• Aucun résultat trouvé

Projectively equivariant quantizations over the superspace R^{p|q}

N/A
N/A
Protected

Academic year: 2021

Partager "Projectively equivariant quantizations over the superspace R^{p|q}"

Copied!
95
0
0

Texte intégral

(1)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantizations over

the superespace R

p|q

Fabian Radoux

(2)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q(¯f ) = Q(f )∗, Q({f , g }) = i

(3)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q(¯f ) = Q(f )∗, Q({f , g }) = i

(4)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q(¯f ) = Q(f )∗, Q({f , g }) = i

(5)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q(¯f ) = Q(f )∗, Q({f , g }) = i

(6)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q({f , g }) = i

(7)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization Introduction

• Classical observables : functions on a symplectic manifold (M, ω).

• Quantum observables : operators on a Hilbert space H.

• Dirac problem : find a bijection Q : C∞(M) → L(H) such

that

Q(1M) = IdH,

Q(¯f ) = Q(f )∗, Q({f , g }) = i

(8)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective • Hamiltonian H, observable F ,

Classical mechanics Quantum mechanics

dF dt = {H, F } 7−→ dF dt = i ~[H, F ] •Prequantization : if H = L2(M), if ω = d α, Q(f ) = ~ iXf + f − hXf, αi.

•Prequantum fiber bundle : (Y , ˜α), where π : Y → M is a

S1-fiber bundle on M and where ˜α is a one-form on Y .

(9)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • Hamiltonian H, observable F ,

Classical mechanics Quantum mechanics

dF dt = {H, F } 7−→ dF dt = i ~[H, F ] •Prequantization : if H = L2(M), if ω = d α, Q(f ) = ~ iXf + f − hXf, αi.

•Prequantum fiber bundle : (Y , ˜α), where π : Y → M is a

S1-fiber bundle on M and where ˜α is a one-form on Y .

(10)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective • Hamiltonian H, observable F ,

Classical mechanics Quantum mechanics

dF dt = {H, F } 7−→ dF dt = i ~[H, F ] •Prequantization : if H = L2(M), if ω = d α, Q(f ) = ~ iXf + f − hXf, αi.

•Prequantum fiber bundle : (Y , ˜α), where π : Y → M is a

S1-fiber bundle on M and where ˜α is a one-form on Y .

(11)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • Hamiltonian H, observable F ,

Classical mechanics Quantum mechanics

dF dt = {H, F } 7−→ dF dt = i ~[H, F ] •Prequantization : if H = L2(M), if ω = d α, Q(f ) = ~ iXf + f − hXf, αi.

•Prequantum fiber bundle : (Y , ˜α), where π : Y → M is a

S1-fiber bundle on M and where ˜α is a one-form on Y .

(12)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of • Hamiltonian H, observable F ,

Classical mechanics Quantum mechanics

dF dt = {H, F } 7−→ dF dt = i ~[H, F ] •Prequantization : if H = L2(M), if ω = d α, Q(f ) = ~ iXf + f − hXf, αi.

•Prequantum fiber bundle : (Y , ˜α), where π : Y → M is a

(13)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(14)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(15)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(16)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(17)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(18)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

(19)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Problem of the prequantization : if M = T∗M, L2(TM) is

not an irreducible representation of the Heisenberg Lie algebra−→reduction of H.

• Polarization of (M, ω) :distribution P ⊂ T M.

• Lift of P to TY : ˜P ⊂ TY s.t. π∗P ⊂ P and h ˜˜ P, ˜αi = {0}.

•HP = {ψ ∈ H : ˜X ψ = 0 ∀ ˜X ∈ ˜P}.

•The observable f is quantizable if Q(f ) preserves HP.

•The set of quantizable observables : A.

(20)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•If M = T∗M, if P is the vertical polarization, then HP ∼= L2(M), A ∼= S≤1(M).

•Is it possible to extend this geometric quantization to S(M) ?

•Is this prolongation unique ?

(21)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•If M = T∗M, if P is the vertical polarization, then HP ∼= L2(M), A ∼= S≤1(M).

•Is it possible to extend this geometric quantization to S(M) ?

•Is this prolongation unique ?

(22)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•If M = T∗M, if P is the vertical polarization, then HP ∼= L2(M), A ∼= S≤1(M).

