• Aucun résultat trouvé

Moisture Movement and Moisture Distribution in the Walls of Buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Moisture Movement and Moisture Distribution in the Walls of Buildings"

Copied!
35
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1952

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331566

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Moisture Movement and Moisture Distribution in the Walls of Buildings

Edenholm, H.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=81848d53-bc36-4fec-abe8-8fa4a9bb1d08 https://publications-cnrc.canada.ca/fra/voir/objet/?id=81848d53-bc36-4fec-abe8-8fa4a9bb1d08

(2)

NATIONAL

RESEARCH

COTJNCIL OF CANADA

Technical Translation TT-361

MOISTURE MOVEMENT AND I'LOISTURE DISTRIBUTION IN

THE:

ViALLS OF BUILDINGS

(Fuktighetsvandring och fuktighetsfordelning i byggnadsvkfggar) by

H,

Edenholm

I

,-- ---.,..-.-

-

..-,-.-- --"~ .--,-.---.-.--.-- .--.- - . - ---.,---..---.-.. , .- .. ..-. -." .. .. -.---d --., I !

I

! i i I

j

I

I I

i

t $ 1

1

1

i

i

j

1

I

1

I

1

I

I

I

i

1

,I

B

i

1

I

1

I

I

I

1

I

!

i

1 i I

1

1

i

1

I 1 I i f i :

d

1 ,

I

This is the eighteenth in the series of translations

I

!

i prepared for the Division of Building Research

!

, I OTTAWA

i

1952

--

--- ---*----

----

---... from

Keddelanden fr8n statens forskningskommitt6 far lantmannabyggnader no, 5; 53-76, 1945

translated by Il,A,G, Nathan

(3)

Moisture Movement and Moisture D i s t r i b u t i o n i n t h e Walls of B u i l d i n g s

A t t h e r e q u e s t of t h e Swedish Cement A s s o c i a t i o n and t h e Swedish Research Committee on Farm B u i l d i n g s a n i n v e s t i g a t i o n c o n c e r n i n g t h e m o i s t u r e d i s t r i b u t i o n and t h e m o i s t u r e movement i n t h e w a l l s of b u i l d i n g s , w i t h s p e c i a l r e f e r e n c e t o w a l l s of t h e s o - c a l l e d Nopsa t y p e , was c a r r i e d o u t a t t h e Vapour Research D i v i s i o n of t h e T e c h n i c a l C o l l e g e . I t had o r i g i n a l l y been i n - tended t h a t t h e i n v e s t i g a t i o n should be c o n f i n e d t o c a l c u l a t i n g t h e mechanism i n v a r i o u s c h a r a c t e r i s t i c c a s e s and drawing con- c l u s i o n s t h e r e f r o m . However, i t soon became a p p a r e n t t h a t i t

was n e c e s s a r y t o supplement t h e i n v e s t i g a t i o n w i t h t h e e x p e r i - mental d e t e r m i n a t i o n of c e r t a i n p r o p e r t i e s c h a r a c t e r i s t i c of m o i s t u r e movement f o r w a l l and f i l l m a t e r i a l s , A b r i e f a c c o u n t of t h e r e s u l t s t h u s o b t a i n e d i s g i v e n below.

General C h a r a c t e r i s t i c s of t h e Nechanism o f Moisture Movement

A s i s known, t h e m o i s t u r e i n a w a l l of hygroscopic m a t e r i a l c a n move i n two d i f f e r e n t ways, by d i f f u s i o n of w a t e r vapour t h r o u g h t h e a i r - f i l l e d p o r e s and s p a c e s of t h e m a t e r i a l and by c a p i l l a r i t y i n t h e p o r e s f i l l e d c o m p l e t e l y o r p a r t i a l l y w i t h w a t e r , A d i f f e r e n c e i n t h e p a r t i a l p r e s s u r e s of t h e water va- pour on e i t h e r s i d e of t h e w a l l i s a p r e r e q u i s i t e f o r t h e d i f - f u s i o n , A s a r u l e , t h e p a r t i a l p r e s s u r e of t h e water vapour i n t h e c o l d e x t e r n a l a i r i s s u b s t a n t i a l l y lower t h a n i n d o o r s . For t h i s r e a s o n t h e d i f f u s i o n g e n e r a l l y t a k e s p l a c e from t h e i n s i d e - o u t . The c a p i l l a r i t y , on t h e o t h e r hand, i s c l o s e l y r e l a t e d t o

(4)

a d i f f e r e n c e i n t h e m o i s t u r e c o n t e n t of t h e m a t e r i a l . The m o i s t u r e c o n t e n t of a hygroscopic m a t e r i a l which i s i n equi-

l i b r i u m w i t h t h e ambient a i r depends on t h e r e l a t i v e humidity of t h e atmosphere and i n c r e a s e s w i t h i t . T h e r e f o r e , i n a s i m - p l e w a l l t h e c a p i l l a r y movement t a k e s p l a c e e i t h e r from t h e o u t s i d e - i n o r from t h e i n s i d e - o u t , depending on whether t h e r e l a t i v e humidity of t h e atmosphere i s h i g h e r o r lower a t t h e o u t s i d e o f t h e w a l l t h a n i t i s a t t h e i n s i d e . I n a double w a l l w i t h f i l l c a v i t i e s and a i r s p a c e s t h e c a p i l l a r i t y , a s w i l l be shown below, i s n o t so d e f i n i t e l y determined by t h e r e l a t i v e h u m i d i t y of t h e ambient a i r .

I f a t any p o i n t i n t h e wall t h e vapour p r e s s u r e a t t a i n s t h e s a t u r a t i o n v a l u e , t h e water vapour condenses, and m o i s t u r e accumulates i n t h e w a l l . This may occur a t t h e o u t s i d e o f c a v i t i e s and a i r s p a c e s and t h e p o s s i b i l i t y i s g r e a t e s t a t low e x t e r n a l t e m p e r a t u r e s , I f t h e t e m p e r a t u r e of t h e i n t e r i o r w a l l i s below t h e dew p o i n t of t h e a i r i n t h e room, w a t e r p r e c i p i - t a t e s on t h e w a l l and i s absorbed by t h e l a t t e r . A correspond- i n g phenomenon may be observed on e x t e r n a l w a l l s d u r i n g r a i n ,

Moi s t u r e i n E q u i l f b r i u m f o r a Hygroscopic M a t e r i a l

-

A s mentioned above, i n o r d e r t o d e a l fundamentally and n u m e r i c a l l y w i t h t h e mechanism o f m o i s t u r e movement t h e mois- t u r e c o n t e n t s of a hygroscopic b u i l d i n g m a t e r i a l i n e q u i l i b r i u m w i t h a i r o f a c e r t a i n t e m p e r a t u r e a t v a r i o u s r e l a t i v e h u m i d i t i e s must be known. The r e l a t i o n s h i p between them, t h e s o - c a l l e d

(5)

s o r p t i o n i s o t h e r m , i s r e l a t i v e l y i n d e p e n d e n t o f t h e tem- p e r a t u r e . I n t h e p r e s e n t i n v e s t i g a t i o n s u c h i s o t h e r m s were d e t e r m i n e d a t room t e m p e r a t u r e f o r c o n c r e t e , p l a s t e r and d i f f e r e n t f i l l m a t e r i a l s . They a r e shown g r a p h i c a l l y i n F i g s . 1 and 2 . Data f o r a l l t h e m a t e r i a l s i n v e s t i g a t e d

have been assembled i n T a b l e I . The m o i s t u r e i n e q u i l i b r i u m was d e t e r m i n e d i n a c l o s e d p a r a f f i n e d chamber, where t h e a i r was k e p t a t c o n s t a n t r e l a t i v e h u m i d i t y by c o n t a c t w i t h s u l - p h u r i c a c i d of a g i v e n c o n c e n t r a t i o n and by a g i t a t i n g t h e a i r w i t h a blower a t r e g u l a r i n t e r v a l s . The lower t h e r e - l a t i v e h u m i d i t y , t h e more q u i c k l y a c o n s t a n t m o i s t u r e con- t e n t was o b t a i n e d i n t h e m a t e r i a l , t h e r a t e b e i n g s l i g h t l y h i g h e r f o r a f i l l m a t e r i a l t h a n f o r c o n c r e t e and p l a s t e r . I n c o n c r e t e , t h e r e f o r e , c o n s t a n t m o i s t u r e c o n t e n t was t h u s o b t a i n e d a f t e r a p p r o d m a t e l y 80 h o u r s a t a r e l a t i v e h u m i d i t y o f 55%, and a f t e r a p p r o x i m a t e l y 550 h o u r s a t a r e l a t i v e hu- m i d i t y o f 80%. The c o r r e s p o n d i n g t i m e s f o r sawdust were ap- p r o x i m a t e l y 65 and 450 h o u r s r e s p e c t i v e l y , a s i s e v i d e n t from F i g s . 2 and 3. \Tihen t h e r e l a t i v e huniidfty o f t h e atmosphere was 100% no e q u i l i b r i u m was o b t a i n e d f o r c o n c r e t e and p l a s t e r b u t , a s F i g . 2 shows, t h e r a t e a t which t h e h u m i d i t y i n c r e a s e d was c o n s t a n t .

