W e shall let f , ( x ) a n d f * ( x ) d e n o t e t h e lower a n d u p p e r limits r e s p e c t i v e l y o f f * HR(x ) as R t e n d s t o infinity.

N o w we can f o r m u l a t e some corollaries to t h e o r e m s 4.1 a n d 4.2.

THEOREM 5.1 (cf. [14]). Let ~ e z n a.~e ~(~'x) be a trigonometric series with com- plex coefficients, let H E 9g and suppose that X la.,I~(m/R) l < oo for all R > O. I f

(i) ~ # 0 - - amlml -~e~('~'~) is the _Fourier series of a continuous function F, (ii) f , and f * are finite everywhere,

(iii)

f , ~ Z for some integrab!e function g

then f , = f * a.e. and the given series is the Fourier series of f ,.

Proof. I f we suppose t h a t a 0 = 0 (as we m a y , w i t h o u t loss o f g e n e r a l i t y ) t h e n t h e conditions o f t h e o r e m 4.1 are satisfied a n d t h e result follows.

TIIEOREM 5.2 (cf. [13], 13. 356]). Let Z a , , e ~('~'*) and H be as in theorem 5.1 I f (ii) and (iii) of that theorem hold and i f in addition

(i') ~ la~] = o(N ~) as N --> oo

~'_<_ 1~[_<2N

then the conclusion of theorem 5.1 still holds.

(12)

234 ~ x z v ~'6R Z~Ar~MAr~K. Vol. 9 :No. 2

Proof. Assume t h a t a 0 ---- 0 a n d let F C L2(T ~) be t h e function whose F o u r i e r series is

~,,,:o-

laml ]mJ 2ei(m'~). Consider _F as a t e m p e r e d distribution on R ~.

I t s F o u r i e r t r a n s f o r m consists of point masses a t t h e points {2~m}. Condition (i') implies t h a t this measure satisfies condition (i) of t h e o r e m 4.2 f r o m which t h e t h e o r e m follows.

N e x t we shall prove a result concerning trigonometric integrals.

THEOREM 5.3. Let ] be a given function in the Schwartz class 3' of tempered distributions and let H C c2g be such that f H R E L I ( l t ") for all R > O.

Write = fo + fl, where fo has compact support and where f l vanishes in a neighbourhood of the origin.

Let f e ~5"' be the inverse _Fourier transform of f and let f , ( x ) and f*(x) denote the lower and upper limits of f , HR(x ) as R tends to infinity.

If

(i) -- lyl-2 f(y) is the _Fourier transform of a continuous and bounded function _F1 (ii) f , and f * are finite for all x q t l n

(iii) f , > Z, where Z is a locally integrable function, then f , = f * = f a.e.

Proof. L e t fi be the inverse F o u r i e r t r a n s f o r m of ] i , i ---- 0, 1. T h e n fo E C a (lt") a n d hence l i m f o , H R = f 0 for all x. ~'rom t h e o r e m 4.1 i t follows t h a t A F 1 = f l a n d t h e t h e o r e m follows.

Remark 5.1 (el. [7]). Condition (i) is satisfied if for instance (a) ](y)(] -~-lyl2) -1 e L 1

or if

(b) f(y)(1 + ly/2) -~ e L 2 a n d f ] ( y ) ( 1 -6

lf]12)-lei(x'Y)df]

B(o, R)

converges poin~wise to a continuous function as R t e n d s to infinity.

B y t h e same m e t h o d , b u t using r 4.2 instead of t h e o r e m 4.1, we o b t a i n the following result.

THeOReM 5.4. Let f, f, f , , f * and H be as in theorem 5.3.

I f (ii) and (iii) of theorem 5.3 hold and i f in addition

f A

(i')

I fldy N<IyI<_2N

= o ( N z) as N---> oo

then f , = f * = f a.e.

