• Aucun résultat trouvé

Bayesian integration of external information into the single step approach for genomically enhanced prediction of breeding values

N/A
N/A
Protected

Academic year: 2021

Partager "Bayesian integration of external information into the single step approach for genomically enhanced prediction of breeding values"

Copied!
12
0
0

Texte intégral

(1)

Bayesian integration of external

information into the single step

approach for genomically enhanced

prediction of breeding values

J. Vandenplas, I. Misztal, P. Faux, N.

Gengler

(2)

Unbiased EBV if genomic, pedigree and

phenotypic information considered simultaneously

Problem

Only records related to selected animals availableBias due to genomic pre-selection

Single step genomic evaluation (ssGBLUP)

Simultaneous combination of genomic, pedigree and phenotypic information (=internal information)

No integration of external information (e.g. MACE-EBV)

(3)

Integration of a priori known external information

into ssGBLUP

By a Bayesian approach

To avoid multi-step methodsBy considering

simplifications of computational burden,

a correct propagation of external information,

and no multiple considerations of contributions due to relationships.

(4)

Methods

Bayesian approach

(Dempfle, 1977; Legarra et al., 2007)

2 groups of animals

1) animals I = internal animals with only records in  Ia: non genotyped animals

Ib: genotyped animals

2) animals E = external animals with records in and possible records in

 Ea: non genotyped animals Eb: genotyped animals

I

y

E

y

I

y

(5)

Methods

An internal evaluation

All animals Ia, Ib, Ea, EbOnly instead of where ) G , MVN(μ ) y u p(ˆI EE *

        E 1 * I 1 I I 1 I I I 1 * I 1 I I 1 I I 1 I I 1 I

μ

G

y

R

Z'

y

R

X'

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

ˆ

ˆ

G) MVN(0, ) u p(ˆ II

y

u u u

' uˆI  ˆIIa ˆIIb ˆIE

(6)

Methods

An unknown external ssGBLUP

All animals Ia, Ib, E

Genomic information included in

Only ( precorrected for fixed effects)

y

*E

IbIb

G

E 1 * * Eb 1 EEb * Ea 1 EEa EEb EEa EIb EIa EbEb EEb 1 EEb EbEa EEa 1 EEb EbIb EbIa EaEb EEb 1 EEa EaEa EEa 1 EEa EaIb EaIa Ib2b IbEa IbIb IbIa Ia2b IaEa IaIb IaIa μ G y R Z' y R Z' 0 0 u u u u G Z R Z' G Z R Z' G G G Z R Z' G Z R Z' G G G G G G G G G G                                                      ˆ ˆ ˆ ˆ

(7)

Methods

Problem

Unknown external ssGBLUP

Available

External genetic evaluation of animals Ea and Eb

without animals Ia and Ibwithout genomic information

 

* EE 1 EE * E 1 EE * EE 1 * EE EE 1 EE

R

Z

G

u

Z'

R

y

D

u

Z'

ˆ

ˆ

   EbEb * EbEb EbEa * EbEa *EaEb EaEb *EaEa EaEa 1 * EE 1 EE EE 1 EE

G

D

G

D

G

D

G

D

G

D

Z

R

Z'

1 * EE

G

(8)

                                          * EEb EbEb * EEa EbEa * EEb EaEb * EEa EaEa E 1 * EbEb EbEb * EbEb EbEa * EbEa EbEa EbIb EbIa EaEb EaEb * EaEb EaEa * EaEa EaEa EaIb EaIa Ib2b IbEa IbIb IbIa Ia2b IaEa IaIb IaIa 1 * u D u D u D u D 0 0 μ G G G D G D G G G G G D G D G G G G G G G G G G G G ˆ ˆ ˆ ˆ

Methods

Substitution in the unknown external ssGBLUP

and * E 1 EE

R

y

Z'

1 EE EE

R

Z

Z'

(9)

Methods

Finally,

internal

evaluation = ssGBLUP

integrating external information

        E 1 * I 1 I I 1 I I I 1 * I 1 I I 1 I I 1 I I 1 I

μ

G

y

R

Z'

y

R

X'

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

ˆ

ˆ

                      EbEb EbEb * EbEb EbEa * EbEa EbEa EbIb EbIa EaEb EaEb * EaEb EaEa * EaEa EaEa EaIb EaIa Ib2b IbEa IbIb IbIa Ia2b IaEa IaIb IaIa G G D G D G G G G G D G D G G G G G G G G G G G                 * EEb EbEb * EEa EbEa * EEb EaEb * EEa EaEa u D u D u D u D 0 0 ˆ ˆ ˆ ˆ

(10)

Methods

Approximations and simplifications of

computational burden

          E 1 I 1 I I 1 I I I 1 * 1 1 I 1 I I 1 I I 1 I I 1 I

μ

D

y

R

Z'

y

R

X'

u

β

G

D

G

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

ˆ

ˆ

ˆ

* *EE 1

E 1 * EE * EE * E EI u ) MNV G G u ,(G ) u p( ˆ ˆ   ˆ 

*'

' E ' EI E

u

u

μ

ˆ

ˆ

ˆ

(11)

Methods

Approximations and simplifications of

computational burden

          E 1 I 1 I I 1 I I I 1 * 1 1 I 1 I I 1 I I 1 I I 1 I

μ

D

y

R

Z'

y

R

X'

u

β

G

D

G

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

ˆ

ˆ

ˆ

traits

,...,

1

;

)

)

REL

1

(

REL

(

,...,

1

;

)

(

ij ij *

t

j

diag

animals

n

i

blockdiag

   i i 1 0 i 1 1

Δ

Δ

G

Δ

Λ

Λ

G

D

(12)

Simulation

Références

Documents relatifs

This study showed that patients with rheumatic disease had a two-fold increase in migraine prevalence (34%) and a three-fold increase in neuropathic pain prevalence (21.5%) compared

The objectives of our study were to: (1) compare these two grouping methods based on genotyping infor- mation to improve accuracy of selection with group records, when using

Prediction of genomic breed- ing values based on pre-selected SNPs using ssGBLUP, WssGBLUP and BayesB for Edwardsiellosis resistance in Japanese flounder... Genomic selection (GS)

In this study, we investigated, for different heritabilities, the impact of intensity and type of preselection on the subsequent evaluation of preselected animals in terms of

When using the animal DHGLM, the use of a combined numerator and genomic relationship matrix significantly increased the predictive ability for breeding values of uniformity of

We propose three criteria to increase accuracies by choosing animals that represent the most independent chromosome seg- ments: (1) choosing animals from all generations, since new

Accuracy of genomic predictions of breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian ridge regression (BRR), Bayes C

The objec- tives of this study were: (1) to describe genomic prediction models that involve separate steps to estimate SNP variances and to estimate GEBV (genome-enhanced