The l o n g t i m e r e q u i r e d t o a t t a i n e q u i l i b r i u m a t h i g h r e l a t i v e h u m i d i t i e s i s n o t e w o r t h y . The samples had a t h i c k - n e s s of 1 5 and 30 mm., r e s p e c t i v e l y , and were d i r e c t l y exposed

(6)

t h e time o f a t t a i n i n g e q u i l i b r i u m should be l o n g e r , and t h e mof s t u r e - d i s t r i b u t i o n c u r v e s which were c a l c u l a t e d f o r a w a l l , t h e r e f o r e a p p l y o n l y i f t h e t e m p e r a t u r e and t h e humidity of t h e atmosphere a r e c o n s t a n t o v e r a l o n g p e r i o d .

The hygroscopic m o i s t u r e i s c o n t a i n e d i n t h e f i n e s t

p o r e s of t h e m a t e r i a l . The s m a l l and s t r o n g l y curved m e n i s c i i n t h e p o r e s cause a d e c r e a s e i n t h e vapour p r e s s u r e . The s m a l l e r t h e r a d i u s of c u r v a t u r e of t h e menisci t h e g r e a t e r t h i s d e c r e a s e w i l l b e . T h e r e f o r e , i n m a t e r i a l s w i t h p o r e s of d i f f e r e n t s i z e s t h e c o a r s e r p o r e s d r y out f i r s t . I n a g r a n u l a r m a t e r i a l where t h e m o i s t u r e accumulates around t h e p o i n t s of c o n t a c t between t h e g r a i n s , i n s o - c a l l e d open c a p i l -

l a r i e s , t h e r a d i u s of c u r v a t u r e of t h e m e n i s c i l i k e w i s e be- comes i n c r e a s i n g l y s m a l l e r a s t h e d r y i n g p r o c e s s c o n t i n u e s . I n b o t h c a s e s t h e s o r p t i o n i s o t h e r m has a p p r o x i m a t e l y t h e same c h a r a c t e r i s t i c form. A more n o t i c e a b l e d e c r e a s e i n t h e vapour p r e s s u r e , i . e . , from 1 t o 0.1% i s o n l y o b t a i n e d when t h e d i a m e t e r of t h e p o r e s i s a s s m a l l a s 0 . 1 t o 1,u. For g r a n u l a r m a t e r i a l t h e corr8esponding g r a i n d i a m e t e r i s from

1 t o 1 0 ) ~ . hlost of t h e hygroscopic m a t e r i a l s c o n t a i n a s many f i n e c a p i l l a r i e s a s c o a r s e ones. As t h e r e l a t i v e humi-

d i t y of t h e atmosphere i n c r e a s e s , t h e system of f i n e c a p i l a r - r i e s g r a d u a l l y f i l l s w i t h w a t e r w h i l e t h e system of c o a r s e

c a p i l l a r i e s remains d r y . A t a r e l a t i v e humidity of 100% t h e system o f f i n e c a p i l l a r i e s i n a porous m a t e r i a l becomes com- p l e t e l y f i l l e d w i t h w a t e r , b u t i n a ~ r a n u l a r m a t e r i a l t h e

(7)

s y s t e m w i l l p r o b a b l y be f i l l e d o n l y up t o two t h i r d s . The number o f f i n e c a p i l l a r i e s , t h e r e f o r e , d e t e r m i n e s t h e hygros- c o p i c m o i s t u r e c o n t e n t . I n c o n c r e t e , f o r example, t h e g r e a t e r t h e c o n t e n t o f cement t h e g r e a t e r w i l l be t h e h y g r o s c o p i c m o i s t u r e c o n t e n t . T h i s i s e v i d e n t , a l s o , from F i g . 1. I f a n a d d i t i o n a l amount of w a t e r i s s u p p l i e d t o t h e m a t e r i a l , f a r example by c o n d e n s a t i o n o r r a i n , t h e n even t h e s y s t e m of c o a r s e c a p i l l a r i e s w i l l become more o r l e s s f i l l e d .

Because of t h e d e c r e a s e i n vapour p r e s s u r e t h e w a t e r en- c l o s e d i n t h e s y s t e m o f f i n e c a p i l l a r i e s h a s a l o w e r f r e e z i n g p o i n t . Hence t h e g r e a t e r t h e d e c r e a s e i n t h e vapour p r e s s u r e t h e l o w e r w i l l b e t h e f r e e z i n g p o i n t . T h e r e f o r e , t h e l a r g e r p a r t o f t h e w a t e r e n c l o s e d i n t h e f i n e p o r e s r e m a i n s u n f r o z e n r i g h t down t o r e l a t i v e l y low t e m p e r a t u r e s . According t o meas- urements o f t h e Steam H e a t i n g I n s t i t u t e , a p p r o x i m a t e l y 90% o f t h e s a t u r a t i o n m o i s t u r e of t h e f i b e r s i n s p r u c e wood r e m a i n s u n f r o z e n a t - 1 2 ' ~ . T h i s means t h a t a t a p p r o x i m a t e l y 95$ r e - l a t i v e h u m i d i t y t h e t o t a l h y g r o s c o p i c m o i s t u r e c o n t e n t r e m a i n s i n l i q u i d form. On t h e o t h e r hand, t h e w a t e r e n c l o s e d i n c o a r s e c a p i l l a r i e s f r e e z e s . T h i s b e h a v i o u r i s v e r y i m p o r t a n t f o r e s - t i m a t i n g t h e c a p i l l a r i t y i n a h y g r o s c o p i c m a t e r i a l . W i t h i n t h e h y g r o s c o p i c r a n g e , c l e a r l y , t h e r e i s a l m o s t no o b s t a c l e t o t h e c a p i l l a r i t y a t t e m p e r a t u r e s c o n s i d e r a b l y below O'C. The n u m e r i c a l v a l u e s g i v e a n i d e a o f t h e o r d e r of magnitude of t h e volume o f f i n e and c o a r s e c a p i l l a r i e s , For c o n c r e t e w i t h

(8)

a weight by volume of 1800 kbln./cu.m. t h e t o t a l pore volume i s 33%, The maximum hygroscopic m o i s t u r e i s approximately

1.2 p e r c e n t by weight c o r r e s p o n d i n g t o 2.1 p e r c e n t by volume, and t h e system o f f i n e c a p i l l a r i e s should t h u s c o n s t i t u t e ap- p r o x i m a t e l y 6b of t h e t o t a l pore volume. For c o n c r e t e w i t h a weight by volume of 2200 kgm./cu.m. t h e c o r r e s p o n d i n g v a l u e s a r e approximately 1 9 and 4 p e r c e n t by volume. T h e r e f o r e , because o f t h e i n c r e a s e d c o n t e n t of cement and because of t h e c l o s e r packing t h e value f o r t h e system of f i n e c a p i l l a r i e s i n c r e a s e s t o approximately 20%. For wood, t h e system of f i n e c a p i l l a r i e s amounts roughly t o o n e - f i f t h of t h e t o t a l p o r o s i t y .

I n Table I t h e t o t a l p o r o s i t y a s w e l l a s t h e f i n e - c a p i l l a r y p o r o s i t y i s shown f o r t h e d i f f e r e n t m a t e r i a l s i n - v e s t i g a t e d , computed from t h e s o r p t i o n i s o t h e r m s and t h e c o a r s e p o r o s i t y . For f i l l m a t e r i a l (sawdust, r o c k wool, c h a r c o a l ) t h e term " c o a r s e p o r o s i t y " r e f e r s h e r e t o t h e p o r e s between t h e g r a i n s which o f f e r t h e l e a s t r e s i s t a n c e t o t h e d i f f u s i n g vapour, and f o r t h e d e n s e r b u i l d f n g m a t e r i a l s e , a l l t h e o t h e r

b u i l d i n g m a t e r i a l s l f s t e d i n t h e t a b l e ) i t r e f e r s t o t h e t o t a l p o r o s i t y reduced by t h e f i n e - c a p i l l a r y volume which a b s o r b s hygroscopic m o i s t u r e when t h e r e l a t i v e humidity of t h e atmos- phere i s 100%. The f o l l o w i n g v a l u e s f o r t h e r e s p e c t i v e weights by volume have been a p p l i e d .