(13)

O N T t I E U N I Q U E N E S S O F S U M M A B L E T R I G O N O M E T R I C S E R I E S A N D I NT EGI ~ ,/ kL S 235

6. Exceptional sets

I n t h e p r e c e d i n g sections we h a v e t h r o u g h o u t a s s u m e d t h a t f , H~ is b o u n d e d as a f u n c t i o n o f R at all p o i n t s x. This condition can be s o m e w h a t w e a k e n e d a n d results c o r r e s p o n d i n g to t h o s e o b t a i n e d b y V e r b l u n s k y [13, p. 356] a n d S h a p i r o [8, t h e o r e m 2], [7] c a n be p r o v e d .

I f n ---- 1 it is for i n s t a n c e sufficient b o t h in t h e o r e m s 4.1 a n d 4.2 t o assume t h a t f , a n d f * are finite e x c e p t in a d e n u m e r a b l e set E if in a d d i t i o n we k n o w t h a t

f * H R ( x ) ~ - o ( R ) as R - + oo for all x C E .

I f n ~_ 2 it is sufficient in t h e o r e m 4.1 t o assume t h a t f , a n d f * are finite e x c e p t in a set o f zero c a p a c i t y w i t h r e s p e c t t o t h e kernel - - G. I n t h e o r e m 4.2 it is sufficient t o assume for n ~ 2 t h a t f , a n d f * are finite e x c e p t in a set w i t h o u t finite cluster points.

T h e following r e s u l t seems to be new. F o r t h e sake o f simplicity we do n o t f o r m u l a t e it in full generality.

Ta~OREM 6.1. Suppose n ~ 2. Let ~ e z n a.~ e i(m'x) be a given trigonometric series with complex coefficients and assume that H E 9~ is such that X ]amH(m/R)] <

for all R > O. Assume further that E is a bounded closed set of capacity zero with respect to the kernel -- G.

if

(i) [a l=o(N2)

N ~ i m I < _ 2 N

(it) l i m ~ + + a , ~ H ( m / R ) e i(m'x) ~ - C for x ~ E , where C is a constant,

(iii) there exists ~ ~ 0 such that X a.,H(m/R)e i('~'~) ~ O(R 2-~) as J~--> ~ for x E E ,

then a.~-~ O, m :/: O, and a o ~- C.

Proof. W e m a y w i t h o u t loss o f g e n e r a l i t y assume t h a t a 0 = 0.

L e t F o E L2(T ~) be t h e f u n c t i o n w h o s e F o u r i e r series is 2 7 - a,~lm1-2 e i('~'~).

Consider F o as a periodic f u n c t i o n o n R n a n d let B C R ~ be a n a r b i t r a r y open ball c o n t a i n i n g E . As in t h e p r o o f o f t h e o r e m 4.2, we can m u l t i p l y _F 0 b y a f u n c t i o n h E C~~ n) w h i c h equals 1 on B a n d w h i c h vanishes outside a neigh- b o u r h o o d B o o f B. I t is sufficient t o p r o v e t h a t t h e f u n c t i o n F ---- h F o equals C a.e. on B. P u t Z = Ch a n d let as before u d e n o t e t h e f u n c t i o n - - 2 H ' ( r ) / M r .

F r o m (it) a n d (iii) it follows t h a t

oo

f (F * AH,)(x)dt/t 3

1

(14)

236 AI~KIV FOB, ~ATEMATIK. Vol. 9 :No. 2

converges b o t h w h e n x r a n d w h e n x C B ~ C E a n d hence, using (4.1), t h a t F * ~v(X) t e n d s t o a finite limit for all x E B as T t e n d s t o i n f i n i t y .

W e can t h e r e f o r e assume t h a t _~ has b e e n chosen finite e v e r y w h e r e a n d such t h a t l i m T _ ~ | F for all x E B .

L e t D be t h e set o f p o i n t s w h e r e 2' is n o t c o n t i n u o u s a n d suppose t h a t D is n o n - e m p t y . Using t h e B a i r e c a t e g o r y t h e o r e m we t h e n can p r o v e t h a t t h e r e exists a bM1 B ' = B(xo, 2d) such t h a t its c e n t r e x 0 belongs t o D a n d such t h a t R~-2(F * ~ H ~ ) ( x ) is u n i f o r m l y b o u n d e d for x E D f3 B ' a n d for all R > 1. B y (4.1) this implies t h a t F * Zv converges u n i f o r m l y in /~ t3 B ' a n d hence t h a t 2'[~ n 4, is continuous.

