• Aucun résultat trouvé

Equivariant quantization of orbifolds

N/A
N/A
Protected

Academic year: 2021

Partager "Equivariant quantization of orbifolds"

Copied!
89
0
0

Texte intégral

(1)

E

QUIVARIANT QUANTIZATION OF ORBIFOLDS

Norbert Poncin

Mathematics Research Unit University of Luxembourg

Current Geometry, Levi-Civita Institute, Vietri, 2010

(2)

O

UTLINE

Equivariant quantization of vector spaces

smooth manifolds foliated manifolds orbifolds

supermanifolds People:

A. Cap, M. Bordemann, C. Duval, H. Gargoubi, J. George, P.

Lecomte, P. Mathonet, J.-P. Michel, V. Ovsienko, F. Radoux, J. Silhan, R. Wolak, ..., P

(3)

G

EOMETRIC CHARACTERIZATION OF QUANTIZATION

(4)

S

YMBOL CALCULUS

D ∈ HomR(Γ(E ), Γ(F ))locloc' HomR(C(U, ¯E ),C(U, ¯F ))loc

f ∈ C(U), e ∈ ¯E , x ∈ U, ξ ∈ (Rm) D(fe) = P

αDα,x(e)∂xα11. . . ∂xαmmf 'P

αDα,x

x

(e

e

1α1. . . ξαmm

= σaff(D)(ξ;e)

Differential operatorloc' polynomial, total affine symbol D ∈ HomR(Γ(E ), Γ(F ))locloc'

σaff(D) ∈Γ(STU⊗E⊗ F)

(5)

S

YMBOL CALCULUS

D ∈ HomR(Γ(E ), Γ(F ))locloc' HomR(C(U, ¯E ),C(U, ¯F ))loc

f ∈ C(U), e ∈ ¯E , x ∈ U, ξ ∈ (Rm) D(fe) = P

αDα,x(e)∂xα11. . . ∂xαmmf 'P

αDα,

x

x(e

e

1α1. . . ξαmm

= σaff(D)(ξ;e)

Differential operatorloc' polynomial, total affine symbol D ∈ Hom (Γ(E ), Γ(F )) loc' σ (D) ∈Γ(STU⊗E⊗ F)

(6)

S

YMBOL CALCULUS

D ∈ HomR(Γ(E ), Γ(F ))locloc' HomR(C(U, ¯E ),C(U, ¯F ))loc

f ∈ C(U), e ∈ ¯E , x ∈ U, ξ ∈ (Rm) D(fe) = P

αDα,x(e)∂xα11. . . ∂xαmmf 'P

αDα,

x

x(

e

e)ξ1α1. . . ξαmm

= σaff(D)(ξ;e)

Differential operatorloc' polynomial, total affine symbol D ∈ HomR(Γ(E ), Γ(F ))locloc' σaff(D) ∈Γ(STU⊗E⊗ F)

(7)

S

YMBOL CALCULUS Example:

Intertwining condition:

(LX(TD) − T (LXD)) (ω) =0 Symbolic representation:

(X .T )(η;D)(ξ; ω) − hX , ηi ((τζT )(η; D)) (ξ; ω)

−hX , ξi (τζ(T (η; D))) (ξ; ω) + T (η + ζ; X τζD)(ξ; ω)

−T (η; D)(ξ + ζ; ζ ∧ iXω) +T (η + ζ; D(· + ζ; ζ ∧ iX·))(ξ; ω) = 0 Applications:

Flato-Lichnerowicz, De Wilde-Lecomte: cohomology of vector

(8)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES

M = Rm, D ∈ D(M),φ: coordinate change D(f ) =P

αDα,xxαf σaff σaff(D)(ξ) =P

αDα,x ξα

lφ lφ

. . . σaff . . .

