• Aucun résultat trouvé

Some mathematical aspects of RNA velocity

N/A
N/A
Protected

Academic year: 2021

Partager "Some mathematical aspects of RNA velocity"

Copied!
101
0
0

Texte intégral

(1)

Some mathematical aspects of RNA velocity

Loïc DEMEULENAERE

Université de Liège – GIGA-Genomics

(2)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Purpose: summary of the mathematical aspects of

the paper RNA velocity of single cells ([1])

(3)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(4)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(5)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(6)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(7)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 t0+t t df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(8)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 t0+t t df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(9)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 t0+t t df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(10)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 t0+t t df dt(t0) := limt→0 f (t0+ t) − f (t0) t

(11)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 df dt(t0) :=t→lim0 f (t0+ t) − f (t0) t

(12)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

The notion of derivatives

Let f be a function and t0 a point of its domain.

0 2 4 6 8 10 0.0 0.5 1.0 1.5 t f(t) ● ● t0 df dt(t0) :=t→lim0 f (t0+ t) − f (t0) t

(13)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle; the velocity of the

particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(14)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle; the velocity of the

particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(15)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle; the velocity of the

particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(16)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle;

the velocity of the particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(17)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle; the velocity of the

particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(18)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Variations with respect to time

df

dt(t0) := t→lim0

average change during t units of time

z }| {

f (t0+ t) − f (t0)

t

| {z }

Instantaneous rate of varation with respect to time

Examples (Physics)

ˆ f (t) = x (t): motion (1D) of a particle; the velocity of the

particle (at time t) is

v (t) := dx

dt(t)

ˆ In 3D: likewise! If ~x(t) := (x(t), y(t), z(t)) is the position of a

particle in the space, then its velocity is ~ v (t) := d~x dt(t) :=  dx dt(t), dy dt(t), dz dt(t)  .

(19)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(20)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA Transcription Rate α(t) ..Unspliced RNA Quantity u(t) Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(21)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA Transcription Rate α(t) ..Unspliced RNA Quantity u(t) Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(22)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA Transcription Rate α(t) ..Unspliced RNA Quantity u(t) Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(23)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA Transcription Rate α(t) ..Unspliced RNA Quantity u(t) Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(24)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription Rate α(t)

..Unspliced RNAQuantity u(t)

Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(25)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription Rate α(t)

..Unspliced RNAQuantity u(t)

Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(26)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription Rate α(t)

..Unspliced RNAQuantity u(t)

Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(27)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: the idea

In one cell, for one gene...

DNA

Transcription Rate α(t)

..Unspliced RNAQuantity u(t)

Splicing Rate β(t)  ∅ Spliced RNA Quantity s(t) Degradation Rate γ(t) nn        du dt(t) = α(t)−β(t)u(t) ds dt(t) = β(t)u(t) −γ(t)s(t)

(28)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

In this context

ˆ u(t) and s(t) are the expected values of the numbers of

molecules of unspliced and spliced RNA (at time t)

ˆ Real numbers of molecules (at time t) have a bivariate Poisson

distribution with parameters (expected values) u(t) and s(t). Our equations        du dt(t) = α(t) − β(t)u(t) ds dt(t) = β(t)u(t) − γ(t)s(t)

(29)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

In this context

ˆ u(t) and s(t) are the expected values of the numbers of

molecules of unspliced and spliced RNA (at time t)

ˆ Real numbers of molecules (at time t) have a bivariate Poisson

distribution with parameters (expected values) u(t) and s(t).

Our equations        du dt(t) = α(t) − β(t)u(t) ds dt(t) = β(t)u(t) − γ(t)s(t)

(30)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

In this context

ˆ u(t) and s(t) are the expected values of the numbers of

molecules of unspliced and spliced RNA (at time t)

ˆ Real numbers of molecules (at time t) have a bivariate Poisson

distribution with parameters (expected values) u(t) and s(t). Our equations        du dt(t) = α(t) − β(t)u(t) ds dt(t) = β(t)u(t) − γ(t)s(t)

(31)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

Assumptions

ˆ The rates α, β, γ are constant: α ≥ 0, β > 0, γ > 0.