W r i t e q~ = F - - ;~ 9 G a n d n o t e t h a t X * G is continuous. P r o c e e d i n g as in t h e p r o o f o f t h e o r e m 4.2 we g e t t h a t r is c o n t i n u o u s in a n e i g h b o u r h o o d o f Xo a n d t h u s t h a t F is c o n t i n u o u s in B.

Using (4.1) once m o r e we s e e t h a t lim ( F 9 AKR)(x) = C for all x E B n C E a n d we can conclude f r o m l e m m a 3.2 t h a t t h e s u p p o r t o f d ~ is c o n t a i n e d in E . Since E has c a p a c i t y zero a n d since ~ is c o n t i n u o u s in B it follows f r o m a classical t h e o r e m [3, t h e o r e m V I I . I ] t h a t q~ is h a r m o n i c in t h e whole o f B, which gives t h e t h e o r e m .

7. A pointwise saturation theorem

I n this section we shall consider a p r o b l e m o f a slightly d i f f e r e n t t y p e .

I t is a w e l l - k n o w n t h e o r e m b y I-~ille t h a t if t h e Abel-Poisson m e a n s u(r, x) o f a f u n c t i o n f E C(T) satisfy

u(r, x) - - f ( x )

lim ---- 0 (7.1)

r-+l--0 1 - - r

u n i f o r m l y in T t h e n f equals a c o n s t a n t [3, p. 122]. F o r an a c c o u n t o f f u r t h e r results in this d i r e c t i o n see e.g. S u n o u c h i [10].

W e shall here p r o v e a t h e o r e m which shows t h a t t h e a b o v e result r e m a i n s t r u e e v e n u n d e r t h e m u c h w e a k e r a s s u m p t i o n t h a t (7.1) holds pointwise. A n d r i e n k o [1]

has r e c e n t l y o b t a i n e d a similar result for (C,1)-summability.

L e t N b e t h e d i s t r i b u t i o n on R whose F o u r i e r t r a n s f o r m is ~ ( t ) = - - i 9 sign t, define 97 = f 9 N (where t h e c o n v o l u t i o n is d e f i n e d b y m e a n s o f t h e F o u r i e r t r a n s -

n + i

form) a n d let P be t h e Poisson kernel, i.e. P ( x ) = cn(1 + lx[~)--~ - w h e r e t h e c o n s t a n t s cn are chosen so t h a t /3(0) = 1.

T h e m a i n results o f this section is t h e following t h e o r e m .

Ttt:EORE~I 7.1. Let n = 1 a n d let X be the space L~(R) or LI(T). S u p p o s e that f E X is f i n i t e everywhere and let - - ~ < a < b < + ~). I f

(15)

O N T I - I E U N I Q U E L V E S S O:F S U S ~ I V [ A B L E T I : t I G O N O l V I E T ~ I C S E R I E S A N D I N T E G R A L S 237

lim JR(f , PR(x) -- f(x)) = g(x) for all x E [a, b] , (7.2)

R--~ oO

where g is a locally integrable and finite function, then

dx -- -- g in [a, b] .

Proof. We start by noting t h a t the proof of theorem 4.2 actually gives a stronger result t h a n stated in t h a t theorem. We have, in fact, only used the assumptions (ii) and (iii) to prove t h a t the integral

co

(f 9 H,/(x/g

1

is convergent and t h a t

and

f dt

~*(x) : lim 2R 2 ( f 9 H,)(x) -~

R - + oo R

09

f ( f dt

~,(x) = lim 2R 2 9 H,)(x) t~

R - + ~ R

both are finite for all x and t h a t ~ , >_ Z for some locally integrable function Z.

The assumptions on f , and f * in theorem 5.2 and 5.4 could therefore be replaced by, for instance, t h e assumption t h a t for all x E [a, b]

and

( f , H , ) ( x ) ~ <

1

f d,

lim 2R 2 ( f * Ht)(x) -~ : g(x),

R

where g is a finite and locally integl'able function.