(9)

compact m a t e r i a l 1400 kgm./cu.m. C h a r c o a l g r a n u l a r m a t e r i a l 400 " It I t compact m a t e r i a l 1560 I' 11 11 Sawdust g r a n u l a r m a t e r i a l 410 " I t I t

Rock wool compact m a t e r i a l 2650

"

1) It Masonit e t t I t 1 5 6 0 " 11 I? Sand I t I t 2650 " 11 I t Ceme n t It I t 3100 I' It II Lime It It 2700 I' 1t I t

A s mentioned above, t h e f i n e - c a p i l l a r y volume was ob-

t a i n e d f r o m t h e s o r p t i o n i s o t h e r m s f o r t h e r e s p e c t i v e m a t e r i a l s . Vapour D i f f u s i o n A t low r e l a t i v e h u m i d i t y of t h e a t m o s p h e r e , when t h e m o i s t u r e c o n t e n t o f t h e m a t e r i a l f a l l s c o n s i d e r a b l y s h o r t of t h e maximum h y g r o s c o p i c m o i s t u r e t h e w a t e r f i l l s o n l y t h e f i n e s t and n a r r o w e s t p a r t s o f t h e s y s t e m o f f i n e c a p i l l a r i e s . The r e s i s t a n c e t o t h e c a p i l l a r y w a t e r a b s o r p t i o n t h e n becomes s o g r e a t t h a t t h i s a b s o r p t i o n , p r a c t i c a l l y s p e a k i n g , c a n b e n e g l e c t e d , and t h e e n t i r e movement o f m o i s t u r e t h e n t a k e s p l a c e by vapour d i f f u s i o n . The vapour d i f f u s i o n c o e f f i c i e n t may be d e t e r m i n e d d i r e c t l y f r o m t h i s b e h a v i o u r . The l a t t e r g i v e s t h e amount o f d i f f u s i n g v a p o u r i n kgm. p e r sq.m, o f w a l l s w f a c e p e r h o u r a t a change i n p a r t i a l p r e s s u r e i n t h e w a l l o f one a t m o s p h e r e p e r m e t r e , If t h e r e d u c t i o n i n p a r t i a l p r e s s u r e

(10)

a t one s i d e of t h e sample i s b r o u g h t a b o u t by a b s o r p t i o n i n c a l c i u m c h l o r i d e , t h e mean v a l u e f o r t h e r e l a t i v e h u m i d i t y of t h e a t m o s p h e r e becomes s o low t h a t t h e c a s e mentioned above i s g i v e n , and a l l t h e v a l u e s determined by t h i s method t h e r e - f o r e r e f e r t o t h e vapour d i f f u s i o n c o e f f i c i e n t a l o n e . The d i f f u s i o n c o e f f i c i e n t s t h u s determined have been assembled i n Table I . For a i r a t 2 0 ' ~ . t h e d i f f u s i o n c o e f f i c i e n t i s

0,069 kgm./m., atm., hr. This v a l u e may be assumed t o c o r - r e s p o n d t o t h a t f o r a w a l l w i t h a p o r o s i t y of 100%. If t h e m a t e r i a l c o n s i s t s o f porous g r a i n s , t h e vapour d i f f u s e s f i r s t o f a l l i n t h e i n t e r s p a c e s between them, and i t seems t h a t t h e d i f f u s i o n c o e f f i c i e n t f o r a m a t e r i a l of t h i s s t r u c t u r e i s

p r a c t i c a l l y p r o p o r t i o n a l t o t h a t o f a m a t e r i a l of c o a r s e p o r o s i t y ( a s t h a t d e f i n e d and l i s t e d i n T a b l e I ) . However, t h e r e i s an a d d i t i o n a l r e d u c t i o n f a c t o r , which f o r sawdust and r o c k wool i s a p p r o x i m a t e l y 0.9, f o r unscreened sand and c h a r c o a l a p p r o x i m a t e l y 0.55, f o r b r i c k a p p r o x i m a t e l y 0.4, and f o r c o n c r e t e w i t h a weight by volume of 1800

-

2000 kgm,/ cu.m, a p p r o x i m a t e l y 0 - 1 3 . From t h i s t h e d i f f u s i o n c o e f f i c i e n t f o r c o n c r e t e w i t h t h e c o a r s e p o r o s i t y 33

-

2 = 31$, f o r example, can be c a l c u l a t e d a s a p p r o x i m a t e l y 0.069 x 0.31 x 0.13 = 0.0028, compared w i t h a measured v a l u e o f 0.0027 kgm./m., atm., h r .

S i m i l a r l y , f o r sawdust w i t h a c o a r s e p o r o s i t y o f a b o u t 50% t h e f o l l o w i n g i s o b t a i n e d : 0,069 x 0.50 x 0.9 = 0.031, compared w i t h a measured v a l u e of 0.033 kgm,/m. atm., h r . The r e d u c t i o n f a c t o r f o r a l l t h e m a t e r i a l s i n v e s t i g a t e d i s g i v e n i n T a b l e I ,

(11)

T h i s f a c t o r seems t o d e c r e a s e a s t h e cement c o n t e n t of t h e c o n c r e t e i n c r e a s e s and i s even lower f o r p l a s t e r ( c f . Table I , 1 2 ) , I n Fig. 5 t h e d i f f u s i o n

coefficient^^

h a s been p l o t t e d a s a f u n c t i o n of t h e c o a r s e p o r o s i t y . L i n e s have been i n s e r t e d a l o n g w i t h t h e names of m a t e r i a l s of d i f f e r e n t s t r u c t u r e and f o r e a c h s u c h l i n e t h e r e d u c t i o n f a c t o r i s g i v e n . The l a t t e r should be employed f o r e s t i m a t i n g t h e d i f f u s i o n c o e f f i c i e n t f r o m t h e p o r o s i t y w i t h t h e r e s p e c t i v e m a t e r i a l s t r u c t u r e . The d i f f u s i o n

coefficient,^^

i s e s t i m a t e d by means of t h e e q u a t i o n - LLd

-

kred x p x 0.069 kgm./m., atm,, h r . , where kred = r e d u c t i o n f a c t o r P = c o a r s e p o r o s i t y , a c c o r d i n g t o t h e above c a l c u l a t i o n , 0.069 kgp./m., atm., h r . = d i f f u s i o n c o e f f i c i e n t f o r a i r . It may now be assumed t h a t t h e mechanism o f t h e vapour d i f f u - s i o n i s f a i r l y w e l l u n d e r s t o o d ,

A t h i g h e r water c o n t e n t s , when t h e p o r e s g r a d u a l l y f i l l w i t h more water and t h e c a p i l l a r i t y t h e r e f o r e becomes more n o t i c e a b l e ,

t h e vapour d i f f u s i o n o b v i o u s l y must d e c r e a s e g r a d u a l l y . However, w i t h i n t h e hygroscopic range, where t h e t o t a l m o i s t u r e i s gener- a l l y low, t h i s d e c r e a s e i s u n i m p o r t a n t .

Non-hygroscopic m a t e r i a l s , which even a t v e r y h i g h r e l a t i v e h u m i d i t y a r e v i r t u a l l y f r e e from w a t e r , c o n s t i t u t e a n o t h e r c a s e .

(12)

The movement o f m o i s t u r e w i t h i n t h e a i r - d r y m a t e r i a l c o n s i s t s merely of vapour d i f f u s i o n h e r e . Hence f o r s u c h m a t e r i a l s t h e

d i f f u s i o n c o e f f i c i e n t can be determined i n t h e above manner even i f t h e r e l a t i v e h u m i d i t y of t h e atmosphere i s h i g h . F o r example, f o r r o c k wool w i t h a p o r o s i t y o f 93$, c o r r e s p o n d i n g t o a weight by volume o f 1 9 5 kgm,/cu.m,, t h e f o l l o w i n g v a l u e i s o b t a i n e d : 0.069 x 0 , 9 3 = 0.057 compared w i t h a measured v a l u e o f 0.056 kgm./m., atm., h r . , determined f o r b o t h , low r e l a t i v e humidity ( o v e r c a l c i u m c h l o r i d e ) and h i g h r e l a t i v e humidity ( o v e r w a t e r ) . Only when t h e m a t e r i a l h a s been mois- tened by a d d i t i o n o f w a t e r does m o i s t u r e movement t a k e p l a c e i n t h e open c a p i l l a r i e s of s u c h a m a t e r i a l .