ˆ β =1 (all units expressed in terms of β, i.e. everything divided

by β). Final equations        du dt(t) = α − u(t) ds dt(t) = u(t) − γs(t)

(32)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

Assumptions

ˆ The rates α, β, γ are constant: α ≥ 0, β > 0, γ > 0.

ˆ β =1 (all units expressed in terms of β, i.e. everything divided

by β). Final equations        du dt(t) = α − u(t) ds dt(t) = u(t) − γs(t)

(33)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

Assumptions

ˆ The rates α, β, γ are constant: α ≥ 0, β > 0, γ > 0.

ˆ β =1 (all units expressed in terms of β, i.e. everything divided

by β). Final equations        du dt(t) = α − u(t) ds dt(t) = u(t) − γs(t)

(34)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics

Assumptions

ˆ The rates α, β, γ are constant: α ≥ 0, β > 0, γ > 0.

ˆ β =1 (all units expressed in terms of β, i.e. everything divided

by β). Final equations        du dt(t) = α − u(t) ds dt(t) = u(t) − γs(t)

(35)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the rst equation

du dt(t) = α − u(t) Solution If u0 := u(0), u(t) = α + (u0− α)e−t. u0< α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α u0 > α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α

(36)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the rst equation

du dt(t) = α − u(t) Solution If u0:= u(0), u(t) = α + (u0− α)e−t. u0< α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α u0 > α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α

(37)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the rst equation

du dt(t) = α − u(t) Solution If u0:= u(0), u(t) = α +(u0− α)e−t. u0< α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α u0 > α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α

(38)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the rst equation

du dt(t) = α − u(t) Solution If u0:= u(0), u(t) = α +(u0− α)e−t. u0< α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α u0 > α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α

(39)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the rst equation

du dt(t) = α − u(t) Solution If u0:= u(0), u(t) = α +(u0− α)e−t. u0< α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α u0 > α 0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0 t u(t) α

(40)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0 = u(0) and s0 = s(0), s(t) = α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt.

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(41)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) = α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt.

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(42)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) = α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt.

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(43)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) =      α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt if γ 6= 1 α + [(u0− α)t + s0− α] e−t if γ = 1(= β).

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(44)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) =      α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt if γ 6= 1 α + [(u0− α)t + s0− α] e−t if γ = 1(= β).

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(45)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) =      α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt if γ 6= 1 α + [(u0− α)t + s0− α] e−t if γ = 1(= β).

Many graphical possibilities...

But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(46)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation

ds dt(t) = u(t) − γs(t) Solution If u0= u(0) and s0 = s(0), s(t) =      α γ + u0− α γ −1 e −t +  s0+α − u0 γ −1 − α γ  e−γt if γ 6= 1 α + [(u0− α)t + s0− α] e−t if γ = 1(= β).

Many graphical possibilities... But we always have

lim t→∞s(t) = α γ, i.e. s(t) ≈ α γ if t  0.

(47)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solution of the second equation: graphical examples

u0= s0=0, α = 0.25, γ = 0.75 0 2 4 6 8 10 0.00 0.05 0.10 0.15 0.20 0.25 0.30 t s(t) α/γ u0=3, s0=1, α = 0.25, γ = 0.75 0 2 4 6 8 10 0.5 1.0 1.5 t s(t) α/γ u0=3, s0=4, α = 30, γ = 5 0 2 4 6 8 10 2 3 4 5 6 t s(t) α/γ u0=4, s0=6, α = 1, γ = 1 0 2 4 6 8 10 0 1 2 3 4 5 6 t s(t) α/γ

(48)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: summary

There exist solutions u, s, depending on u0, s0 (initial conditions)

and on α, γ (parameters), with lim

t→∞u(t) = α and t→∞lim s(t) =

α γ. In particular, lim t→∞ u(t) s(t) = γ. Steady state

When t  0, the system reaches a steady state, with

u(t) ≈ α, s(t) ≈ α

(49)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: summary

There exist solutions u, s, depending on u0, s0 (initial conditions)

and on α, γ (parameters), with lim

t→∞u(t) = α and t→∞lim s(t) =

α γ. In particular, lim t→∞ u(t) s(t) = γ. Steady state

When t  0, the system reaches a steady state, with

u(t) ≈ α, s(t) ≈ α

(50)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA dynamics: summary

There exist solutions u, s, depending on u0, s0 (initial conditions)

and on α, γ (parameters), with lim

t→∞u(t) = α and t→∞lim s(t) =

α γ. In particular, lim t→∞ u(t) s(t) = γ. Steady state

When t  0, the system reaches a steady state, with

u(t) ≈ α, s(t) ≈ α

(51)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Phase portrait

Graphic "spliced vs. unspliced"

u0=0, s0=0, α = 3, γ = 0.75 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u u ≥ γs =⇒ u0=3, s0=4, α = 0, γ = 0.75 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u u ≤ γs

The system reaches thesteady state, i.e. the straight lineu = γs.