Non commutative,σaff(D) not intrinsic,σ(D) geometric meaning Vector space isomorphism:

σ−1aff :Pol(TM) = Γ(STM) =: S(M)→D(M) Nonequivariance (global version):

∃φ ∈ Diff(M) : σ−1aff ◦φ6=φ◦ σ−1aff

(9)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES

M = Rm, D ∈ D(M),φ: coordinate change D(f ) =P

αDα,xxαf σaff σaff(D)(ξ) =P

αDα,x ξα

lφ lφ

. . . σaff . . .

Non commutative,σaff(D) not intrinsic,σ(D) geometric meaning

Vector space isomorphism:

σ−1aff :Pol(TM) = Γ(STM) =: S(M)→D(M) Nonequivariance (global version):

∃φ ∈ Diff(M) : σ−1aff ◦φ6=φ◦ σ−1aff

(10)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES

M = Rm, D ∈ D(M),φ: coordinate change D(f ) =P

αDα,xxαf σaff σaff(D)(ξ) =P

αDα,x ξα

lφ lφ

. . . σaff . . .

Non commutative,σaff(D) not intrinsic,σ(D) geometric meaning Vector space isomorphism:

σ−1aff :Pol(TM) = Γ(STM) =: S(M)→D(M) Nonequivariance (global version):

∃φ ∈ Diff(M) : σ−1aff ◦φ6=φ◦ σ−1aff

(11)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of an

g-

equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σtot−1: S

δ=µ−λ

(M) = Γ(STM

⊗∆δTM

) vs−isom→ D

λµ

(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈

g⊂

X (M) and

σ ◦ σ−1tot |Sk

δ

(M) = idSk

δ

(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96:Dλλ(M) and Dµµ(M) not isomorphic as X (M)-modules

(12)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of an

g-

equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σtot−1: S

δ=µ−λ

(M) = Γ(STM

⊗∆δTM

) vs−isom→ D

λµ

(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈

g⊂

X (M) and

σ ◦ σ−1tot |Sk

δ

(M) = idSk

δ

(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96:Dλλ(M) and Dµµ(M) not isomorphic as X (M)-modules

(13)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of an

g-

equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σ−1tot : S

δ=µ−λ

(M) = Γ(STM

⊗∆δTM

) vs−isom→ D

λµ

(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈

g⊂

X (M) and

σ ◦ σ−1tot |Sk

δ

(M) = idSk

δ

(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96:Dλλ(M) and Dµµ(M) not isomorphic as X (M)-modules

(14)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of an

g-

equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σ−1tot : Sδ=µ−λ(M) = Γ(STM ⊗∆δTM) vs−isom→ Dλµ(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈

g⊂

X (M) and

σ ◦ σ−1tot |Sk

δ(M) = idSkδ(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96:Dλλ(M) and Dµµ(M) not isomorphic as X (M)-modules

(15)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of an

g-

equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σ−1tot : Sδ=µ−λ(M) = Γ(STM ⊗∆δTM) vs−isom→ Dλµ(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈

g⊂

X (M) and

σ ◦ σ−1tot |Sk

δ(M) = idSkδ(M) (normalization)

(16)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES Nonequivariance (local version):

∃X ∈ X (M) : σ−1aff ◦LX 6=LX ◦ σaff−1

Definition of ang-equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Q = σ−1tot : Sδ=µ−λ(M) = Γ(STM ⊗∆δTM) vs−isom→ Dλµ(M), such that

σ−1tot ◦ LX = LX ◦ σtot−1, ∀X ∈g⊂X (M) and

σ ◦ σ−1tot |Sk

δ(M) = idSkδ(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96:Dλλ(M) and Dµµ(M) not isomorphic as X (M)-modules

(17)

E

QUIVARIANT QUANTIZATION OF VECTOR SPACES

Some motivations:

Invariant star-productson TM obtained as pullbacks by Q~(P) = ~kQ(P), P ∈ Polk(TM)

of the associative structure of the space of differential operators

Classification of spaces of differential operators as modulesover Lie algebras of vector fields

Role of symmetries in relationship between classical and quantum systems – complete geometric characterization of quantization: a flatfixed G-structureon configuration