Where t h e c a p i l l a r y s y s t e m i s covered w i t h a water- r e p e l l e n t l i q u i d , e.g. impregnated t a r r e d board, t h i s con-

s t i t u t e s a s p e c i a l t y p e of non-hygroscopic m a t e r i a l . I n s u c h a m a t e r i a l t h e r e i s no c a p i l l a r i t y e i t h e r w i t h i n t h e normal h y g r o s c o p i c range o r when w a t e r i s added. However, t h i s does n o t mean t h a t t h e m a t e r i a l i s impermeable t o m o i s t u r e ; f o r t h e vapour d i f f u s e s t h r o u g h t h e p o r e s . The d i f f u s i o n t h r o u g h un-

impregnated cardboard ( w e i g h t by volume 0.75 kgm./dm.3 and t h i c k n e s s 5.2 mm.) was i n v e s t i g a t e d by ~ e h m a n n - O l i v a G , who

-;st

found a d i f f u s i o n c o e f f i c i e n t of 0.0019 kgm./m., h r . , atm, when t h e r e l a t i v e humidity of t h e atmosphere was 40%. T h i s

--

-

-

Lehmann-Oliva, Z. V D I

.

supplement V e r f a h r e n s t e c k n i k No -1, 1940,

,y--t':-

The d i f f u s i o n c o e f f i c i e n t g i v e s t h e amount of w a t e r i n kgm. which d i f f u s e s i n one s q u a r e metre of a l a y e r o f m a t e r i a l of

one m e t r e t h i c k n e s s when t h e d i f f e r e n c e i n t h e p a r t i a l p r e s s u r e of t h e w a t e r vapour i s one atmosphere.

(13)

0.0019

corresponds t o a "seepage f a c t o r " of 0.0015 = 1.25 kgm./sq.m.,

h r . , a t n . f o r cardboard of 1 . 5 rnm. t h i c k n e s s , The impregna- t i o n r e d u c e s even t h e vapour d i f f u s i o n . For t a r r e d cardboard a seepage of 0.1 kgm./sq,m., h r . atm. has been assumed i n t h e c a l c u l a t i o n s of t h e p r e s e n t a u t h o r , b u t t h e v a l u e c l e a r l y de- pends t o a g r e a t e x t e n t on t h e q u a l i t y of t h e impregnation. Coatings w i t h a s p h a l t reduce t h e v a l u e t o 0.022

-

0.051 kgm./ sq.m., h r , , atm. a c c o r d i n g t o a summary by ~ i c k s t r s m ~ . Ac- c o r d i n g t o t h e same s o u r c e only impregnation w i t h p a r a f f i n o r c o v e r i n g w i t h "hydrolen" seems t o p r e v e n t t h e vapour d i f f u s i o n c o m p l e t e l y . However, i n o r d e r t o u t i l i z e t h e vapour r e t a r d i n g p r o p e r t y of such l a y e r s of t a r r e d board t h e seams must be r e - l a t i v e l y t i g h t .

C a p i l l a r i t y

I f a c y l i n d r i c a l c a p i l l a r y t u b e , whose i n s i d e i s mois- t e n e d w i t h w a t e r , i s c o m p l e t e l y f i l l e d w i t h water and i f b o t h i t s open ends a r e i n c o n t a c t w i t h a i r of t h e same r e l a t i v e humidity, t h e r e i s e q u i l i b r i u m between t h e t e n s i l e f o r c e s due t o t h e s u r f a c e t e n s i o n , T h e r e f o r e , t h e r a d i i of c u r v a t u r e of t h e menisci must be e q u a l a t b o t h ends. I f t h e r e l a t i v e hu- m i d i t y corresponds t o t h e d e c r e a s e i n vapour p r e s s u r e of t h e c a p i l l a r y t u b e , t h e c u r v a t u r e of t h e meniscus a t t a i n s i t s maxi- mum v a l u e . Then t h e r a d f i of c u r v a t u r e a r e g e n e r a l l y i d e n t i c a l w f t h t h e r a d i i of t h e c a p i l l a r y t u b e . I f t h e r e l a t i v e h u m i d i t y d e c r e a s e s t h e water w i l l e v a p o r a t e from b o t h s u r f a c e s . There- f o r e , t h e s e s u r f a c e s , w i t h t h e c u r v a t u r e unchanged, b e g i n t o '"8ekstrdrn, K y l t e k n i s k t i d ~ k r i f t ~ NO. 2, 1 9 4 2 .

(14)

move towards t h e c e n t r e of t h e c a p i l l a r y tube u n t i l t h e l a t t e r i s completely d r i e d o u t . I f , on t h e o t h e r hand, t h e r e l a t i v e humidity i n c r e a s e s , an unimportant amount of vapour condenses on t h e s u r f a c e s of t h e m e n i s c i , t h u s r e d u c i n g t h e i r c u r v a t u r e u n t i l e q u i l i b r i u m w i t h t h e i n c r e a s e d vapour p r e s s u r e i s a t - t a i n e d . If now t h e r e l a t i v e humidity i s i n c r e a s e d o n l y a t one s i d e , t h e r a d i u s of c u r v a t u r e w i l l i n c r e a s e t h e r e , c a u s i n g un- b a l a n c e between t h e f o r c e s of s u r f a c e t e n s i o n . T h e r e f o r e , t h e w a t e r f l o w s over t o t h e o t h e r s i d e and t h e r a d i u s of c u r v a t u r e t h u s i n c r e a s e s t h e r e , b r i n g i n g about e v a p o r a t i o n i n t h e space w i t h t h e lower r e l a t i v e humidity. T h i s flow, which i s i d e n t i - c a l w i t h t h e c a p i l l a r i t y , i s maintained by t h e d i f f e r e n c e i n t h e f o r c e s of s u r f a c e t e n s i o n . This d i f f e r e n c e i s determined by t h e d i f f e r e n t r a d i i of c u r v a t u r e , which i n t u r n a r e d e t e r - mined by t h e d i f f e r e n c e i n t h e r e l a t i v e humidity. The condi- t i o n s remain t h e same when t h e d i s c u s s i o n a p p l i e s t o t h e open c a p i l l a r i e s i n a m o i s t g r a n u l a r m a t e r i a l . The c o r n e r s between t h e g ~ a i n s a r e more s u f f i c i e n t l y f i l l e d o u t and t h e r a d i i of c u r v a t u r e t h u s become g r e a t e r a t t h e s i d e of t h e h i g h e r r e l a - t i v e humidity. While t h e vapour d i f f u s i o n t h r o u g h a w a l l con- s i s t i n g of a porous m a t e r i a l i s determined by t h e d i f f e r e n c e i n p a r t i a l vapour p r e s s u r e , i . e . , t h e a b s o l u t e h u n i d i t y , t h e c a p i l l a r i t y consequently i s m a i n t a i n e d by a s t a t e which depends on t h e r e l a t i v e humidity on b o t h s i d e s of t h e w a l l . Within t h e hygroscopic r a n g e t h e m o i s t u r e c o n t e n t o f t h e m a t e r i a l i s c l e a r l y determined by t h e r e l a t i v e humidity of t h e atmosphere and t h e c a p i l l a r i t y i s t h e r e f o r e brought i n t o r e l a t i o n s h i p w i t h t h e

(15)

d i f f e r e n c e i n humidity o f t h e m a t e r i a l a t b o t h s i d e s of t h e w a l l . G r a d u a l l y , a s t h e humidity i n c r e a s e s t h e c a p i l l a r i e s w i t h i n r a n g e of t h e c a p i l l a r y movement o b t a i n i n c r e a s i n g l y g r e a t e r dimensions and, t h e r e f o r e , i n t h e b e g i n n i n g t h e c a p i l - l a r i t y c o e f f i c i e n t i n c r e a s e s , If t h e humidity exceeds t h e maximum hygroscopic m o i s t u r e t h i s c o e f f i c i e n t g r a d u a l l y de-

c r e a s e s a g a i n , because t h e s n a l l e r c a p i l l a r i e s which a r e com- p l e t e l y f i l l e d w i t h water and which, a t i n c r e a s e d humidity c o n s t i t u t e t h e g r e a t e r p a r t of t h e t o t a l c a p i l l a r y volume, can no l o n g e r p a r t i c i p a t e i n t h e a b s o r p t i o n .

