• Aucun résultat trouvé

Uncertainties in determination of fire resistance by experimental testing and by calculation

N/A
N/A
Protected

Academic year: 2021

Partager "Uncertainties in determination of fire resistance by experimental testing and by calculation"

Copied!
21
0
0

Texte intégral

(1)

Uncertainties in determination of fire resistance 

by experimental testing and by calculation

Fabien Dumont Quality & safety manager, Fire Testing Laboratory Thomas Gernay Postdoctoral Fellow, F.R.S.‐FNRS

(2)

From deterministic results…

• Fire resistance of building construction elements can be assessed by  experimental testing or by calculation (including numerical simulation). • To date, results are expressed in a deterministic way.

→ i.e. a single number as if there was no uncertainty → e.g.

“Loadbearing capacity: 27 minutes” “Integrity: 65 minutes”

(3)

… to probabilistic results

• Asking different partners to assess the fire resistance • of a given element of building construction

• subjected to a given fire scenario → they will report different results.

• Variability in the results depicts an uncertainty on the results.

• More information is enclosed in a probabilistic reporting of the results. → i.e. according to a probability distribution

→ e.g.

“Loadbearing capacity: 27 ± 4 minutes” “Integrity: 65 ± 13 minutes”

(4)

How to evaluate uncertainty?

• In fire resistance:

– Analytical approach based on mathematical model → difficult in practice – Intercomparisons (“Round Robin”) → appealing way to assess variability • Round robins:

– Testing community: each participating lab is requested to conduct several identical tests, on identical replicates of test specimen, under repeatability conditions.

– Calculation community: each participant is requested to carry out calculations based on given input data.

(5)

Uncertainty evaluation

• Average value adopted  as reference for  discussion purpose (but  no sense in defining a  unique “true” value). • The result is expressed  as: “58 ± U minutes”

(6)

Uncertainty in testing

• Methods

Set of standardised methods → Lab’s practices are harmonized • Results

– Test methods describe fire performances with well defined criteria: • Loadbearing capacity (R)

• Integrity (E) • Insulation (I)

– Test result: time, in completed minutes, during which each performance is satisfied.

(7)

Uncertainty in testing

• Round Robin 1 in 2009 • EGOLF (European Group of  Organisations for Fire Testing,  Inspection and Certification) • 32 participating labs x 2 specimens • test specimen: non‐loadbearing gypsum  plasterboard partition

(8)

Uncertainty in testing

• Round Robin 2 in 2014 • EGOLF  • 16 participating labs x 2 specimens • test specimen: – steel beam – simply supported – 3‐sides fire exposure – loaded in two points

(9)

Uncertainty in testing: results

Round Robin with tests RR Performance Mean Standard

deviation Relative uncertainty at 95% Gypsum plasterboard partition  Integrity 65:09 6:28 20% Insulation 58:04 4:55 17%

Steel beam Loadbearing capacity 31:37 1:47 11%

• Role of human factor

• Relative uncertainties on fire resistance test results (at 95% confidence interval) → uncertainty that may be expected between European laboratories

(10)

Uncertainty in calculation

• Methods

There may be almost as many calculation methods, software used and assumptions as partners.

→ lack of harmonization • Results

Failure criteria?

(11)

Uncertainty in calculation

• Round Robin in 2015 • SP (Technical Research  Institute of Sweden) • 12 participants • 19 calculations results • Specimen: – steel beam – simply supported – 3‐sides fire exposure – loaded in two points

(12)

Uncertainty in calculation: model ULg

• ULg used in‐house software  SAFIR® • Considered 3 models:  – Beam 2D – Beam 3D (captures torsion) – Shell (captures local buckling)  • Results: – Beam 2D and 3D identical – Shell: no local buckling, failure  time differs by 30 sec (earlier)

(13)

Uncertainty in calculation: results

• 1st stage « a priori » Note: – no two submissions used the same  calculation approach, thermal exposure  assumptions and mechanical modelling. – finite element software, including using  beam elements, shell elements and solid  elements. Calculated mid‐span deflection histories one test

(14)

Uncertainty in calculation: results

• 2nd stage « a posteriori » Additional information provided:  – Measured temperatures from the  furnace plate thermometers and at the  beam mid‐span → Reduction of variability – Measured steel yield strength  → Better fit with the test result Calculated mid‐span deflection histories Thermal analysis was source of significant  variability in the results. ULg SAFIR one test

(15)

Uncertainty in calculation: results

Calculation RR

Stage 1 Stage 2

RR Performance Mean St. Dev

Relative uncertainty at 95% Mean St. Dev Relative uncertainty at 95%

Steel beam Loadbearingcapacity 24:50 4:17 35% 28:41 2:14 16%

• Relative uncertainties on fire resistance calculation results (at 95% confidence interval) → uncertainty that may be expected between European “calculation” research teams

(16)

Discussion on this exercise

• Calculation was more conservative than testing. • Calculation showed a larger variance than  testing (testing has better standardization). • Sources of variability: – Testing: operator – Calculation: • different softwares • different models • different users

• lack of consensus for failure criteria • Calculation stage 1 → 2: more detailed inputs 

reduce the variability in the results.

(17)

Conclusions

• Sources of variability – Aleatoric uncertainty: will always be present (not 2 specimens are rigorously identical). – Epistemic uncertainty: related to our models and methods. • Need to improve methods and models to reduce the epistemic uncertainty – Testing: training the operators – Calculation: clear definition of failure • Magnitude of the uncertainty – Not negligible – But limited compared to other unknowns e.g. fire scenario

(18)
(19)

Uncertainty evaluation

In testing: • One distribution of  results by lab. • One overall distribution.

(20)

Uncertainty evaluation

In calculation: • One or several calculation method by partner. • One result by  calculation method and by partner. • One overall distribution

(21)

Uncertainty evaluation

Analytical approach Intercomparison approach

Can you develop a mathematical model  for the evaluation of the uncertainty?

JCGM 100:2008 Guide to the expression of uncertainty in measurement (GUM)

ISO 5725‐1 to 6 Accuracy (trueness and precision) of  measurement methods and results

Develop the mathematical model Implement the law of propagation of 

uncertainty

Perform round robin (intercomparison)

Process the uncertainty estimation  from the round robin results

Yes No

State the expanded uncertainty associated with the result

Références

Documents relatifs

When this projection scheme is not used, the spring forces tend to prevent the band from following a curved MEP because of ‘‘corner-cutting’’, and the true force

As the pressure is increased further, the compliance increases again as a result of dynamic recrystallization, pressure melting in grain boundaries, and easy basal slip which could

Cement Used Above Ground 1) Plastic pipe, fittings and solvent cement used inside or under a building in a drainage or vent- ing system shall conform to. a) CSA-B181.1, “ABS

A recessed directfindirect system was one of the more preferred systems (preference rankings depended on the way preference was assessed), and in that room reading comprehension

Malheureusement vous l'avez peut-être remarqué (j'espère!), Échos techniques s'est fait plus rare en 1999. Nous voici au début d'un nouveau millénaire, la parfaite excuse pour

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Factors affecting the performance of ventilation systems in large

We propose to extend this model for abdominal ultrasound image simulation by taking into account the acoustical tis- sues properties and the geometry and the characteris- tics of

The next two stronger conditions were introduced by Piantadosi (to decide if an SFT admits a strongly periodic tiling of the free group) and by Chazottes- Gambaudo-Gautero [?] in a