(18)

P

ROJECTIVE AND CONFORMAL CASES

Maximal Lie subalgebras g ⊂ X (M), M = Rm:

Projective case:G = PGL(m + 1, R),g= sl(m + 1, R)can be embedded as maximal Lie subalgebrasln+1 into X(M) (Lecomte, Ovsienko, 99)

Conformal case:G = SO(p + 1, q + 1)(p + q = m), g= o(p + 1, q + 1)can be embedded as maximal Lie

subalgebraop+1,q+1into X(M) (Duval, Lecomte, Ovsienko, 99) Other cases: ... (Boniver, Mathonet, 01)

(19)

T

HE

C

ASIMIR TECHNIQUE

(20)

D

IFFERENTIAL OPERATORS ACTING ON TENSOR FIELDS

Projectively equivariant quantization fordifferential operators on differential forms[Boniver, Hansoul, Mathonet, P, 02]

Efficiency ofequivariant and standard affine symbol calculusas classification tools for modules of differential operators [P,04]

Automorphisms and derivations of classical and quantum Poisson algebras[Grabowski, P, 04], [Grabowski, P, 05]

Difference withautomorphisms of the classical and the quantum Weyl algebra[Kanel, Kontsevich, 05]

(21)

C

ASIMIR TECHNIQUE FOR

DO

S ACTING ON FORMS

Q : (Skp,LX) → (Dkp ' Skp, LX): potential slm+1-EQ Main observation:

Q ◦ C = C ◦ Q CP = αP ⇒ CQP = αQP Ideas:

Diagonalization of C: Spk = Akp⊕ Bpk, eigenvalues αkp, βpk C − C =N (LX − LX)

| {z }

= m+11 ( δ Div δDiv δ) Spk → Spk −1

(22)

C

ASIMIR TECHNIQUE FOR

DO

S ACTING ON FORMS N : Akp 3 P → NP ∈ Ak −1p . SetQP = P + Q1P and try to define Q1: Akp → Ak −1p .

Since

αkpP+

∈Ak −1p

z }| {

αkpQ1P=QCP = CQP = C(P + Q1P) =

(C + N) (P + Q1P) = αkpP+

∈Ak −1p

z }| {

αk −1p Q1P + NP+

∈Ak −2p

z }| { NQ1P,

we getQ1P = 1

αkp−αk −1p 1

m+1(δ Div δP) and have to setQP = P +Pk

`=1Q`P, Q`: Akp → Ak −`p Q |Sk

p= id +Pk

`=1Q`, Q`=

 1 m+1

`

Π1≤j≤` 1

αkp−αk −jp



(δ Div δ)`+



Π1≤j≤` 1

βkp−βk −jp



Div δ)`



(23)

C

ASIMIR TECHNIQUE FOR

DO

S ACTING ON FORMS N : Akp 3 P → NP ∈ Ak −1p . SetQP = P + Q1P and try to define Q1: Akp → Ak −1p .

Since

αkpP+

∈Ak −1p

z }| {

αkpQ1P=QCP = CQP = C(P + Q1P) =

(C + N) (P + Q1P) = αkpP+

∈Ak −1p

z }| {

αk −1p Q1P + NP+

∈Ak −2p

z }| { NQ1P, we getQ1P = 1

αkp−αk −1p 1

m+1(δ Div δP) and have to setQP = P +Pk

`=1Q`P, Q`: Akp → Ak −`p

Q |Sk

p= id +Pk

`=1Q`, Q`=

 1 m+1

`

Π1≤j≤` 1

αkp−αk −jp



(δ Div δ)`+



Π1≤j≤` 1

βkp−βk −jp



Div δ)`



(24)

C

ASIMIR TECHNIQUE FOR

DO

S ACTING ON FORMS N : Akp 3 P → NP ∈ Ak −1p . SetQP = P + Q1P and try to define Q1: Akp → Ak −1p .