If t h e m o i s t u r e t r a n s m i s s i o n c o e f f i c i e n t of a sample i s determined over calcium c h l o r i d e a s w e l l a s o v e r w a t e r , t h e n i t i s found t h a t i n t h e l a t t e r c a s e a n amount must be added t o t h e d i f f u s i o n because of t h e c a p i l l a r i t y . The v a l u e s f o r t h e m a t e r i a l s i n v e s t i g a t e d by t h e p r e s e n t a u t h o r have been assembled i n Table I . This i n c r e a s e i s a p p r o x i m a t e l y 50% f o r o r g a n f c m a t e r i a l s and more t h a n 200% f o r c o n c r e t e s . There- f o r e , a t h i g h e r humidity t h e c a p i l l a r i t y d e t e r m i n e s t h e m o i s t - u r e t r a n s m i s s i o n . The e x p e r i m e n t a l v a l u e s f o r c o n c r e t e and p l a s t e r have been p l o t t e d i n F i g . 6 a s a f u n c t i o n of t h e weight by volume. I t i s e v i d e n t t h a t t h e s t r o n g e f f e c t which t h e

p o r o s i t y h a s on t h e d i f f u s i o n c o e f f i c i e n t determined o v e r c a l - cium c h l o r i d e a l s o a p p l i e s t o t h e g r e a t l y i n c r e a s e d v a l u e s of t h e t o t a l m o i s t u r e t r a n s m i s s i o n c o e f f i c i e n t determined o v e r w a t e r . A t h i g h e r h u m i d i t y t h e i n c r e a s e should become somemhat g r e a t e r s t i l l . I n s u c h e x p e r i m e n t s o v e r w a t e r , where t h e r e i s

(16)

no d r o p i n t e m p e r a t u r e i n t h e w a l l , b o t h t h e c a p i l l a r y movement and t h e vapour d f f f u s i o n a r e i n t h e same d i r e c t i o n . When t h e r e l a t i v e h u m i d i t y i n s i d e t h e house i s h i g h t h e same o c c u r s i n m a l l s o f homogeneous m a t e r i a l and e v e n i n b r i c k s t r i n g s i n w a l l s of t h e Nopsa t y p e . But i n t h e f i l l e d d u c t t h e c a p i l l a r i t y g o e s i n w a r d s and t h e d l f f u s i o n o u t w a r d s . T h i s a l s o o c c u r s i n t h e s e l f - s a m e w a l l where t h e r e l a t i v e h u m i d i t y i n s i d e t h e h o u s e i s low, T h e r e f o r e , i t i s e s s e n t i a l t o know e a c h o f t h e c o e f f i - c i e n t s i n d i v i d u a l l y . F o r t h i s p u r p o s e t h e c o e f f i c i e n t o f t h e c a p i l l a r i t y G ,Af was c a l c u l a t e d i n kgm,/m., f , hr. f r o m measurements o v e r w a t e r , assuming t h a t t h e vapour d i f f u s i o n

coefficient,,^^

i n kgm./m., atm., hr. a c c o r d i n g t o t h e above s t a t e m e n t h a s t h e same v a l u e a s t h a t d i r e c t l y d e t e r m i n e d o v e r c a l c i u m c h l o r i d e , The co-

e f f i c i e n t o f c a p i l l a r i t y i s b r o u g h t i n t o r e l a t i o n s h i p h e r e w i t h t h e d i f f e r e n c e i n t h e m o i s t u r e r a t i o ( m o i s t u r e d i v i d e d by t h e amount o f d r y s u b s t a n c e , f ) and t h u s becomes a hundred t i m e s g r e a t e r t h a n t h a t r e f e r r e d t o i n p e r c e n t of m o i s t u r e d i f f e r - e n c e . The v a l u e s t h u s computed h a v e b e e n a s s e m b l e d i n T a b l e I

f o r t h e v a r i o u s m a t e r i a l s i n v e s t i g a t e d . F o r example, f o r con- c r e t e w i t h a w e i g h t b y volume o f 2 , 0 0 0 kgm./cu.m. and f o r saw- d u s t w i t h a w e i g h t b y volume o f 250 kgm./cu.m, t h e c o e f f i c i e n t of c a p i l l a r i t y i s 0.0080 and 0 , 0 0 1 5 kgm./m., f , h r . , r e s p e c t i v e l y . , A c c o r d i n g t o e x p e r i m e n t and c a l c u l a t i o n and by t h e above s t a t e m e n t ,

-

x-

-

The c o e f f i c i e n t of c a p i l l a r i t y g i v e s t h e amount o f w a t e r i n kgm, which p a s s e s t h r o u g h a l a y e r o f m a t e r i a l o f one m e t r e t h i c k n e s s o v e r an a r e a o f one s q u a r e m e t r e .

(17)

Table I , and F i g . 7 , t h e c o e f f i c i e n t of c a p i l l a r i t y becomes 0.002 and 0.033 kgm./m., atm., h r . , r e s p e c t i v e l y , f o r t h e s e two m a t e r i a l s . As p o i n t e d o u t b e f o r e , i t i s p r o b a b l e t h a t t h i s c o e f f i - c i e n t of c a p i l l a r i t y a t f i r s t i n c r e a s e s a s t h e m o i s t u r e eon- t e n t i n c r e a s e s , b u t t h i s v a r i a t i o n was n o t i n v e s t i g a t e d ex- p e r i m e n t a l l y by t h e a u t h o r and p r o b a b l y no r e l i a b l e t h e o r y

can be found. S i n c e t h e m o i s t u r e c o n t e n t , i n t h e p r e s e n t ex- p e r i m e n t s o v e r w a t e r ( c f . Table I ) , i s of t h e s a n e o r d e r of magnitude ( e . g . f o r c o n c r e t e , r e l a t i v e humidity a p p r o x i m a t e l y 727;) a s t h e m o i s t u r e c o n t e n t i n t h e w a l l t y p e s t o which t h e p r e s e n t f n v e s t i ~ a t i o n r e f e r s i t has been assumed, f o r sim-

p l i c i t y , t h a t t h e c o e f f i c i e n t o f c a p i l l a r i t y i s a l s o unchanged. According t o t h e above s t a t e m e n t i t i s p r o b a b l e t h a t when t h e r e l a t i v e h u m i d i t y i s g r e a t e r t h e c o e f f i c i e n t of c a p i l l a r f t y a l s o i n c r e a s e s , r e d u c i n g t h e r i s k o f c o n d e n s a t i o n i n t h e w a l l . With t h e assumption o f a c o n s t a n t v a l u e f o r t h e c o e f f i c i e n t t h e

c a l c u l a t i o n y i e l d s more r e l i a b l e r e s u l t s .

The c a l c u l a t i o n of t h e m o i s t u r e t r a n s m i s s i o n t h r o u g h a l a y e r of m a t e r i a l p r o c e e d s from t h e two e q u a t i o n s which d e f i n e t h e c o e f f i c i e n t s of m o i s t u r e movement, v i z . : Gd

=Pd

P1

-

P2 kgm./sq.m., h r . (vapour d i f f u s i o n )

6

Gf = ,af ' f 2 kgm./sq.m., h r . ( c a p i l l a r i t y )

6

G = Gd

+

Gf kgm./aq.m., hr

.

( t o t a l m o i s t u r e movement),

(18)

where p a t n . = p a r t i a l vapour p r e s s u r e f = m o i s t u r e r a t i o

6

m = t h i c k n e s s of t h e w a l l s u b s c r i p t s 1 and 2 = t h e two s i d e s of t h e l a y e r . The c a l c u l a t i o n i s s i m p l i f i e d by r e a r r a n g i n g t h e e q u a t i o n to L G = ( , b d ~ l + f i f f l )

-

(pdp2 * f i f f 2 ) = F ( p l f l )

-

F ( p 2 f 2 ) , where f o r a given m a t e r i a l a t a g i v e n t e m p e r a t u r e ~ ( p f ) i s a

s i n g l e - v a l u e d f u n c t i o n o f p and f . This r e l a t i o n s h i p i s shown i n Fig. 7 f o r c o n a r e t e and sawdust w i t h t h e d a t a j u s t given. The r e l a t i o n between t h e r e l a t i v e humidity and t h e m o i s t u r e c o n t e n t of t h e m a t e r i a l has been assumed h e r e i n conformity w i t h t h e s o r p t i o n i s o t h e r m s shown i n F i g s . 1 and 2. I t i s a l s o assumed t h a t d e s p i t e t h e movement of m o i s t u r e t h e m a t e r i a l i s i n e q u i l i b r i u m w i t h t h e ambient atmosphere. A c t u a l e x p e r i - ments seem t o c o n f i r m t h i s . The m o i s t u r e t r a n s m i s s i o n i s then

determined simply by means of F i g , 7.