•Is it possible to extend this geometric quantization to S(M) ?

•Is this prolongation unique ?

(23)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•If M = T∗M, if P is the vertical polarization, then HP ∼= L2(M), A ∼= S≤1(M).

•Is it possible to extend this geometric quantization to S(M) ?

•Is this prolongation unique ?

(24)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

Projectively equivariant quantization

•There are many ways to extend the geometric quantization to S(M).

•Idea to restore uniqueness : to add a symmetry condition. •The geometric quantization is the unique application

Q : S≤1(M) → D(M) such that LXQ = 0 for all

X ∈ Vect(M).

•There is no prolongation Q of the geometric quantization

(25)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantization

•There are many ways to extend the geometric quantization to S(M).

•Idea to restore uniqueness : to add a symmetry condition.

•The geometric quantization is the unique application

Q : S≤1(M) → D(M) such that LXQ = 0 for all

X ∈ Vect(M).

•There is no prolongation Q of the geometric quantization

(26)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

Projectively equivariant quantization

•There are many ways to extend the geometric quantization to S(M).

•Idea to restore uniqueness : to add a symmetry condition. •The geometric quantization is the unique application

Q : S≤1(M) → D(M) such that LXQ = 0 for all

X ∈ Vect(M).

•There is no prolongation Q of the geometric quantization

(27)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantization

•There are many ways to extend the geometric quantization to S(M).

•Idea to restore uniqueness : to add a symmetry condition. •The geometric quantization is the unique application

Q : S≤1(M) → D(M) such that LXQ = 0 for all

X ∈ Vect(M).

•There is no prolongation Q of the geometric quantization

(28)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(29)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(30)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(31)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(32)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

m

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(33)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

vector field on Rm.

(34)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Equivariant quantization :action of a Lie group G on M :

Φ : G × M → M.

•Equivariant quantization Q : linear bijection Q : S(M) → D(M) s.t. σ(Q(S)) = S and s.t. Q(Φ∗gS ) = Φ∗gQ(S ) ∀g ∈ G .

•Q(Lh∗S ) = Lh∗Q(S ) ∀h ∈ g.

•Idea : take G small enough to have a quantization and big enough to have uniqueness.

• PGL(m + 1, R) acts on RPm.

•X ∈ sl(m + 1, R) 7→ X∗

(35)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Casimir operator method : (S(Rm), L) and (D(Rm), L) are

representations of sl(m + 1, R).

• C and C : second-order Casimir operators of sl(m + 1, R) on S(M) and D(M).

•Necessary and sufficient condition to have the existence of an sl(m + 1, R)-equivariant quantization : if C (S) = αS, then ∃! Q(S) s.t. C(Q(S )) = αQ(S ), σ(Q(S )) = S and s.t. a technical property is satisfied.

(36)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• Casimir operator method : (S(Rm), L) and (D(Rm), L) are

representations of sl(m + 1, R).

• C and C : second-order Casimir operators of sl(m + 1, R) on S(M) and D(M).

•Necessary and sufficient condition to have the existence of an sl(m + 1, R)-equivariant quantization : if C (S) = αS, then ∃! Q(S) s.t. C(Q(S )) = αQ(S ), σ(Q(S )) = S and s.t. a technical property is satisfied.

(37)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Casimir operator method : (S(Rm), L) and (D(Rm), L) are

representations of sl(m + 1, R).

• C and C : second-order Casimir operators of sl(m + 1, R) on S(M) and D(M).

•Necessary and sufficient condition to have the existence of an sl(m + 1, R)-equivariant quantization : if C (S) = αS, then ∃! Q(S) s.t. C(Q(S )) = αQ(S ), σ(Q(S )) = S and s.t. a technical property is satisfied.

(38)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

Projectively equivariant quantization over Rp|q • f ∈ C∞p|q : f (x1, . . . , xp) =P

I ⊆{1,...,q}fI(x1, . . . , xp)θI.

• Super vector field : superderivation of C∞p|q.

• λ-density over Rp|q : smooth function f ∈ C∞p|q s.t.

Xf = X (f ) + λ div(X )f , where div(X ) = p+q X i =1 (−1)y˜iXfi ∂yiXi. • (V , ρ) : representation of gl(p|q).

(39)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantization over Rp|q • f ∈ C∞p|q : f (x1, . . . , xp) =P

I ⊆{1,...,q}fI(x1, . . . , xp)θI.