Since

αkpP+

∈Ak −1p

z }| {

αkpQ1P=QCP = CQP = C(P + Q1P) =

(C + N) (P + Q1P) = αkpP+

∈Ak −1p

z }| {

αk −1p Q1P + NP+

∈Ak −2p

z }| { NQ1P, we getQ1P = 1

αkp−αk −1p 1

m+1(δ Div δP) and have to setQP = P +Pk

`=1Q`P, Q`: Akp → Ak −`p Q |Sk

p= id +Pk

`=1Q`, Q`=

 1 m+1

`

Π1≤j≤` 1

αkp−αk −jp



(δ Div δ)`+



Π1≤j≤` 1

βkp−βk −jp



Div δ)`



(25)

E

QUIVARIANT QUANTIZATION OF SMOOTH MANIFOLDS

(26)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Projective structure on a manifold M

Projective structure straight lines geodesics no canonical connection class of connectionsassociated with the same geodesics

Torsion-free linear connections ∇, ∇0 on M areprojectively equivalent, i.e. define thesame geometric geodesics, if and only if (H. Weyl)

0XY − ∇XY = ω(X )Y + ω(Y )X ∈ X (M), where X , Y ∈ X (M), ω ∈ Ω1(M)

Projective structure on M=class[∇]of projectively equivalent connections

(27)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Quantization associated with a connection (A. Lichnerowicz, star-products)

D ∈ Dk(Γ(E ), Γ(F )) ↔P ∈ Γ(SkTM ⊗ E⊗ F)

∇: covariant derivative of E

k : Γ(E ) 3 f →∇kf ∈ Γ(SkTM ⊗ E): iterated symmetrized Qaff(∇)P: Γ(E ) 3 f → (Qaff(∇)P) f =iP(∇kf )∈ Γ(F )

(28)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS Towards natural and projectively invariant quantization

There is noQ: S → Dsuch that

Q ◦φ◦ Q, ∀φ ∈ Diff(M) i.e.

(Q(φP)) (φf ) =φ((QP)(f )) , ∀φ ∈ Diff(M)

Is thereQ(∇): S → Dsuch that

(Q(φ∇)(φP)) (φf ) =φ((Q(∇)P)(f )) , for all local diffeomorphisms φ?

(29)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS Towards natural and projectively invariant quantization

There is noQ: S → Dsuch that

Q ◦φ◦ Q, ∀φ ∈ Diff(M) i.e.

(Q(φP)) (φf ) =φ((QP)(f )) , ∀φ ∈ Diff(M)

Is thereQ(∇): S → Dsuch that

(Q(φ∇)(φP)) (φf ) =φ((Q(∇)P)(f )) ,

(30)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Remarks

Example of thegauge principle Q– problem: no solution

Q(∇)– problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)

Group PGL(m + 1, R) does not preserve ∇, but the flows of X ∈ slm+1⊂ X(Rm)preserve [∇]: the solution Q = σ−1sl

m+1

of Lecomte and Ovsienko is intelligible,

if Q =Q[∇] Additional requirement (uniqueness): Q = Q[∇], i.e. Q is projectively invariant

(31)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Remarks

Example of thegauge principle Q– problem: no solution

Q(∇)– problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities) Group PGL(m + 1, R) does not preserve ∇, but the flows of X ∈ slm+1⊂ X(Rm)preserve [∇]: the solution Q = σ−1sl

m+1

of Lecomte and Ovsienko is intelligible,

if Q =Q[∇] Additional requirement (uniqueness): Q = Q[∇], i.e. Q is projectively invariant

(32)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Remarks

Example of thegauge principle Q– problem: no solution

Q(∇)– problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities) Group PGL(m + 1, R) does not preserve ∇, but the flows of X ∈ slm+1⊂ X(Rm)preserve [∇]: the solution Q = σ−1sl

m+1

of Lecomte and Ovsienko is intelligible, if Q =Q[∇]