Movement of Moisture t h r o u g h a Wall of Homogeneous Materf a 1

---

It i s i n t e r e s t i n g t o i n v e s t i g a t e t h e mechanism of m o i s t u r e and m o i s t u r e d i s t r i b u t i o n i n a simple w a l l of homogeneous mater- i a l . A s p e c i a l c a s e of t h i s i s demonstrated by t h e diagram shown i n F i g . 8. It has been assumed t h a t t h e i n d o o r tempera- t u r e i s +15O and t h e outdoor t e m p e r a t u r e - 1 5 O ~ . The r e l a t i v e humidity has been assumed a s 757: and 95,6 r e s p e c t i v e l y . The k v a l u e of t h e w a l l i s 0.8, s o t h a t t h e r e i s no c o n d e n s a t i o n on t h e i n n e r s i d e of t h e w a l l . I f , t o b e g i n w i t h , i t i s assumed

(19)

t h a t t h e m a t e r i a l o f t h e w a l l i s n o t s u r f a c e - a c t i v e , t h e mois- t u r e t r a n s m i s s i o n i s d e t e r m i n e d by t h e s l o p e o f t h e vapour- p r e s s u r e c u r v e a l o n e . S i n c e t h e vapour p r e s s u r e c a n n o t exceed t h e s a t u r a t i o n p r e s s u r e t h e v a p o u r - p r e s s u r e c u r v e w i t h t h e t a n - g e n t s of t h e v a l u e f o r t h e vapour p r e s s u r e o f t h e i n t e r n a l and e x t e r n a l a i r i s g o i n g t o conform t o t h e s a t u r a t i o n c u r v e . S i n c e t h e s l o p e of t h e v a p o u r - p r e s s u r e c u r v e d e c r e a s e s toward t h e o u t - s i d e t h e m o i s t u r e condenses i n s i d e t h e w a l l w i t h i n t h e r e g i o n where t h e r e l a t i v e h u m i d i t y i s 100%. The m o i s t u r e a c c u m u l a t e s t h e r e , r e s u l t i n g i n a n i n c r e a s e i n m o i s t u r e c o n t e n t , I f t h e m a t e r i a l i s s u r f a c e - a c t i v e t h e m o i s t u r e w i l l move outwards t o b o t h s i d e s o f t h e w a l l ; t h e c a p i l l a r i t y i s g r e a t compared w i t h t h e v a p o u r d i f f i s i o n . T h i s i s t h e c a s e i n c o n c r e t e , f o r example, and c o n d e n s a t i o n can be a v o i d e d a l t o g e t h e r . For a m a t e r i a l which i s n o t s u r f a c e - a c t i v e c o n d e n s a t i o n c a n a l s o be a v o i d e d i f t h e r e l a t i v e h u m i d i t y i n s i d e t h e house i s s o low (49;g) t h a t t h e a c t u a l v a p o u r - p r e s s u r e c u r v e i s t a n g e n t t o t h e s a t u r a t i o n c u r v e o n l y a t one p o i n t (shown by a d a s h l i n e i n F i g . 8 ) . C h i e f E f f e c t o f A i r Spaces and C a v i t i e s a s w e l l a s Cardboard L a y e r s on M o i s t u r e T r a n s m i s s i o n I n a n a i r s p a c e t h e r e s i s t a n c e t o d i f f u s i o n i s s m a l l com- p a r e d w i t h t h e r e s i s t a n c e of t h e s u r r o u n d i n g w a l l m a t e r i a l , t h e c a p i l l a r i t y z e r o , and t h e h e a t - i n s u l a t i n g p r o p e r t y inasmuch a s wide s p a c e s a r e concerned a p p r o x i m a t e l y e q u a l t o o r s l i g h t l y

(20)

g r e a t e r t h a n t h o s e i n t h e w a l l , T h e r e f o r e , t h e drop i n vapour p r e s s u r e i n t h e a i r s p a c e i s o n l y s m a l l , while t h e drop i n tem- p e r a t u r e i n t h e same a i r space c a u s e s a d e c r e a s e i n t h e s a t u r a - t i o n p r e s s u r e and t h e r e l a t i v e humidity of t h e atmosphere a t t h e o u t s i d e o f t h i s s p a c e t h u s becomes h i g h e r t h a n a t t h e i n s i d e . There i s i n c r e a s e d r i s k of condensation a t t h e o u t s i d e of t h e space and reduced movement of m o i s t u r e by c a p i l l a r i t y i n s i d e

( o r i n c r e a s e d m o i s t u r e movement o u t s i d e ) t h e w a l l s s u r r o u n d i n g t h e space ( c f . F i g . 9, where t h e a i r space i s i n d i c a t e d by double l i n e s )

.

I n a f i l l c a v i t y , t o o , t h e r e s i s t a n c e t o d i f f u s i o n i s s m a l l compared w i t h t h a t of t h e s u r r o u n d i n g w a l l s , whereas t h e h e a t - i n s u l a t i n g p r o p e r t y i s much g r e a t e r . I f t h e f i l l m a t e r i a l i s non-hygroscopic, t h e f i l l i n g c a v i t y has t h e same

e f f e c t a s an a i r space, b u t t h e e f f e c t becomes c o n s i d e r a b l y mope markad h e r e . If t h e f i l l m a t e r i a l i s h y g r o s c o p i c , t h e c a p i l l a r i t y of w a t e r m u s t t a k e p l a c e i n s i d e t h e f i l l because t h e r e l a t i v e humidity i s g r e a t e r a t t h e o u t s i d e of t h e c a v i t y t h a n a t i t s i n s i d e , I f , a t t h e same time, t h e t o t a l amount of m o i s t u r e t r a n s m i t t e d i s assumed t o be unchanged, t h e n t h i s would mean an i n c r e a s e I n t h e amount o f vapour d i f f u s i n g o u t -

s i d e t h e c a v i t y , However, t h i s i n c r e a s e corresponds t o a n i n c r e a s e i n t h e drop of vapour p r e s s u r e i n t h e c a v i t y . A t

t h e same time t h e vapour p r e s s u r e and r e l a t i v e humidity i n - c r e a s e a t t h e i n s i d e and d e c r e a s e a t t h e o u t s i d e , F o r t h i s r e a s o n b o t h t h e vapour d i f f u s i o n and t h e c a p i l l a r i t y i n t h e

(21)

w a l l s s u r r o u n d i n g t h e c a v i t i e s d e c r e a s e t h u s r e d u c i n g t h e t o t a l amount of m o i s t u r e t r a n s m i t t e d t h r o u g h t h e w a l l , Thf s means a n a d d i t i o n a l i n c r e a s e i n t h e drop i n vapour p r e s s u r e i n t h e c a v i t y s i n c e t h e t o t a l drop i n vapour p r e s s u r e i n t h e w a l l i s c o n s t a n t . The r e s u l t w i l l t h u s be a v e r y c o n s i d e r a b l e i n c r e a s e i n t h e drop i n vapour p r e s s u r e i n t h e c a v i t y and t h u s a c o r r e s p o n d i n g i n - c r e a s e i n t h e amount of vapour d i f f u s i n g o u t s i d e t h e c a v i t y , As n u m e r i c a l c a l c u l a t i o n s f o r sawdust w i t h s u r r o u n d i n g con- c r e t ~ w a l l s show, t h i s l a t t e r i n c r e a s e i s many t i m e s g r e a t e r t h a n t h e t o t a l amount of m o i s t u r e t r a n s m i t t e d t h r o u g h t h e w a l l . S i m i l a r l y t h e c a p i l l a r f t y o f water t a k i n g p l a c e i n t h e c a v i t y must be of t h e same o r d e r . Hence, because of t h e i n c r e a s e d drop i n vapour p r e s s u r e i n t h e c a v i t y t h e h y g r o s c o p i c i t y of t h e f i l l m a t e r i a l means reduced r i s k o f c o n d e n s a t i o n and a

d e c r e a s e i n t h e t o t a l outward movement of m o i s t u r e i n t h e w a l l , A l a y e r of t a r r e d cardboard, which has no c a p i l l a r i t y and which has ~ e l a t i v e l y l a r g e r e s i s t a n c e t o d i f f u s i o n , i n c r e a s e s t h e vapour p r e s s u r e and t h e r e l a t i v e humidity i n s i d e t h e l a y e r and d e c r e a s e s them a t t h e o u t s f d e of t h e l a y e r . The r i s k o f c o n d e n s a t i o n i n t h e p a r t s of t h e w a l l o u t s i d e t h e cardboard l a y e r i s t h u s reduced. The outward movement of mofsture, b o t h i n t h e form of d i f f u s i o n and i n t h e form1 of c a p i l l a r i t y i s r e - duced,

Hence i n a w a l l w i t h h e a t - i n s u l a t i n g c a v i t i e s

-

f i l l e d o r u n f i l l e d

-

t h e r e i s always i n c r e a s e d r i s k of c o n d e n s a t i o n .