• Super vector field : superderivation of C∞p|q.

• λ-density over Rp|q : smooth function f ∈ C∞p|q s.t.

Xf = X (f ) + λ div(X )f , where div(X ) = p+q X i =1 (−1)y˜iXfi ∂yiXi. • (V , ρ) : representation of gl(p|q).

(40)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

Projectively equivariant quantization over Rp|q • f ∈ C∞p|q : f (x1, . . . , xp) =P

I ⊆{1,...,q}fI(x1, . . . , xp)θI.

• Super vector field : superderivation of C∞p|q.

• λ-density over Rp|q : smooth function f ∈ C∞p|q s.t.

Xf = X (f ) + λ div(X )f , where div(X ) = p+q X (−1)y˜iXfi ∂yiXi. • (V , ρ) : representation of gl(p|q).

(41)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantization over Rp|q • f ∈ C∞p|q : f (x1, . . . , xp) =P

I ⊆{1,...,q}fI(x1, . . . , xp)θI.

• Super vector field : superderivation of C∞p|q.

• λ-density over Rp|q : smooth function f ∈ C∞p|q s.t.

Xf = X (f ) + λ div(X )f , where div(X ) = p+q X i =1 (−1)y˜iXfi ∂yiXi. • (V , ρ) : representation of gl(p|q).

(42)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Projectively equivariant quantization over Rp|q • f ∈ C∞p|q : f (x1, . . . , xp) =P

I ⊆{1,...,q}fI(x1, . . . , xp)θI.

• Super vector field : superderivation of C∞p|q.

• λ-density over Rp|q : smooth function f ∈ C∞p|q s.t.

Xf = X (f ) + λ div(X )f , where div(X ) = p+q X i =1 (−1)y˜iXfi ∂yiXi. • (V , ρ) : representation of gl(p|q).

(43)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f . • (LXD)(f ) = LµX ◦ Df − (−1)X ˜˜DD ◦ Lλ Xf .

(44)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f . • (LXD)(f ) = LµX ◦ Df − (−1)X ˜˜DD ◦ Lλ Xf .

(45)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f . • (LXD)(f ) = LµX ◦ Df − (−1)X ˜˜DD ◦ Lλ Xf .

(46)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f . • (LXD)(f ) = LµX ◦ Df − (−1)X ˜˜DD ◦ Lλ Xf .

(47)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f . • (LXD)(f ) = LµX ◦ Df − (−1)X ˜˜DD ◦ Lλ Xf .

(48)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • LX(f ⊗ v ) = X (f ) ⊗ v + (−1)X ˜ef PijfJ j i ⊗ ρ(eji)v , where Jij = (−1)y˜iX +1e (∂yiXj).

• V for densities : Bδ : 1|0-dimensional vector space spanned

by one element u.

• Representation ρ of gl(p|q) on Bδ : ρ(A)u = −δstr(A)u.

• Sk δRp|q = C∞p|q⊗ (Bδ⊗ SkRp|q). • Differential operator D ∈ Dk λ,µ: D(f ) = X |α|6k fα ∂ ∂x1 α1 · · · ∂ ∂xp αp ∂ ∂θ1 αp+1 · · · ∂ ∂θp αp+q f .

(49)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Space of symbols : graded space associated to Dλ,µ.

•Space of symbols isomorphic to Sδ=L∞l =0Sδl, δ = µ − λ.

•Isomorphism : σk : Dk → Sk : D 7→ X |α|=k fα⊗e1α1∨· · ·∨e αp p ∨ep+1αp+1∨· · ·∨e αp+q p+q .

•Quantization on Rp|q : linear bijection Q : S

δ→ Dλ,µ s.t.

(50)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• Space of symbols : graded space associated to Dλ,µ.

•Space of symbols isomorphic to Sδ=L∞l =0Sδl, δ = µ − λ.

•Isomorphism : σk : Dk → Sk : D 7→ X |α|=k fα⊗e1α1∨· · ·∨e αp p ∨ep+1αp+1∨· · ·∨e αp+q p+q .

•Quantization on Rp|q : linear bijection Q : S

δ→ Dλ,µ s.t.

(51)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Space of symbols : graded space associated to Dλ,µ.

•Space of symbols isomorphic to Sδ=L∞l =0Sδl, δ = µ − λ.