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u

(52)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Phase portrait

Graphic "spliced vs. unspliced"

u0=0, s0=0, α = 3, γ = 0.75 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u u ≥ γs =⇒ u0=3, s0=4, α = 0, γ = 0.75 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u u ≤ γs

The system reaches thesteady state, i.e. the straight lineu = γs.

0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u

(53)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(54)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA velocity

Context

ˆ Here, we consider one cell, with p genes.

ˆ Let sj(t)be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

ˆ Each sj(t) veries the previous equations, with its own

parameters αj ≥0, βj =1, and γj >0.

Warning! Implicit assumption!

βj =1 for all j: the rates of splicing are equal for all genes!

Denition

The RNA velocity of the cell (at time t) is

d~s dt(t) :=  ds1 dt (t), ..., dsp dt (t)  .

(55)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA velocity

Context

ˆ Here, we consider one cell, with p genes.

ˆ Let sj(t)be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

ˆ Each sj(t) veries the previous equations, with its own

parameters αj ≥0, βj =1, and γj >0.

Warning! Implicit assumption!

βj =1 for all j: the rates of splicing are equal for all genes!

Denition

The RNA velocity of the cell (at time t) is

d~s dt(t) :=  ds1 dt (t), ..., dsp dt (t)  .

(56)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA velocity

Context

ˆ Here, we consider one cell, with p genes.

ˆ Let sj(t)be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

ˆ Each sj(t)veries the previous equations, with its own

parameters αj ≥0, βj =1, and γj >0.

Warning! Implicit assumption!

βj =1 for all j: the rates of splicing are equal for all genes!

Denition

The RNA velocity of the cell (at time t) is

d~s dt(t) :=  ds1 dt (t), ..., dsp dt (t)  .

(57)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA velocity

Context

ˆ Here, we consider one cell, with p genes.

ˆ Let sj(t)be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

ˆ Each sj(t)veries the previous equations, with its own

parameters αj ≥0, βj =1, and γj >0.

Warning! Implicit assumption!

βj =1 for all j: the rates of splicing are equal for all genes!

Denition

The RNA velocity of the cell (at time t) is

d~s dt(t) :=  ds1 dt (t), ..., dsp dt (t)  .

(58)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

RNA velocity

Context

ˆ Here, we consider one cell, with p genes.

ˆ Let sj(t)be the (expected value of the) quantity of spliced

RNA associated to the jth gene (at time t).

ˆ Each sj(t)veries the previous equations, with its own

parameters αj ≥0, βj =1, and γj >0.

Warning! Implicit assumption!

βj =1 for all j: the rates of splicing are equal for all genes!

Denition

The RNA velocity of the cell (at time t) is

d~s dt(t) :=  ds1 dt (t), ..., dsp dt (t)  .

(59)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). • Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(60)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). • Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(61)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(62)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(63)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(64)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(65)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(66)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(67)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity • Red point: steady state Physical velocity in RNA's space!

(68)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity ˆ Red point: steady state

(69)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation: an unreal world...

ˆ A cell with 2 genes...

ˆ α1=2, γ1 =0.5; α2 =3, γ2=1 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s1 s2 ● ● ● ● ● ● ● ● ˆ Grey curve: trajectory of the cell ((s1(t), s2(t))). ˆ Arrows: RNA velocity ˆ Red point: steady state

(70)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation of RNA velocity

And if p > 3?

ˆ Principle component analysis: quite natural, projection on

P.C.;

(71)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation of RNA velocity

And if p > 3?

ˆ Principle component analysis: quite natural, projection on

P.C.;

(72)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation of RNA velocity

And if p > 3?

