• Aucun résultat trouvé

Elasto-inertial turbulence in polymeric flows

N/A
N/A
Protected

Academic year: 2021

Partager "Elasto-inertial turbulence in polymeric flows"

Copied!
18
0
0

Texte intégral

(1)

MTFC

RESEARCH GROUP

Elasto-Inertial Turbulence !

in polymeric flows"

V. E. Terrapon" Y. Dubief" J. Soria" " ! APS-DFD 2013! Pittsburgh!

MTFC

RESEARCH GROUP

MTFC

RESEARCH GROUP

(2)

MTFC

RESEARCH GROUP

Acknowledgements"

APS-DFD 2013 2

Yves Dubief !University of Vermont, USA!

Julio Soria !Monash University, Australia !

"King Abdulaziz University, Kingdom of Saudi Arabia! "

•  Marie Curie FP7 CIG!

•  Vermont Advanced Computing Center!

•  US National Institutes of Health!

•  Australian Research Council!

•  Center for Turbulence Research Summer Program!

Collaborators"

(3)

MTFC

RESEARCH GROUP

Polymers and turbulence"

APS-DFD 2013 3 Transition! Newtonian" Viscoelastic" Re Laminar! Turbulent! 101! 103! 105! Elastic turbulence" Drag reduction" Early turbulence"

Elasto-Inertial Turbulence (EIT)"

•  State of small-scale turbulence!

•  Contributions from both elastic and

inertial instabilities!

•  Observed over a wide range of Reynolds

numbers !

(4)

MTFC

RESEARCH GROUP

Polymers and turbulence

"

APS-DFD 2013 4

•  Is drag reduction!

- a viscous and large-scale effect (Lumley)!

- an elastic and small-scale effect (de Gennes)!

•  What is the nature of EIT?!

- Relative contributions of elastic and inertial

instabilities?!

- Characteristics of MDR?!

- Dynamical interactions between flow and

polymers? ! Key questions" Transition! Newtonian" Viscoelastic" Re Laminar! Turbulent! 101! 103! 105! Elastic turbulence" Drag reduction" Early turbulence"

(5)

MTFC

RESEARCH GROUP

Polymers and turbulence

"

APS-DFD 2013 5

•  Channel flow simulations!

•  FENE-P model!

•  Accurate numerics!

•  Transitional Reynolds numbers!

Approach" Transition! Newtonian" Viscoelastic" Re Laminar! Turbulent! 101! 103! 105! Elastic turbulence" Drag reduction" Early turbulence"

(6)

MTFC

RESEARCH GROUP

!

MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! ReH f

Transitional viscoelastic flows

"

APS-DFD 2013 6

Channel flow simulations"

Friction factor !

•  Departure from laminar state

at Re ~ 800 !

•  Smooth transition from

laminar to MDR state!

•  Flow dynamics controlled by

(7)

MTFC

RESEARCH GROUP

!

MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! ReH f

Transitional viscoelastic flows

"

APS-DFD 2013 7

Channel flow simulations"

Friction factor ! Re=1000, Wi+=24 !

•  Not laminar!

•  Elastic

contributions!

Re=6000, Wi+=96!

•  Inertial & elastic

contributions! •  Turbulent?!

•  New state?!

(8)

MTFC

RESEARCH GROUP

Transitional viscoelastic flows

"

APS-DFD 2013 8

Pipe flow experiment with PAAm solution "

Friction factor !

Results of numerical simulations are confirmed by experimental measurements!

Samanta et al., PNAS 110(26), 2013! 103! 10-2! ReD f MDR" Laminar" Turbulent" 500 ppm perturbed! 500 ppm unperturbed! 10-3! 104!

(9)

MTFC

RESEARCH GROUP

Qualitative flow behavior

"

APS-DFD 2013 9 ! MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! Re f Re = 1000 ! Wi+ = 24!

Second invariant of the velocity gradient tensor: Qa = ½ (Ω2-S2)!

(10)

MTFC

RESEARCH GROUP

Qualitative flow behavior

"

APS-DFD 2013 10 ! MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! Re f Re = 1000 ! Wi+ = 24! Polymer extension (Cii / L2)1/2!

(11)

MTFC

RESEARCH GROUP

Qualitative flow behavior

"

APS-DFD 2013 11 ! MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! Re f Re = 6000 ! Wi+ = 96!

Second invariant of the velocity gradient tensor: Qa = ½ (Ω2-S2)!

(12)

MTFC

RESEARCH GROUP

Qualitative flow behavior

"

APS-DFD 2013 12 ! MDR" Laminar" Turbulent" Newtonian! Viscoelastic! 103! 104! 10-3! 10-2! Re f Re = 6000 ! Wi+ = 96! Polymer extension (Cii / L2)1/2!