•Isomorphism : σk : Dk → Sk : D 7→ X |α|=k fα⊗e1α1∨· · ·∨e αp p ∨ep+1αp+1∨· · ·∨e αp+q p+q .

•Quantization on Rp|q : linear bijection Q : S

δ→ Dλ,µ s.t.

(52)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• Space of symbols : graded space associated to Dλ,µ.

•Space of symbols isomorphic to Sδ=L∞l =0Sδl, δ = µ − λ.

•Isomorphism : σk : Dk → Sk : D 7→ X |α|=k fα⊗e1α1∨· · ·∨e αp p ∨ep+1αp+1∨· · ·∨e αp+q p+q .

•Quantization on Rp|q : linear bijection Q : S

(53)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

• If X is a linear super vector field over Ω, then π(X ) ∈ Vect(Rp|q) : π(X )(f ) = i−1◦ X ◦ i (f ), where f ∈ C∞p|q.

(54)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

• If X is a linear super vector field over Ω, then π(X ) ∈ Vect(Rp|q) : π(X )(f ) = i−1◦ X ◦ i (f ), where f ∈ C∞p|q.

(55)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

• If X is a linear super vector field over Ω, then π(X ) ∈ Vect(Rp|q) : π(X )(f ) = i−1◦ X ◦ i (f ), where f ∈ C∞p|q.

(56)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

• If X is a linear super vector field over Ω, then π(X ) ∈ Vect(Rp|q) : π(X )(f ) = i−1◦ X ◦ i (f ), where f ∈ C∞p|q.

(57)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

• If X is a linear super vector field over Ω, then π(X ) ∈ Vect(Rp|q) : π(X )(f ) = i−1◦ X ◦ i (f ), where f ∈ C∞p|q.

(58)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of

•Projective superalgebra of vector fields

• pgl(p + 1|q) = gl(p + 1|q)/RId ←→ subalgebra of vector fields over Rp|q.

• Ω subset of Rp+1 equal to {(x0, . . . , xp) : x0> 0}.

• H(Ω) : space of restrictions of homogeneous functions over Rp+1|q to Ω.

• Bijective correspondence i : C∞p|q(Rp) → H(Ω).

• Homomorphism hm,n : gl(m|n) → Vect(Rm|n).

(59)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• π ◦ hp+1,q(Id) = 0, thus π ◦ hp+1,q induces a

homomorphism from pgl(p + 1|q) to Vect(Rp|q).

• pgl(p + 1|q) ←→ g−1⊕ g0⊕ g1, g−1= Rp|q, g0= gl(p|q)

and g1= (Rp|q)∗.

• g−1 : constant vector fields, g0 : linear vector fields, g1 :

quadratic vector fields.

• Projectively equivariant quantization : quantization Q s.t. LXh◦ Q = Q ◦ LXh for every h ∈ pgl(p + 1|q).

(60)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• π ◦ hp+1,q(Id) = 0, thus π ◦ hp+1,q induces a

homomorphism from pgl(p + 1|q) to Vect(Rp|q).

• pgl(p + 1|q) ←→ g−1⊕ g0⊕ g1, g−1= Rp|q, g0= gl(p|q)

and g1 = (Rp|q)∗.

• g−1 : constant vector fields, g0 : linear vector fields, g1 :

quadratic vector fields.

• Projectively equivariant quantization : quantization Q s.t. LXh◦ Q = Q ◦ LXh for every h ∈ pgl(p + 1|q).

(61)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• π ◦ hp+1,q(Id) = 0, thus π ◦ hp+1,q induces a

homomorphism from pgl(p + 1|q) to Vect(Rp|q).

• pgl(p + 1|q) ←→ g−1⊕ g0⊕ g1, g−1= Rp|q, g0= gl(p|q)

and g1 = (Rp|q)∗.

• g−1 : constant vector fields, g0 : linear vector fields, g1 :

quadratic vector fields.

• Projectively equivariant quantization : quantization Q s.t. LXh◦ Q = Q ◦ LXh for every h ∈ pgl(p + 1|q).

(62)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• π ◦ hp+1,q(Id) = 0, thus π ◦ hp+1,q induces a

homomorphism from pgl(p + 1|q) to Vect(Rp|q).