ˆ Principle component analysis: quite natural, projection on

P.C.;

(73)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation of RNA velocity

Example: Schwann cell precursors (coming from [1])

(74)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Representation of RNA velocity

Example: Schwann cell precursors (coming from [1])

(75)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(76)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Assumptions

ˆ The sample of cells is suciently large to cover all the RNA

cycle (from beginning of production to steady state).

ˆ The rate of degradation γ of the gene is the same in all cells.

(77)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Assumptions

ˆ The sample of cells is suciently large to cover all the RNA

cycle (from beginning of production to steady state).

ˆ The rate of degradation γ of the gene is the same in all cells.

(78)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of γ

We study one gene (i.e. its parameters) through a sample of several cells.

Assumptions

ˆ The sample of cells is suciently large to cover all the RNA

cycle (from beginning of production to steady state).

ˆ The rate of degradation γ of the gene is the same in all cells.

(79)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Theoritical estimation of γ

● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 400 cells, uniformly generated in time. Process

Selection of the extreme cells (here smallest and greatest 1%'s) Linear regression on the extreme cells

(80)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Theoritical estimation of γ

● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ● ●●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 400 cells, uniformly generated in time. Process

1. Selection of theextreme cells(here smallest and greatest 1%'s)

Linear regression on the extreme cells Here, estimation of γ (slope): 0.73493

(81)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Theoritical estimation of γ

● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ● ●●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 400 cells, uniformly generated in time. Process

1. Selection of theextreme cells(here smallest and greatest 1%'s)

2. Linear regression on theextreme cells

(82)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Theoritical estimation of γ

● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ● ●●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 400 cells, uniformly generated in time. Process

1. Selection of theextreme cells(here smallest and greatest 1%'s)

2. Linear regression on theextreme cells

(83)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Diculties of estimation for γ...

Assumption 1 not respected...

● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●●● ●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 150 cells, uniformly generated in time. Estimation of γ: 0.97433... Corrections?

Estimation on very correlated genes, clusters of very correlated cells...

(84)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Diculties of estimation for γ...

Assumption 1 not respected...

● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 150 cells, uniformly generated in time. Estimation of γ: 0.97433... Corrections?

(85)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Diculties of estimation for γ...

Assumption 1 not respected...

● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 150 cells, uniformly generated in time. Estimation of γ: 0.97433... Corrections?

(86)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Diculties of estimation for γ...

Assumption 1 not respected...

● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 s u ● ● ●● ˆ α =3, γ = 0.75 ˆ Steady state: u = γs ˆ 150 cells, uniformly generated in time. Estimation of γ: 0.97433... Corrections?

(87)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Multiple splicing

ˆ In [1], ± 89 % of studied genes showed a unique degradation

rate γ...

but 11 % showed several degradation rates!

ˆ Example from [1]:

Ntrk2

(88)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Multiple splicing

ˆ In [1], ± 89 % of studied genes showed a unique degradation

rate γ... but 11 % showed several degradation rates!

ˆ Example from [1]:

Ntrk2

(89)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of α

According to [1], it is very dicult to estimate α... Two approximations are considered:

ˆ Model I: v := ds

dt is assumed to be constant; then,

s(t) = vt + s0,

with v := u0− γs0.

ˆ Model II: u is assumed to be constant; then,

s(t) = u0 γ +  s0−u0 γ  e−γt.

These two models are correct in the short term; they have to be used step by step to predict the future (Markov process).

(90)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of α

According to [1], it is very dicult to estimate α... Two approximations are considered:

ˆ Model I: v := ds

dt is assumed to be constant; then,

s(t) = vt + s0,

with v := u0− γs0.

ˆ Model II: u is assumed to be constant; then,

s(t) = u0 γ +  s0−u0 γ  e−γt.

These two models are correct in the short term; they have to be used step by step to predict the future (Markov process).

(91)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of α

According to [1], it is very dicult to estimate α... Two approximations are considered:

ˆ Model I: v := ds

dt is assumed to be constant; then,

s(t) = vt + s0,

with v := u0− γs0.

ˆ Model II: u is assumed to be constant; then,

s(t) = u0 γ +  s0−u0 γ  e−γt.

These two models are correct in the short term; they have to be used step by step to predict the future (Markov process).