Additional requirement (uniqueness): Q = Q[∇], i.e. Q is projectively invariant

(33)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS Definition(Lecomte 01):

Anaturalandprojectively invariantquantization is a family QM : C(M) × Sδ(M) → Dλµ(M),

indexed by smooth manifolds M, s.th., for any ∇ ∈ C(M), QM[∇] : Sδ(M) → Dλµ(M)

is a vector space isomorphism that verifies

1 the usual normalization condition

2 for any local diffeomorphism φ of M,

(QM∇](φP)) (φf ) = φ((QM[∇]P)(f )),

(34)

P

ROJECTIVELY

EQ

OF ARBITRARY MANIFOLDS

Remarks:

Generalization: If Q is a natural and projectively invariant quantization, then QRm[∇0](∇0: canonical flat connection) is an sl(m + 1, R)-equivariant quantization

Functorial formulation: M. Bordemann wrote this definition in the language of natural bundles and operators (see I.

Koláˇr, P. W. Michor, J. Slov ˇak)

Existence results: M. Bordemann, 02; P. Mathonet, F.

Radoux, 05; S. Hansoul, 06; A. Cap, J. Silhan, 09 Techniques: Thomas-Whitehead connections, Cartan connections, tractor calculus

(35)

T

HE

T

HOMAS

-W

HITEHEAD TECHNIQUE

(36)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0

Lift thecomplexsituation on M to thesimplersituation on ˜M: Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f

Define a quantization Q[∇] by

(Q[∇](P)(f ) )˜:=Qaff( ˜∇)( ˜P)(˜f) Check if ˜∇ only depends upon[∇]

(37)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0 Lift thecomplexsituation on M to thesimplersituation on ˜M:

Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f Define a quantization Q[∇] by

(

Q[∇](P)(f )

)˜:=Qaff( ˜∇)( ˜P)(˜f) Check if ˜∇ only depends upon[∇]

(38)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0 Lift thecomplexsituation on M to thesimplersituation on ˜M:

Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f

Define a quantization Q[∇] by (

Q[∇](P)(f )

)˜:=Qaff( ˜∇)( ˜P)(˜f) Check if ˜∇ only depends upon[∇]

(39)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0 Lift thecomplexsituation on M to thesimplersituation on ˜M:

Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f

Define a quantization Q[∇] by (

Q[∇](P)(f )

)˜:=

Qaff( ˜∇)( ˜P)(˜f)

Check if ˜∇ only depends upon[∇]

(40)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0 Lift thecomplexsituation on M to thesimplersituation on ˜M:

Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f Define a quantization Q[∇] by

(Q[∇](P)(f ) )˜:=Qaff( ˜∇)( ˜P)(˜f)

Check if ˜∇ only depends upon[∇]

(41)

T

OY MODEL

Example M := Sm g ∈ G := GL(m + 1, R)

All gpreservethe canonical connection of Rm+1, the induced φg do usuallynot preservethe canonical LC-connection on Sm M˜ := Rm+1\{0} → Sm=:M is a bundle with typical fiber R+0 Lift thecomplexsituation on M to thesimplersituation on ˜M:

Constructnaturallifts ∇ → ˜∇, P → ˜P, and f → ˜f Define a quantization Q[∇] by

(Q[∇](P)(f ) )˜:=Qaff( ˜∇)( ˜P)(˜f)

(42)

T

OY MODEL The point is:

Standard affine quantization

Qaff(∇)(P)(f ) = iP(∇·f ) is natural, but not projectively invariant

Naturalityof all lifts and naturality of Qaffentails naturality of Q:

(Q[∇](P)(f ))˜=Qaff( ˜∇)( ˜P)(˜f) Q[φg∇](φgP)(φgf )˜

= Qaff(g∇)(g˜ P)(g˜ ˜f )

= gQaff( ˜∇)( ˜P)(˜f)

= g(Q[∇](P)(f ))˜

= φgQ[∇](P)(f )˜

Projective invarianceof ˜∇ entails projective invariance of Q

(43)