Using this observation it is now an easy m a t t e r to deduce theorem 7.1.

I f we set y = . R -1 we can write

Y

l f d

R ( f 9 PR -- f ) = y dt ( f * P,-Jdt

0

(16)

238 ARKIV FOR MATEMATIK. Vol. 9 No. 2

L e t ~0 be t h e t e m p e r e d distribution whose Fourier t r a n s f o r m is T h e n t h e Fourier t r a n s f o r m of d/dt(f. P,-1) equals

d ^^ d ] ^ ^ P

d--t ( f P ~ ) = ~ ( " e - ' l Y l ) = q)" P ' - ' = ( ~ v * t-,) 9 Using this we can write (7.2) as

l/

Y

lim - (q *P,-,)(z)dt=g(x) y~o+ Y

0

which, after a change of variable, gives

-- IY[f(Y).

ix)

f

lim .R (~v 9 P,)(x) -~ = g(x).

R--->- oo R

B y m e a n s of a p a r t i a l i n t e g r a t i o n we finally obtain

oo

f

lim 2R ~ (~0 9 Pt)(x)~ = g(x)

R.--> oo R

for x E [ a , b ] . B u t , since f E X, we k n o w t h a t

2 N

f l~ldx

= o(N2) (or ~ I~(k)l = 0(5"2))

N

and hence we can b y t h e observation in t h e beginning of this proof, use t h e o r e m 5.2 or 5.4 to conclude t h a t

On t h e other h a n d ,

a n d t h u s

= g a.e. in [a,b].

(f-)" (t) = - ~ f~t) sign t

,f(t/sign

\dx/ (t)=- t - - - which proves t h e theorem.

_Remark 7.1. I t m i g h t be w o r t h pointing o u t t h a t t h e particular p r o p e r t y of t h e Poisson kernel t h a t m a k e s t h e above p r o o f work is t h a t t h e function (-- x P ) - belongs to c~..

B y an analogous m e t h o d we can, using t h e o r e m 5.3, o b t a i n t h e following result.

(17)

O1% r T H E U P q I Q U ] g N E S S O F S U ] ~ M A B L E T R I G O N O M E T I ~ I C S E R I E S A N D I N T E G R A L S 239

T H E O R E M 7.2. L e t n ~ 2 a n d let B c R n be a n arbitrary open ball. A s s u m e that f E L ~ ( R ~) N LI(R ") is f i n i t e - v a l u e d . I f

lim R ( f 9 PR(x) - - f ( x ) ) = 0 f o r all x e B ,

R - + vo

then f = O i n B .

As a corollary to theorem 7.1 we can get the result obtained by Andrienko [1]

in the case when g = 0 .

COROLLARY 7.1. L e t X , f a n d g be as i n theorem 7.1 a n d denote the F e j & kernel

by n. If

lim R ( f * DR(x) ,-- f ( x ) ) = g(x) f o r all x C [a, b] (7.3)

R.--> oO

then d ~ d x = - - g i n [a, b].

Proof. I t is sufficient to prove t h a t (7.3) implies (7.2).

Fix x E R and assume t h a t f ( x ) = 0 which can be done without loss of generality. Set ~o(t) = ~(t)e ~x' i k f ( - - t)e-~%

We can t h e n write

oo oo oo

i f f( i f

f * P R ( x ) ~- ~ t ) e - ~' e ~x' dt = - ~ y~(t)dt u - - e-U d u =

- - m 0 t ] R

oO u R

i f f

- - 2~ ue - u d u yJ(t) 1 - - dt = ue - u Q ( u R ) d u ,

0 0 0

where, by assumption, Q(u) = g(x) 9 u -z ~- o(u -z) as u - + oo and where IQ/ is bomlded. B y means of a simple change of variable we now immediately obtain our corollary.

We finish this section b y remarking t h a t lemma 3.2 could be formulated as a pointwise saturation theorem. The method of proof of the lemma does in fact give the following result, which is similar to ~ theorem proved by H. S. Shapiro [6, p. 27]

(in the case when n = 1) under stronger assumptions on f.