• pgl(p + 1|q) ←→ g−1⊕ g0⊕ g1, g−1= Rp|q, g0= gl(p|q)

and g1 = (Rp|q)∗.

• g−1 : constant vector fields, g0 : linear vector fields, g1 :

quadratic vector fields.

(63)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Construction of the quantization

• QAff : inverse of the total symbol map σ.

• LXS = QAff−1◦ LX ◦ QAff(S ), for every S ∈ Sδ and

X ∈ Vect(Rp|q).

• Projectively equivariant quantization←→

pgl(p + 1|q)−module isomorphism from the representation (Sδ, L) to the representation (Sδ, L).

• Application γ :

γ : g → gl(Sδ, Sδ) : h 7→ γ(h) = LXh − LXh.

(64)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•Construction of the quantization

• QAff : inverse of the total symbol map σ.

• LXS = QAff−1◦ LX ◦ QAff(S ), for every S ∈ Sδ and

X ∈ Vect(Rp|q).

• Projectively equivariant quantization←→

pgl(p + 1|q)−module isomorphism from the representation (Sδ, L) to the representation (Sδ, L).

• Application γ :

γ : g → gl(Sδ, Sδ) : h 7→ γ(h) = LXh − LXh.

(65)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•Construction of the quantization

• QAff : inverse of the total symbol map σ.

• LXS = QAff−1◦ LX ◦ QAff(S ), for every S ∈ Sδ and

X ∈ Vect(Rp|q).

• Projectively equivariant quantization←→

pgl(p + 1|q)−module isomorphism from the representation (Sδ, L) to the representation (Sδ, L).

• Application γ :

γ : g → gl(Sδ, Sδ) : h 7→ γ(h) = LXh − LXh.

(66)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of

•Construction of the quantization

• QAff : inverse of the total symbol map σ.

• LXS = QAff−1◦ LX ◦ QAff(S ), for every S ∈ Sδ and

X ∈ Vect(Rp|q).

• Projectively equivariant quantization←→

pgl(p + 1|q)−module isomorphism from the representation (Sδ, L) to the representation (Sδ, L).

• Application γ :

(67)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Casimir operators :

• l : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .

• (V , β) : representation of l.

• (ui : i 6 n) : homogeneous basis of l ; (ui0: i 6 n) : K -dual

basis (K (ui, uj0) = δi ,j). • Casimir operator of (V , β) : n X i =1 (−1)u˜iβ(u i)β(ui0) = n X i =1 β(u0i)β(ui).

(68)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective •Casimir operators :

• l : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .

• (V , β) : representation of l.

• (ui : i 6 n) : homogeneous basis of l ; (ui0: i 6 n) : K -dual

basis (K (ui, uj0) = δi ,j). • Casimir operator of (V , β) : n X i =1 (−1)u˜iβ(u i)β(ui0) = n X i =1 β(u0i)β(ui).

(69)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Casimir operators :

• l : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .

• (V , β) : representation of l.

• (ui : i 6 n) : homogeneous basis of l ; (ui0: i 6 n) : K -dual

basis (K (ui, uj0) = δi ,j). • Casimir operator of (V , β) : n X i =1 (−1)u˜iβ(u i)β(ui0) = n X i =1 β(u0i)β(ui).

(70)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective •Casimir operators :

• l : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .

• (V , β) : representation of l.

• (ui : i 6 n) : homogeneous basis of l ; (ui0: i 6 n) : K -dual

basis (K (ui, uj0) = δi ,j).

• Casimir operator of (V , β) :

(71)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • If q 6= p + 1, pgl(p + 1|q) ∼= sl(p + 1|q). • Killing form of sl(p + 1|q) :

K (A, B) = str(ad (A)ad (B)) = 2(p + 1 − q) str(AB).

• The Casimir operator C of pgl(p + 1|q) ∼= sl(p + 1|q) on

(Sδk, L) is equal to α(k, δ)Id, where

α(k, δ) = p − q 2 δ 22k + p − q 2 δ + k(k + (p − q)) (p − q + 1) .

(72)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective • If q 6= p + 1, pgl(p + 1|q) ∼= sl(p + 1|q). • Killing form of sl(p + 1|q) :

K (A, B) = str(ad (A)ad (B)) = 2(p + 1 − q) str(AB).