T

OY MODEL

The point is:

Standard affine quantization

Qaff(∇)(P)(f ) = iP(∇·f ) is natural, but not projectively invariant

Naturalityof all lifts and naturality of Qaffentails naturality of Q:

(Q[∇](P)(f ))˜=Qaff( ˜∇)( ˜P)(˜f) Q[φg∇](φgP)(φgf )˜

= Qaff(g∇)(g˜ P)(g˜ ˜f )

= gQaff( ˜∇)( ˜P)(˜f)

= g(Q[∇](P)(f ))˜

= φgQ[∇](P)(f )˜

Projective invarianceof ˜∇ entails projective invariance of Q

(44)

T

OY MODEL

The point is:

Standard affine quantization

Qaff(∇)(P)(f ) = iP(∇·f ) is natural, but not projectively invariant

Naturalityof all lifts and naturality of Qaffentails naturality of Q:

(Q[∇](P)(f ))˜=Qaff( ˜∇)( ˜P)(˜f) Q[φg∇](φgP)(φgf )˜

= Qaff(g∇)(g˜ P)(g˜ ˜f )

= gQaff( ˜∇)( ˜P)(˜f)

= g(Q[∇](P)(f ))˜

= φgQ[∇](P)(f )˜

Projective invarianceof ˜∇ entails projective invariance of Q

(45)

T

OY MODEL

The point is:

Standard affine quantization

Qaff(∇)(P)(f ) = iP(∇·f ) is natural, but not projectively invariant

Naturalityof all lifts and naturality of Qaffentails naturality of Q:

(Q[∇](P)(f ))˜=Qaff( ˜∇)( ˜P)(˜f) Q[φg∇](φgP)(φgf )˜

= Qaff(g∇)(g˜ P)(g˜ ˜f )

= gQaff( ˜∇)( ˜P)(˜f)

= g(Q[∇](P)(f ))˜

˜

(46)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=˜

1TM = P1M ×GL(m,R)R

+ 0

, GL(m, R) × R

+ 0

3 (g, r ) → g · r =| det g |−1r ∈ R

+ 0

: rank 1

affine

bundle of

positive

1 – densities over M

M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt: line bundle of λ-densities over M f ∈ Γ(∆λTM) ↔˜f ∈ C( ˜M)R+

0

(47)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=˜

1TM = P1M ×GL(m,R)R+0,

GL(m, R) × R+0 3 (g, r ) → g · r =| det g |−1r ∈ R+0: rank 1affinebundle ofpositive1 – densities over M

M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt: line bundle of λ-densities over M f ∈ Γ(∆λTM) ↔˜f ∈ C( ˜M)R+

0

(48)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=∆˜ 1TM = P1M ×GL(m,R)R+0,

GL(m, R) × R+0 3 (g, r ) → g · r =| det g |−1r ∈ R+0: rank 1affinebundle ofpositive1 – densities over M

M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt: line bundle of λ-densities over M f ∈ Γ(∆λTM) ↔˜f ∈ C( ˜M)R+

0

(49)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=∆˜ 1TM = P1M ×GL(m,R)R+0,

GL(m, R) × R+0 3 (g, r ) → g · r =| det g |−1r ∈ R+0: rank 1affinebundle ofpositive1 – densities over M M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt: line bundle of λ-densities over M f ∈ Γ(∆λTM) ↔˜f ∈ C( ˜M)R+

0

(50)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=∆˜ 1TM = P1M ×GL(m,R)R+0,

GL(m, R) × R+0 3 (g, r ) → g · r =| det g |−1r ∈ R+0: rank 1affinebundle ofpositive1 – densities over M M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt:

line bundle of λ-densities over M

f ∈ Γ(∆λTM) ↔˜f ∈ C( ˜M)R+

0

(51)

G

ENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M :=∆˜ 1TM = P1M ×GL(m,R)R+0,