(22)

T h i s r i s k i s & r e a t e s t when t h e r e i s o n l y one c a v i t y b e c a u s e t h e g r e a t e s t jump i n t h e s a t u r a t i o n p r e s s u r e would t h e n be o b t a i n e d . The ~ r e a t e r t h e number o f c a v i t i e s c o n t a i n e d i n a w a l l and t h e more t h e s e c a v i t i e s r e s e m b l e e a c h o t h e r w i t h r e s - p e c t t o h e a t - i n s u l a t i n g p r o p e r t y , t h i c k n e s s , and c a p a c i t y f o r c a p i l l a r i t y , t h e more c l o s e l y t h e s a t u r a t i o n c u r v e w i l l r e s e m b l e t h a t a p p l y i n g t o a homogeneous w a l l . I n t h i s c a s e t h e r i s k o f c o n d e n s a t i o n a ~ a i n d e c r e a s e s o f c o u r s e . If t h e c a v i t y i s f i l l e d w i t h a s u r f a c e - i n a c t i v e m a t e r i a l t h e movement o f m o i s t u r e i n - c r e a s e s i n t h e d j i r e c t i o n o f t h e t e m p e r a t u r e d r o p , b u t i f t h e m a t e r i a l i s s u r f a c e - a c t i v e t h i s i n c r e a s e d e c r e a s e s t h e more s u r f a c e - a c t i v e t h e m a t e r i a l i s . If t h e a b o v e s t a t e m e n t i s a p p l i e d t o w a l l c o n s t r u c t i o n s o f t h e t y p e s Nopsa I and I1 t h e f o l l o w i n g r e s u l t s w f l l b e ob- t a i n e d : B o t h t h e c a r d b o a r d l a y e r i n Nopsa I and t h e a i r s p a c e i n Nopsa I1 ( i , e . , i f t h e o u t e r d u c t i s u n f i l l e d ) r e d u c e t h e r i s k of c o n d e n s a t i o n i n t h e f i l l l a y e r i n a s m u c h a s t h e c a r d b o a r d l a y e r r e d u c e s t h e movement of m o i s t u r e t o t h e p o i n t w h i c h i s c r i t i c a l f o r t h e c o n d e n s a t i o n w h i l e t h e a i r s p a c e i n c r e a s e s t h e m o i s t u r e movement f r o m t h i s p o i n t . A t t h e same t i m e , t h e e f f e c t of t h e a i r s p a c e s h o u l d b e s m a l l e r h e r e t h a n t h a t o f t h e c a r d - b o a r d l a y e r . From t h e c o n d e n s a t i o n p o i n t o f view i t i s f a v o u r - a b l e t o s u b d i v i d e t h e Nopsa 11, w h i c h h a s two c a v i t i e s , p a r t i - c u l a r l y when b o t h d u c t s a r e f i l l e d . However, t h e o u t e r c a v i t y s h o u l d n o t b e f i l l e d , s i n c e o t h e r w i s e t h e a i r s p a c e w i t h i n

(23)

c o n d e n s a t i o n a t t h e o u t s i d e of t h e f i l l e d c a v i t y t h u s i n c r e a s e s , provided, o f c o u r s e , t h e t e m p e r a t u r e and m o i s t u r e c o n d i t i o n s a r e

such t h a t condensation can o c c u r . I n o r d e r t o reduce t h e r i s k of condensation t h e f i l l m a t e r i a l should have a g r e a t c a p a c i t y f o r c a p i l l a r i t y s o t h a t a r e d u c t i o n i n t h e vapour p r e s s u r e a t t h e o u t s i d e of t h e c a v i t y i s o b t a i n e d by r e a b s o r p t i o n of water. For t h e m a t e r i a l i n v e s t i g a t e d by t h e p r e s e n t a u t h o r , t h e f o l l o w - i n g v a l u e s were o b t a i n e d f o r m o i s t u r e t r a n s m i s s i o n t h r o u g h saw- d u s t and c h a r c o a l : 0.033 and 0,017 kgm./sq,m., hr

.

,

r e s p e c t i v e l y , a t a drop i n vapour p r e s s u r e a t one atm. p e r metre f o r t e s t s over calcium c h l o r f de and 0,046 and 0.024 kgm./sq.m., h r . , r e s p e c t i v e l y , f o r t e s t s o v e r w a t e r , The c a p a c i t y f o r c a p i l l a r i t y i s a p p r o x i - m a t e l y g i v e n by t h e p e r c e n t a g e i n c r e a s e i n m o i s t u r e t r a n s m i s s i o n

i n t e s t s over water i n r e l a t i o n t o t e s t s o v e r calcium c h l o r i d e . This v a l u e i s 39% f o r sawdust and 41% f o r c h a r c o a l , t h a t i s t o say, t h e s e two m a t e r i a l s a r e e q u i v a l e n t from t h i s p o i n t of view.

I n Nopsa I t h e p e r m e a b i l i t y t o m o i s t u r e i s reduced by t h e cardboard l a y e r and i n Nopsa I1 i t i s i n c r e a s e d by t h e a i r s p a c e . The e f f e c t o f t h e c a v i t y f i l l e d w i t h sawdust i s a p p r o x i m a t e l y i d e n t i c a l i n b o t h c a s e s . A l t o g e t h e r t h e p e r m e a b i l i t y i s t h e r e - f o r e g r e a t e r f o r Nopsa 11. This i s a l s o confirmed by computed examples. Nopsa I1 w i t h b o t h c a v i t i e s f i l l e d o n l y l e t s a r e - l a t i v e l y s m a l l amount of m o i s t u r e t h r o u g h . The amount of mois- t u r e p a s s i n g t h r o u g h t h e w a l l s i s s m a l l compared w i t h t h e amount of water e v a p o r a t i n g i n a b a r n , For t h i s r e a s o n t h e e v a p o r a t e d water must be removed from t h e l a t t e r by v e n t i l a t i o n . The t o t a l

(24)

p e r m e a b i l i t y t o m o i s t u r e i s i m p o r t a n t f o r t h e f o l l o w i n g r e a s o n . I n c a s e of c o n d e n s a t i o n t h e amount of condensing m o i s t u r e w i l l be s m a l l i f t h e p e r m e a b i l i t y i s s m a l l , b u t a damp w a l l w i l l d r y o u t more r a p i d l y i f t h e p e r m e a b i l i t y i s g r e a t .

As mentioned above, t h e c o n d i t i o n s f o r a r i s k of conden- s a t i o n a p p l y o n l y a s l o n g a s t h e w a l l i s n o t i n t e r r u p t e d by windows, c r a c k s , e t c , I n s u c h a c a s e t h e c o n d i t i o n s may be e n t i r e l y d i f f e r e n t . A s e x p l a i n e d i n d e t a i l t h e r i s k of c o n d e n s a t i o n i n a w a l l i n c r e a s e s i f t h e l a t t e r i s provided w i t h a h e a t - i n s u l a t i n g c a v i t y , t h i s r i s k d e c r e a s i n g t h e more s u r f a c e - a c t i v e t h e mater- i a l i s , A s examples computed on t h e b a s i s o f approximate v a l u e s f o r t h e c o e f f i c i e n t s o f c a p i l l a r i t y and d i f f u s i o n show, t h e

c a p a c f t y f o r c a p i l l a r i t y seems t o be s o g r e a t f o r sawdust t h a t t h e r e i s no r i s k of c o n d e n s a t i o n u n l e s s t h e h u m i d i t y of t h e atmosphere i s v e r y h i g h b o t h o u t s i d e and i n s i d e ,

Close t o a window t h e warmer p a r t s of t h e w a l l c o o l down a s l o n g a s t h e vapour p r e s s u r e i n t h e a i r a t t h e i n s i d e of t h e w a l l i s i d e n t i c a l w i t h t h a t a t p a r t s of t h e w a l l s which a r e f u r t h e r away from t h e window. T h e r e f o r e , c l o s e t o t h e window t h e r i s k o f c o n d e n s a t i o n i s g r e a t e r , and condensed water f i n a l l y s p r e a d s t o a d j o i n i n g p a r t s of t h e w a l l due t o c a p i l l a r i t y and t h e e f f e c t o f g r a v i t y .