• The Casimir operator C of pgl(p + 1|q) ∼= sl(p + 1|q) on

(Sδk, L) is equal to α(k, δ)Id, where

α(k, δ) = p − q 2 δ 22k + p − q 2 δ + k(k + (p − q)) (p − q + 1) .

(73)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization • If q 6= p + 1, pgl(p + 1|q) ∼= sl(p + 1|q). • Killing form of sl(p + 1|q) :

K (A, B) = str(ad (A)ad (B)) = 2(p + 1 − q) str(AB).

• The Casimir operator C of pgl(p + 1|q) ∼= sl(p + 1|q) on

(Sδk, L) is equal to α(k, δ)Id, where

α(k, δ) = p − q 2 δ 22k + p − q 2 δ + k(k + (p − q)) (p − q + 1) .

(74)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• The Casimir operator C of pgl(p + 1|q) ∼= sl(p + 1|q) on

(Sδk, L) is equal to C + N, where N is defined in this way : N : Sδk → Sδk−1 : S 7→ 2X

i

γ(i)LXeiS ,

(75)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•A value of δ is critical if there exist k, l ∈ N with l < k such that α(k, δ) = α(l , δ).

•The set of critical values :

C= ∪∞k=1Ck, where Ck = 2k − l + p − q

p − q + 1 : l = 1, . . . , k 

.

•Remarks : •"Same" values as in the classical case : m is replaced by p − q.

(76)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•A value of δ is critical if there exist k, l ∈ N with l < k such that α(k, δ) = α(l , δ).

•The set of critical values :

C= ∪∞k=1Ck, where Ck = 2k − l + p − q

p − q + 1 : l = 1, . . . , k 

.

•Remarks : •"Same" values as in the classical case : m is replaced by p − q.

(77)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

•A value of δ is critical if there exist k, l ∈ N with l < k such that α(k, δ) = α(l , δ).

•The set of critical values :

C= ∪∞k=1Ck, where Ck = 2k − l + p − q

p − q + 1 : l = 1, . . . , k 

.

•Remarks : •"Same" values as in the classical case : m is replaced by p − q.

(78)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

•A value of δ is critical if there exist k, l ∈ N with l < k such that α(k, δ) = α(l , δ).

•The set of critical values :

C= ∪∞k=1Ck, where Ck = 2k − l + p − q

p − q + 1 : l = 1, . . . , k 

.

•Remarks : •"Same" values as in the classical case : m is replaced by p − q.

(79)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• If δ is not critical, then there exists a unique projectively equivariant quantization.

• Proof : • For every S ∈ Sk

δ, ∃! ˆS s.t. C(ˆS ) = α(k, δ)ˆS and

s.t. ˆS = S + Sk−1+ · · · + S0, where Sl ∈ Sδl for all l 6 k − 1.

• Q(S) := ˆS . • If S ∈ Sk

δ, Q(LXhS) = LXh(Q(S )) because they

are eigenvectors of C of eigenvalue α(k, δ) and because their term of degree k is exactly LXhS .

(80)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• If δ is not critical, then there exists a unique projectively equivariant quantization.

• Proof : • For every S ∈ Sk

δ, ∃! ˆS s.t. C(ˆS ) = α(k, δ)ˆS and

s.t. ˆS = S + Sk−1+ · · · + S0, where Sl ∈ Sδl for all l 6 k − 1.

• Q(S) := ˆS . • If S ∈ Sk

δ, Q(LXhS) = LXh(Q(S )) because they

are eigenvectors of C of eigenvalue α(k, δ) and because their term of degree k is exactly LXhS .

(81)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• If δ is not critical, then there exists a unique projectively equivariant quantization.

• Proof : • For every S ∈ Sk

δ, ∃! ˆS s.t. C(ˆS ) = α(k, δ)ˆS and

s.t. ˆS = S + Sk−1+ · · · + S0, where Sl ∈ Sδl for all l 6 k − 1.

• Q(S) := ˆS .

• If S ∈ Sk

δ, Q(LXhS) = LXh(Q(S )) because they

are eigenvectors of C of eigenvalue α(k, δ) and because their term of degree k is exactly LXhS .

(82)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• If δ is not critical, then there exists a unique projectively equivariant quantization.

• Proof : • For every S ∈ Sk

δ, ∃! ˆS s.t. C(ˆS ) = α(k, δ)ˆS and

s.t. ˆS = S + Sk−1+ · · · + S0, where Sl ∈ Sδl for all l 6 k − 1.