(92)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Estimation of α

According to [1], it is very dicult to estimate α... Two approximations are considered:

ˆ Model I: v := ds

dt is assumed to be constant; then,

s(t) = vt + s0,

with v := u0− γs0.

ˆ Model II: u is assumed to be constant; then,

s(t) = u0 γ +  s0−u0 γ  e−γt.

These two models are correct in the short term; they have to be used step by step to predict the future (Markov process).

(93)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

(94)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Some recalls

A mathematical model RNA velocity

Estimation of parameters and prediction Appendix

(95)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

And if the parameters are non-constant?

Much more complex...

Example

Assume thatα(t) =1 − cos(t), β = 1, and γ > 0 is constant.

0 5 10 15 20 25 0.0 0.5 1.0 1.5 2.0 t 1 − cos(t) RNA equations        du dt(t) = [1 − cos(t)]− u(t) ds dt(t) = u(t) − γs(t)

(96)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

And if the parameters are non-constant?

Much more complex...

Example

Assume thatα(t) =1 − cos(t), β = 1, and γ > 0 is constant.

0 5 10 15 20 25 0.0 0.5 1.0 1.5 2.0 t 1 − cos(t) RNA equations        du dt(t) = [1 − cos(t)]− u(t) ds dt(t) = u(t) − γs(t)

(97)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solutions

Unspliced RNA u(t) =1 − 1 2(cos(t) + sin(t)) +  u0−1 2  e−t. u0=0 0 5 10 15 20 25 0.0 0.5 1.0 1.5 t u(t) u0 =3 0 5 10 15 20 25 0.5 1.0 1.5 2.0 2.5 3.0 t u(t)

(98)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solutions

Spliced RNA If γ 6= 1, s(t) = 1 γ − 1 2(1 + γ2)((γ −1) cos(t) + (γ + 1) sin(t)) +u0−1/2 γ −1 e −t +  s0− 1 γ + 1/2 − u0 γ −1 + γ −1 2(1 + γ2)  e−γt and, if γ = 1, s(t) =1 − 1 2sin(t) +  u0−1 2  t + s0 − 1  e−t.

(99)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Solutions

u0= s0=0, γ = 0.2 0 5 10 15 20 25 0 1 2 3 4 5 t s(t) u0=7, s0=5, γ = 0.2 0 5 10 15 20 25 5 6 7 8 t s(t) u0=1, s0=2, γ = 2.5 0 5 10 15 20 25 0.5 1.0 1.5 2.0 t s(t) u0=20, s0=5, γ = 1 0 5 10 15 20 25 2 4 6 8 t s(t)

(100)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

Phase portraits

u0= s0=0, γ = 0.2 0 1 2 3 4 5 0.0 0.5 1.0 1.5 s(t) u(t) u0=7, s0=5, γ = 0.2 5 6 7 8 1 2 3 4 5 6 7 s(t) u(t) u0=1, s0=2, γ = 2.5 0.5 1.0 1.5 2.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 s(t) u(t) u0=20, s0=5, γ = 1 2 4 6 8 0 5 10 15 20 s(t) u(t)

(101)

Some recalls A mathematical model RNA velocity Estimation of parameters and prediction Appendix

References I

G. La Manno et al.

RNA velocity of single cells.

Références

Documents relatifs

Tindemans a fait basculer définitivement cette prérogative dans l'escarcelle du chef du gouvernement. Mais la doctrine a soutenu ultérieurement qu'un tel scénario n'avait

Figure S2 Oligonucleotide tagging assays with Rnl2 under various conditions. Ligations were performed with Rnl2, on the indicated substrates, in 10 m l of 30% PEG ligation buffer,

MUBs are of central importance in quantum information theory as for instance in quantum state tomography (deciphering an unknown quantum state) [37, 55, 77], quantum

In [ 6 ], two crucial properties have been proven for a class of two phase flow models containing the Baer-Nunziato model, namely, the convexity of the natural entropy associated

If the same total time is used to record the interferogram then each measurement will have more relative noise than for the minimum sampling case.. However, only the

the resulting equations and to stress the expansion dynamics only, we leave aside the problems of relative motion and temperature difference between the spheres and the

We have presented analytical results on the existence of needle crystal solutions in the 2-D one-sided model of dendritic growth in the small and finite undercooling

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des