GL(m, R) × R+0 3 (g, r ) → g · r =| det g |−1r ∈ R+0: rank 1affinebundle ofpositive1 – densities over M M × R˜ +0 3 ([u, r ], s) → ρs[u, r ] = [u, rs] ∈ ˜M: R+0 – pb

λTM =M ט

R+0 R,

R+0 × R 3 (s, t) → s.t = sλt:

line bundle of λ-densities over M

(52)

G

ENERAL CASE

LiftsP˜ and∇˜ are technical

Essential remark: Natural and projectively invariant lift ˜∇ is a connection of some known type

Study of projective equivalence of connections Origins: Goes back to the twenties and thirties

Objective: Associate aunique connectionto each projective structure [∇]

First answer: Thomas-Whitehead projective connection (T.Y. Thomas, J.H.C. Whitehead, O. Veblen)

Second answer: Cartan projective connection(E. Cartan)

(53)

G

ENERAL CASE

LiftsP˜ and∇˜ are technical

Essential remark: Natural and projectively invariant lift ˜∇ is a connection of some known type

Study of projective equivalence of connections Origins: Goes back to the twenties and thirties Objective: Associate aunique connectionto each projective structure [∇]

First answer: Thomas-Whitehead projective connection (T.Y. Thomas, J.H.C. Whitehead, O. Veblen)

(54)

T

HOMAS

-W

HITEHEAD CONNECTIONS

A Thomas-Whitehead projective connection is a torsion-free linear connection ˜∇ over ˜M, such that

1 ∇E˜ = 1

m+1id

2 ρs∗ ˜XY = ˜ρs∗Xρs∗Y , ∀X , Y ∈ X ( ˜M)

Bordemann’s connection is a Thomas-Whitehead connection

S. Hansoul extended the work of M. Bordemann from tensor densities to sections of arbitrary vector bundles associated with the principle bundle of linear frames

(55)

T

HE

C

ARTAN TECHNIQUE

(56)

C

ARTAN CONNECTIONS

P2M = { j20(ψ) | ψ :0 ∈ U ⊂ Rm→ M, det ψ∗0 6= 0 }:

2nd order frame bundle

Gm2 = { j20(f ) |f : 0 ∈ U ⊂ Rm→ Rm,f (0) = 0, det f∗06= 0}:

structure group

G= PGL(m + 1, R) acts on RPm H =G[em+1]=

 A 0 α a



:A ∈ GL(m, R), α ∈ Rm∗,a 6= 0

 /R0id acts locally on Rm byRm ⊃ U 3 Z 7→ αZ +aAZ ∈ Rm: H ⊂ Gm2

(57)

C

ARTAN CONNECTIONS

Proposition:

Reductions P(M, H) of P2M to H ⊂ Gm2 are 1-to-1 with projective structures [∇]

Theorem:

To every projective structure [∇] ' P(M, H) is associated a unique normal Cartan connection ω

Definition:

G: Lie group,H: closed subgroup, g,h: Lie algebras P = P(M, H): PB s.th. dim M = dim G/H

A Cartan connection on P is a 1-form ω ∈ Ω1(P) ⊗gs.th.

rω = Ad(s−1 (rsright action of s ∈ H)

(58)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS

P = P(M, H) (! ˜M): projective structure ω (! ˜∇): normal Cartan connection

I LiftsS˜ of symbols and˜f of densities to objects on P = P(M, H):

Sδk(M) = Γ(SkTM ⊗ ∆δTM) =C(P1M,SkRm⊗ ∆δRm)GL(m,R) Γ(∆λTM) =C(P1M,∆λRm)GL(m,R)

(V , ρ): representation of GL(m, R) C(P1M,V)GL(m,R)'C(P, V )H

(59)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS

P = P(M, H) (! ˜M): projective structure ω (! ˜∇): normal Cartan connection

I LiftsS˜ of symbols and˜f of densities to objects on P = P(M, H):

Sδk(M) = Γ(SkTM ⊗ ∆δTM) =C(P1M,SkRm⊗ ∆δRm)GL(m,R) Γ(∆λTM) =C(P1M,∆λRm)GL(m,R)