(13)

MTFC

RESEARCH GROUP

Typical structures"

APS-DFD 2013 13

Q

a!

y

+!

~10

!

p!

f

p! •  Train of cylindrical Qa structures of alternating sign!

•  On each side of sheet!

•  Associated with

polymeric part of pressure!

•  Correlated with

polymer body force fp

Contour of pressure and isolines of second invariant Qa

(14)

MTFC

RESEARCH GROUP

Flow topology"

APS-DFD 2013 14

EIT flow – Joint-PDF!

Q

a!

R

a! -0.02! 0.01! -0.01! 0.02! -0.001! -0.0005! 0.0005! 0.001! 0! 0!

Re=1000!

Wi

+

=24!

Re=6000!

Wi

+

=96!

•  Change from shear flow

(Ra=Qa=0) to mixed flow! •  At low Re, symmetric

distribution around 2D flow (Ra=0)!

•  At higher Re, “teardrop” shape

similar to Newtonian turbulence!

(15)

MTFC

RESEARCH GROUP

Turbulent kinetic energy budget !

Energy transfers"

APS-DFD 2013 15

Transfers of turbulent kinetic energy

Re=1000, Wi+=24! 10-1 100 101 102 -3 -2 -1 0 1 2 3

y

+! ×104!

e!

P

!

!

Energy transfer from polymers to flow!"

P dV

V

ε

dV

V

− Π

e

dV

V

= 0

Transfer between elastic energy and turbulent kinetic energy!

Dissipation!

(16)

MTFC

RESEARCH GROUP

Energy spectrum"

APS-DFD 2013 16 10-4! 10-6! 10-8! 10-10! 10-12!

E(κ

x

)

κ

x 101! 100! 102!

κ

x-14/3

κ

x-5/3

Re=1000,

Wi=24

Re=6000,

Wi=720

Re=6000,

Wi=100

-14/3 spectrum agrees well with elastic turbulence and hybrid simulation of Watanabe and Gotoh (JFM 2013) !

(17)

MTFC

RESEARCH GROUP

•  Increase of extensional viscosity

(anisotropic)!

•  Anisotropic polymer body force!

Mixed extensional-shear flow"

... = C ∇u

(

)

+ ∇u

(

)

T

C − T

Self-sustained"

Our current understanding"

APS-DFD 2013 17

Hyperbolic transport equation"

t

C + (u ⋅ ∇)C = ...

•  Formation of very thin sheets!

•  Trains of cylindrical structures!

•  Elliptical pressure redistribution of

energy!

•  Excitation of extensional sheet flow!

2

p = 2Q

a

1−

β

Re

∇ ⋅ ∇ ⋅ T

(

)

(18)

MTFC

RESEARCH GROUP

Conclusion and future work

"

APS-DFD 2013 18

Key take-away messages"

•  EIT is a new state of small-scale turbulence driven by both elastic and

inertial instabilities!

•  EIT could characterize MDR regime!

•  EIT explains seemingly contradictory phenomena in viscoelastic turbulence!

•  EIT provides support to de Gennes’ theory!

Next steps"

•  Further characterize EIT!

•  Understand the exact mechanisms during transition process!

Dubief, Terrapon & Soria, “On the mechanism of Elasto-inertial turbulence”, Phys. Fluids 2013! Samanta et al., “Elasto-inertial turbulence”, PNAS 110(26), 2013!

Références

Documents relatifs

Lorsqu'un batiment a plusieurs murs exterieurs pleins construits en briques creuses et qu'aucune colonne d'un autre materiau ne peut etre detectee, il ne s'agit probablement pas d

La polypose adenomateuse familiale (PAF) a longtemps été dénommée « polypose recto colique familiale » parce qu’il semblait acquis que cette maladie héréditaire

The existing papers about the role of heterogeneity on the occur- rence of optimal cycles (Ghiglino and Olszak-Duquenne (2001), Ghiglino (2005) and Ghiglino and Venditti

Fixation du spermatozoïde par sa tête à la zone pellucide grâce à la reconnaissance spécifique des récepteurs de la zone pellucide de l’ovocyte II par les marqueurs

This research agenda builds upon the National Innovation System (NIS) approach (Freeman, 1987; Lundvall, 1992; Nelson, 1993; Edquist, 1997) and the Developmental State

A model based on two-point closure theory of turbulence is proposed and applied to study the Reynolds number dependency of the scalar flux spectra in homogeneous shear flow with

Dans le premier point, si vous avez utilisé les valeurs en pixels, vous n'aurez qu'à ajouter cette image à la suite en rajoutant une classe « icone-7 » avec un décalage de 60px de

Sélectionner le champ à déplacer (case grisée en face). Cliquer-déplacer dans cette case grisée jusqu'à l'endroit souhaité. Relâcher lorsque le curseur apparait sous forme d'un