(25)

If t h e r e a r e l e a k s ( c r a c k s , e t c . ) i n t h e i n n e r s u r f a c e of t h e w a l l , t h e n owing t o chimney e f f e c t warm a i r from w i t h i n f l o w s o u t , c a r r y i n g water vapour t o t h e c a v i t y f i l l e d w i t h sawdust, t h e water vapour condensing i n t h e c o l d e r c a v i t y . Even a v e r y s m a l l l e a k i n a w a l l w i l l r e s u l t i n a n amount of c o n d e n s a t i o n which i s many t i m e s g r e a t e r t h a n t h a t which c a n normally o c c u r i n a w a l l ,

(26)

0.035

0.030

. C E M E N T P L A S T E R

-

0.025

1 I- B A S T A R D STUCCO - Z W I- C O N C R E T E 7

0

0.2

0.4

0.6

0.8

1

.O

R E L A T I V E H U M I D I T Y

(27)

RELATIVE HUMIDITY

(28)
(29)

0

400

800

1200 0

0.4

0.8

T I M E

IN

H R .

R E L . H U M I D I T Y

/ 0 0 o R.H. 0.5

Fig. 4. The weight of the sawdust sample a s a function of the time and of the

relative humidity of the ambient atmosphere.

R.H.= 1.0 040-o-o-

- -

-

I I I I I I F

-

-.- -

-

-.

o*@ I 0 I ~ R . H I = o - - - . - - - 0 . 5 4 7

- - - -

I - - I . . - , - ,

- - -

I I I I /

-

-

-

.-

- -

I R.H.= 0.8 0 1 core-0-0-0 0 -

- - -

-1.-

-

- -

- - -

- -

-

- 0 1

- -

-

.-

-

-

- - -

(30)

Fig.

5.

Diff'usion coefficient

pd

as a function of porosity.

RES

a

LL

(31)

2 0 0 0

2 5 0

WEIGHT

B Y VOLUME

(32)

"0

4

8

12

16

P. I

o3

ATM.

Fig. 7. Diagram for calculating the moisture transmission by means of the relation

The moisture movement through a wall of thickness

b

m., having a temperature of

6'10~.

and a vapour pressure of pl atm. at one side and a temperature of

Q20c.

and a vapour pressure of p2 atm. at the other, becomes

(33)

0.8

TEMP.

Fig. 8. Moisture distribution in a homogeneous wall with vapour diffusion alone (no capillarity).

(34)

HOMOGENEOUS WALL WlTH WALL WlTH FlLL

WALL AIR SPACE CAVITY, BUT NO

CAPILLARITY

TEMPERATURE

- - - SATURATION PRESSURE - - VAPOUR PRESSURE

- - - -

R E L A T I V E HUMIDITY

WALL WITH FlLL WALL WlTH

CAVITY

a

CARDBOARD

CAPILLARITY LAYER

Fig. 9. Fundamental e f f e c t o f a i r space and f i l l c a v i t i e s a s well a s cardboard layers on the d i s t r i b u t i o n of vapour

(35)

Table 1

I

1. Charcoal, 0.7 m. 7. Concrete, cement t o sand 1:9 p a r t s by w t . 12. Lime p l a s t e r , lime p l a s t e r t o sand 1:3 parts by vbl.

2. Sawdust 8. 11 n 11 n 1:9 n 11 n 13. Brick

3. Rock wool 9. II w II 11 1: 4 w II N 14, 15. Class spheres of 0.5 and 1.9 diam. respectively

4. Masonite, hard 10. Cement p l a s t e r , cement t o sand 1:3

garts

by 16. Siporex

5. b s o n i t e , poroua 11. Bastard stucco, 30% cement p l a s t e r y ut. and

6. Sand, 0.7 mm. 70% l i n e plaster.

1 ) After ~ r i s c h e r - ~ % r l i n & VDI

Verfahrenstechnik No. 5, 1938

'.

4 no. 1 2 3 4 5 6 7 8 9 10 11 12 13 11 Weight by vol. kgs./cu.m. 222 211 19 5 997 3% 1800 1800 2000 2200 2000 1700 1750 1600 1860

-

15 16 I 450 I Thickness of sample in m* 0.015 0.030 0.015 0.030 0.015 0.030 0,055 0.0041 0.0115 0.030 coarse c a p i l l a r y 'coarse 44 h9 93 16 71 32 31 23.5 1 5 21

T;;

-

Pprosity t o t a l P 8h 86 93 36 77 32 33 26 19 27 38 j5 40 i n % fine-cap- i l l a r y 2.3 6.3 0 20 6.0 0 2.1 2.5 4.0 6.4 -- - .2 39.5 39.5 83 I 28.5

1

28.5

Coefficient of moisture transmission

i n kgm./m.atm.hr. and mean value of

-

p Pd 1.41 1.39 1.36 1 1.31 1.78 1 3.7 0.66 0.81 1 (0.65) 3.2 3.35 3.25 3.1 2.75 3.4 : l o ) 8

over calcium chloride

0.018~) 0 , 0 2 2 ~ ) I 0.037 I 39.5 39.5 (83) Reduction factor pd

-

0*069 'coarse 0.56 0.98 0.88 0.038 0.16 0.57 0.13 0.0074~) over p 0.024 O.OL6 - 0.045 0.0% 0.00055 0.0135 0.0125 0.010 0.0086 0.0074 0.0065 0.0026 0.0020 0.0037 0 . 6 5 0 . 0 0 6 5 , 0.010 P d 19 19 19 19 19 19 I

0"

::

:

i

I Capillarity coefficient Pf i n k ~ . / m.f.hr. 0.0017 0.0015 - 0.000 --. 0,0000017 0.00U 0.011 0.13 0.080 0.W3 0.095 (0.04) water Rel. Hum. % 68 63 65 68 67 66 72 72 72 72 72 72 72 72 72 72 Rel, Hum, 0.015 0.030 0.015 0.030 0.015 0.020 . 0.015 - 0,015 0.0080 0.0015 0.0018 0.0027 0.0022 0.0020 0.00083 0.00135 0.0019 (0.0010) i % 0.017

1

32

1

0. 8 0.033 0.0% 0.00042 0.0076 0.0027 36 36 24 31 19

Figure

Fig.  1.  Sorption isotherms st 20'~.
Fig.  2.  Sorption  isotherms  a t   20'~.
Fig.  4.  The weight  of the sawdust sample a s  a  function of the time and  of the  relative humidity of the ambient atmosphere
Fig.  5.  Diff'usion coefficient  pd  as  a  function of porosity.
+4

Références

Documents relatifs

Both plant and bacterial nitrate reductase contribute to nitric oxide production in Medicago truncat- ula nitrogen-fixing nodules... truncatula leaf and root

De modo que, en un primer sentido, aquel que dice relación con ese 43% de la superficie irrigada que en 1983 correspondía a los campos comunes de pastoreo, aquí también el alambre

This model indicates that type I and II IFNs promote the resistance to apoptosis of primary CLL cells through the simultaneous activation of TYK2 and Src, or JAK2 and Src ki-

This work proposes an original non-intrusive approach to detect and quantify rattle noise in automotive gearboxes operating under non-stationary conditions by means of vibration

In order to test the calculated upper limit of the contact angle, we carried out MD simulations considering one nano- droplet of water on a flat, fixed, and suspended monolayer

If we refer to the Ansatz of our wave operator in eq 17, the factorized Ansatz Texp{Sμ} for the component Ωμ of the wave operator acting on ϕμ ensures that not only the ground

The proposed regularization strategy makes use of three different constraints: (i) a temporal regularization term denoted as ET is introduced in order to exploit the temporal

Of the occupants who were on the second and higher floors when the MI began, all knew to exit by staircases and none attempted to take the elevators. People tended to move