(V , ρ): representation of GL(m, R) C(P1M,V)GL(m,R)

'C(P, V )H

(60)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS

P = P(M, H) (! ˜M): projective structure ω (! ˜∇): normal Cartan connection

I LiftsS˜ of symbols and˜f of densities to objects on P = P(M, H):

Sδk(M) = Γ(SkTM ⊗ ∆δTM) =C(P1M,SkRm⊗ ∆δRm)GL(m,R) Γ(∆λTM) =C(P1M,∆λRm)GL(m,R)

(V , ρ): representation of GL(m, R) C(P1M,V)GL(m,R)

'C(P, V )H

(61)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS

P = P(M, H) (! ˜M): projective structure ω (! ˜∇): normal Cartan connection

I LiftsS˜ of symbols and˜f of densities to objects on P = P(M, H):

Sδk(M) = Γ(SkTM ⊗ ∆δTM) =C(P1M,SkRm⊗ ∆δRm)GL(m,R) Γ(∆λTM) =C(P1M,∆λRm)GL(m,R)

(V , ρ): representation of GL(m, R) C(P1M,V)GL(m,R)'C(P, V )H

(62)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f

I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

L

X (P)3X (ω,v )=ω−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v (∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(63)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V )

g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

L

X (P)3X (ω,v )=ω−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v (∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(64)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

 L

X (P)3X (ω,v )=ω−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v (∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(65)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

L

X (P)3X (ω,v )=ω−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v (∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(66)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

LX (P)3X (ω,v )

−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v (∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(67)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

LX (P)3X (ω,v )

−1v

g

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v

(∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

(68)

E

XISTENCE OF

EQ

VIA

C

ARTAN CONNECTIONS I Idea:

(QM[∇](S)(f ))˜=Qaff(ω)( ˜S)(˜f) = iS˜

(∇ω)k˜f I Derivative associated with ω:

ω :C(P, V ) → C(P,Rm∗⊗ V ) g ∈ C(P, V ), u ∈ P,v ∈ Rm (∇ωg) (u)(v) =

LX (P)3X (ω,v )=ω−1vg

(u) ∈ V

ωu∈ Isom(TuP, g), g = sl(m + 1, R) ' Rm⊕ gl(m, R) ⊕ Rm∗3 v

(∇ω)k :C(P, V ) → C(P,SkRm∗⊗ V ): iterated symmetrized I Problem:

˜f ∈ C(P, ∆λRm)H, (∇ω)k˜f ∈ C(P,SkRm∗⊗ ∆λRm) S ∈ C˜ (P,SkRm⊗ ∆δ=µ−λRm)H

iS˜

(∇ω)k˜f

∈ C(P, ∆µRm):not H-equivariant

Références

Documents relatifs

The ‘special family’ that we compute here is the family of irreducible connections ( M , ∇ ) on P 1 with (as before) 4 regular singular points at 0, 1, t, ∞ , local exponents 1/4,

In this survey, we study representations of finitely generated groups into Lie groups, focusing on the deformation spaces of convex real projective structures on closed manifolds

Section 5 describes the local structure of a Riccati foliation along its polar divisor (on a surface); we state there, in Theorem 5.6, a reduction of singularities in the spirit

Our result is the classification of the G-vector bundles over X up to G-equivariant isomorphism.. This type of classification problems have been introduced, in a

On the basis of partial results on this conjecture obtained by Eisenbud and Harris we establish an upper bound for the genus and the Clifford index of curves

Necessary and sufficient for a number field K to be a splitting field of the quaternions is, that the defining equation of K has only even prime factors both over

The points of precise order two on the elliptic curve yield reducible Lam´ e connections with cyclic differential Galois groups of order 4.. They correspond in fact to the three

Without loss of generality and to simplify the explanation, let us assume that the camera is moving on the natural horizontal ground, so the plane of motion is horizontal and