• Q(S) := ˆS . • If S ∈ Sk

δ, Q(LXhS) = LXh(Q(S )) because they

(83)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Divergence operator : div : Sδk → Sδk−1 : S 7→ p+q X j =1 (−1)y˜ji (εj)∂yjS . Theorem

If δ is not critical, then the map Q : Sδ → Dλ,µ defined by

Q(S )(f ) =

k

X

r =0

Ck,rQAff(divrS )(f ), for all S ∈ Sδk

is the unique sl(p + 1|q)-equivariant quantization if Ck,r = Qr j =1((p − q + 1)λ + k − j ) r !Qr j =1(p − q + 2k − j − (p − q + 1)δ) for all r > 1.

(84)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Divergence operator : div : Sδk → Sδk−1 : S 7→ p+q X j =1 (−1)y˜ji (εj)∂yjS . Theorem

If δ is not critical, then the map Q : Sδ → Dλ,µ defined by

Q(S )(f ) =

k

X

r =0

Ck,rQAff(divrS )(f ), for all S ∈ Sδk

is the unique sl(p + 1|q)-equivariant quantization if Qr

(85)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Case q = p + 1 : pgl(p + 1|p + 1)  sl(p + 1|p + 1).

• pgl(p + 1|p + 1) not endowed with a non degenerate bilinear symmetric invariant form.

• pgl(p + 1|p + 1) is not simple, codimension one ideal :

psl(p + 1|p + 1) ; pgl(p + 1|p + 1) = psl(p + 1|p + 1) ⊕ RE.

• Analyse of the existence of a psl(p + 1|p + 1)-equivariant quantization.

• Killing form of psl(p + 1|p + 1) vanishes, but K defined by K ([A], [B]) = strAB

(86)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective •Case q = p + 1 : pgl(p + 1|p + 1)  sl(p + 1|p + 1).

• pgl(p + 1|p + 1) not endowed with a non degenerate bilinear symmetric invariant form.

• pgl(p + 1|p + 1) is not simple, codimension one ideal :

psl(p + 1|p + 1) ; pgl(p + 1|p + 1) = psl(p + 1|p + 1) ⊕ RE.

• Analyse of the existence of a psl(p + 1|p + 1)-equivariant quantization.

• Killing form of psl(p + 1|p + 1) vanishes, but K defined by K ([A], [B]) = strAB

(87)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Case q = p + 1 : pgl(p + 1|p + 1)  sl(p + 1|p + 1).

• pgl(p + 1|p + 1) not endowed with a non degenerate bilinear symmetric invariant form.

• pgl(p + 1|p + 1) is not simple, codimension one ideal :

psl(p + 1|p + 1) ; pgl(p + 1|p + 1) = psl(p + 1|p + 1) ⊕ RE.

• Analyse of the existence of a psl(p + 1|p + 1)-equivariant quantization.

• Killing form of psl(p + 1|p + 1) vanishes, but K defined by K ([A], [B]) = strAB

(88)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective •Case q = p + 1 : pgl(p + 1|p + 1)  sl(p + 1|p + 1).

• pgl(p + 1|p + 1) not endowed with a non degenerate bilinear symmetric invariant form.

• pgl(p + 1|p + 1) is not simple, codimension one ideal :

psl(p + 1|p + 1) ; pgl(p + 1|p + 1) = psl(p + 1|p + 1) ⊕ RE.

• Analyse of the existence of a psl(p + 1|p + 1)-equivariant quantization.

• Killing form of psl(p + 1|p + 1) vanishes, but K defined by K ([A], [B]) = strAB

(89)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization •Case q = p + 1 : pgl(p + 1|p + 1)  sl(p + 1|p + 1).

• pgl(p + 1|p + 1) not endowed with a non degenerate bilinear symmetric invariant form.

• pgl(p + 1|p + 1) is not simple, codimension one ideal :

psl(p + 1|p + 1) ; pgl(p + 1|p + 1) = psl(p + 1|p + 1) ⊕ RE.

• Analyse of the existence of a psl(p + 1|p + 1)-equivariant quantization.

• Killing form of psl(p + 1|p + 1) vanishes, but K defined by K ([A], [B]) = strAB

(90)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• Casimir operator C of psl(p + 1|p + 1) acting on Sk

δ is

equal to 2k(k − 1)Id.