T H E O R E M 7.3. S u p p o s e that H is a positive radial f u n c t i o n on R n w h i c h satisfies

(i) f H dx = 1,

R n

(ii) f . dx =

a s

[~[ > _ R

(18)

240 ARKIV FOR MATEMATIK. Vol. 9 ~qo. 2 I f f is a bounded continuous function on R ~ for which

lim R2(f 9 HR(x) -- f(x)) = g(x)

R - + oo

at each point x C R ~, where g is finite and locally integrable, then

zf=g.

(7.4)

Proof. F r o m condition (ii) it follows t h a t it is sufficient to prove the theorem in the ease when f (and hence also g) has compact support.

B y solving the equation

a2K n - 1 OK A K - - Or 2 ~- r ar -- H we get a function

K ( x ) = / r l " " d r f H ( y ) d y

lxl Ixl >- r

satisfying A K = H - (~ and (7.4) can be written lim ( f 9 AKR)(x) = g(x) .

R - + oo

The argument used in the proof of lemma 3.2 now gives the result.

Note. After the completion of the manuscript the author was informed t h a t prof. H. Berens recently has obtained theorem 7.1 b y a different but related argument [2].

(19)

ON T H E U N I Q U E N E S S OF S U M M A B L E T R I G O N O M E T R I C S E R I E S AI~D I N T E G R A L S 241

References

1. ANDRIEI~KO, V. A., O pribli~enii funkcij srednimi Fejera. Sib. Mat. Zurn. 9 (1968), 3--11.

2. BEREI'~S, H., On the approximation of Fourier series b y Abel means. (To appear.) 3. C~LESON, L., Selected problems on exceptional sets. V a n Nostrand, Princeton 1967. (Mimeo-

graphed, Uppsala 1961.)

4. S ~ s , S., Theory of the integral. Monografie matematyczne, Warsaw 1937.

5. SCHWARTZ, L., Thgorie des distributions. H e r m a n n , Paris 1950.

6. SHArIRO, H. S., Smoothing and approximation of functions. V a n l~ostrand, New York 1969.

7. SHAPIRO, V. L., Cantor-type uniqueness of multiple trigonometric integrals. Pae. J . Math. 5 (1955) 607--622.

8. --~>-- Uniqueness of multiple trigonometric series. A n n . Math. 66 (1957), 467--480.

9. --~>-- Fourier series in several variables. Bull. Amer. Math. Soc. 70 (1964), 48--93.

I0. Su~oucHi, G., Saturation in the theory of best approximation. On approximation theory.

Proceedings o] a Con]erence at Oberwolfach, edited b y Butzer a n d Korevaar. Birk- h~uscr, Basel 1964.

11. VERBLUNSKY, S., On the theory of trigonometric series. I I . Proe. London Math. Soc. 34 (1932), 457--491.

12. --,>-- On trigonometric integrals a n d harmonic functions. Proc. London Math. Soc. 38 (1935), 1.--48.

13. ZYGMUND, A., Trigonometric series. I. Cambridge U n i v e r s i t y Press, Cambridge 1959.

14. --~>-- Sur les s@ries trigonomgtriques sommables par le proc~d@ de Poisson. Math. Z. 25 (1926), 274--290.

Received 11.2.1971. TorbjSrn Hedberg

HSgskolenheten S-95106 Lule~

Sweden

Références

Documents relatifs

En France, le panier de biens et services de santé peut être défini comme la liste des services de santé et biens médicaux faisant l’objet d’une prise en charge

On note s le nombre de sommets, a le nombre d'arêtes et f le nombre

On note s le nombre de sommets, a le nombre d'arêtes et f le nombre

To be precise, in saying that the Diriehlet problem is solvable for a region K we mean that, given any continuous data on the boundary of K, there exists a corresponding

In [19] or [8], once a bound is obtained for torsion Λ- modules, the extension to higher homological degrees is rather easy using the trivial dimension formula for free

Brown [1] introduced the concept of entire methods of summation and proved a necessary and sufficient condition that an infinite matrix A = (an,k) be an entire

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les