• α1,δ = α0,δ : critical situation.

• If k 6= 1, Q is given by the same formula as above. • If k = 1,

Q1 : S 7→ Q(S ) = QAff(S + t div(S ))

defines a psl(p + 1|p + 1)-equivariant quantization for every t ∈ R (vector fields in psl(p + 1|p + 1) are divergence-free). • The psl(p + 1, p + 1)-equivariant quantizations are pgl(p + 1, p + 1)-equivariant (equivariance with respect to the Euler vector field).

(91)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Casimir operator C of psl(p + 1|p + 1) acting on Sk

δ is

equal to 2k(k − 1)Id.

• α1,δ = α0,δ : critical situation.

• If k 6= 1, Q is given by the same formula as above. • If k = 1,

Q1 : S 7→ Q(S ) = QAff(S + t div(S ))

defines a psl(p + 1|p + 1)-equivariant quantization for every t ∈ R (vector fields in psl(p + 1|p + 1) are divergence-free). • The psl(p + 1, p + 1)-equivariant quantizations are pgl(p + 1, p + 1)-equivariant (equivariance with respect to the Euler vector field).

(92)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective

• Casimir operator C of psl(p + 1|p + 1) acting on Sk

δ is

equal to 2k(k − 1)Id.

• α1,δ = α0,δ : critical situation.

• If k 6= 1, Q is given by the same formula as above.

• If k = 1,

Q1 : S 7→ Q(S ) = QAff(S + t div(S ))

defines a psl(p + 1|p + 1)-equivariant quantization for every t ∈ R (vector fields in psl(p + 1|p + 1) are divergence-free). • The psl(p + 1, p + 1)-equivariant quantizations are pgl(p + 1, p + 1)-equivariant (equivariance with respect to the Euler vector field).

(93)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Casimir operator C of psl(p + 1|p + 1) acting on Sk

δ is

equal to 2k(k − 1)Id.

• α1,δ = α0,δ : critical situation.

• If k 6= 1, Q is given by the same formula as above. • If k = 1,

Q1 : S 7→ Q(S ) = QAff(S + t div(S ))

defines a psl(p + 1|p + 1)-equivariant quantization for every t ∈ R (vector fields in psl(p + 1|p + 1) are divergence-free).

• The psl(p + 1, p + 1)-equivariant quantizations are pgl(p + 1, p + 1)-equivariant (equivariance with respect to the Euler vector field).

(94)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

• Casimir operator C of psl(p + 1|p + 1) acting on Sk

δ is

equal to 2k(k − 1)Id.

• α1,δ = α0,δ : critical situation.

• If k 6= 1, Q is given by the same formula as above. • If k = 1,

Q1 : S 7→ Q(S ) = QAff(S + t div(S ))

defines a psl(p + 1|p + 1)-equivariant quantization for every t ∈ R (vector fields in psl(p + 1|p + 1) are divergence-free). • The psl(p + 1, p + 1)-equivariant quantizations are

(95)

Projectively equivariant quantizations over the superespace Rp|q Fabian Radoux Introduction Projectively equivariant quantization Projectively equivariant quantization over Rp|q Fundamental tools Projective superalgebra of vector fields Construction of the quantization

Références

Documents relatifs

Nous commen¸cons par la structure de l’alg` ebre sl(n, C ), nous continuons avec la description des repr´ esentations irr´ eductibles en termes de leurs plus hauts poids, ou de

Si vous souhaitez créer une activité pour votre classe en lien avec la mission Cassini-Huygens (comme celle-ci) et qu’elle soit publiée sur le site académique de

4.1.2 The Divergence operators in case of half-integer contact order k + 1 2 In this case, we also define the Divergence as Affine equivariant differential operators on the space

Our construction combines an appropriate desingularization of any Riemannian orbifold by a fo- liated smooth manifold, with the foliated equivariant quantization that we built

Study of projective equivalence of connections Origins: Goes back to the twenties and thirties Objective: Associate a unique connection to each projective structure [∇]. First

[r]

En permutant A et B dans la question 3, on voit que e séquent n'est pas prouvable

Proposition 1.6. Additive group actions on affine-linear bundles of rank one.. G a -equivariant affine modifications of affine-linear bundles of rank one.. This observation