HAL Id: hal-03025850
https://hal.sorbonne-universite.fr/hal-03025850
Submitted on 26 Nov 2020
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of
sci-entific research documents, whether they are
pub-lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
Fiona Francis, Silvia Cappello
To cite this version:
Fiona Francis, Silvia Cappello. Neuronal migration and disorders – an update. Current Opinion in
Neurobiology, Elsevier, 2021, 66, pp.57 - 68. �10.1016/j.conb.2020.10.002�. �hal-03025850�
Neuronal
migration
and
disorders
–
an
update
Fiona
Francis
1,2,3and
Silvia
Cappello
4Thisreviewhighlightsgenes,proteinsandsubcellular mechanisms,recentlyshowntoinfluencecorticalneuronal migration.Acurrentviewonmechanismswhichbecome disruptedinadiversearrayofmigrationdisordersispresented. Themicrotubule(MT)cytoskeletonisamajorplayerin migratingneurons.Recently,variableimpactsonMTshave beenrevealedindifferentcellcompartments.Thustherearea multiplicityofeffectsinvolvingcentrosomal, microtubule-associated,aswellasmotorproteins.However,other causativefactorsalsoemerge,illuminatingcorticalneuronal migrationresearch.Theseincludedisruptionsoftheactin cytoskeleton,theextracellularmatrix,differentadhesion moleculesandsignalingpathways,especiallyrevealedin disorderssuchasperiventricularheterotopia.Theserecent advancesofteninvolvetheuseofhumaninvitromodelsaswell asmodelorganisms.Focusingoncell-typespecificknockouts andknockins,aswellasgeneratingomicsandfunctionaldata, allseemcriticalforanintegratedviewonneuronalmigration dysfunction.
Addresses
1INSERMU1270,Paris,France 2
SorbonneUniversity,UMR-S1270,F-75005Paris,France
3
InstitutduFera` Moulin,Paris,France
4MaxPlanckInstituteofPsychiatry,Munich,Germany
Correspondingauthor:Francis,Fiona(fiona.francis@inserm.fr)
CurrentOpinioninNeurobiology2021,66:xx–yy ThisreviewcomesfromathemedissueonDevelopmental neuroscience
EditedbyAlainChedotalandDenisJabaudon
https://doi.org/10.1016/j.conb.2020.10.002
0959-4388/ã2020TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).
Introduction
Duringembryogenesis,corticalprojectionneuron
devel-opmentrequiresastrictcoordinationbetweenamplifying progenitorcells,neurogenesisandneuronalmigrationto superficialregionsofthebrain[1].Neocorticalexpansion
duringevolutionisconcomitantwithincreasednumbers
of progenitors and neurons, and a particular neuronal
organization which leads to the formation of gyri and
sulci[2,3].Afterbeinggeneratedinaventricular(VZ),or
subventricular zone(SVZ), neurons migrate through an
intermediate zone (IZ)to reach thedeveloping cortical
plate(CP).Apicalprogenitorsconsistofradialglia(RGs), exhibitingshortapicalandlongbasalprocessestomake
attachments with other cells and with the extracellular
matrix(ECM,[2]).Basalprocessesserveasasubstratefor radiallymigratingneurons(Figure1a).Basalprogenitors
found in the SVZ consist of intermediate progenitors
(IPs), or basal radial glia (bRGs, [3]), highly amplified
in number in gyrencephalic brains (exhibiting cortical
folds)[3,4].Ascorticogenesisproceeds,neuronsare gen-eratedeitherbydirect(fromRGs)orindirect(frombasal progenitors)neurogenesis[1].Overtime,successive gen-erationsofprogenitorswillproduceneuronsdestinedfor thedifferentlayersofthecortex,withdeeplayersformed beforeupperlayers[5].
Cortical malformations can show disrupted brain size
(microcephaly or macrocephaly), and/or morphology
[6–8].Abnormalcorticallayeringandfoldingareassociated
with epilepsy(oftenpharmaco-resistant),developmental
delay and intellectual disability [8]. The lissencephaly spectrum(corticalagyria,pachygyriaandsubcorticalband heterotopiaorSBH)ischaracterizedbylargenumbersof mis-positionedneurons,eitherpresentinthewhitematter, orinabnormalcorticallayers.Inperiventricularheterotopia (PH),populationsofmis-positionedneurons(nodules)are foundliningtheventricles[8].Polymicrogyriaisassociated withexcessivesmallfoldsonthesurfaceofthebrain.The patho-mechanismsgivingrisetothesephenotypesarestill beingelucidated.
PreviousgeneticstudieshaverevealedmanyMT cytoskel-etongenemutations(tubulinopathies[9,10])affecting cor-ticallaminationandfolding.Mutationsindifferenttubulins (TUBA1A, TUBB2B, TUBB3, TUBG1),
microtubule-asso-ciated proteins and motorproteins (LIS1,DCX, KIF2A,
KIF5C, DYNC1H1, EML1) have illuminated neuronal
migration disorderresearch[11,12]. InPH, themost fre-quentgeneshowingmutationsisFLNA,anactin cytoskel-etoncross-linkerregulatingadhesionmoleculessuchasthe integrins[13,14].MutationsinFLNAwerefoundin100% of familieswithX-linkedbilateralPHandin26%ofsporadic
PH patients [5]. Other PH genes are FAT4, DCHS1,
ARFGEF2, ERMARD, AKT3, INTS8, MCPH1,
NEDD4L and MAP1B [16] with diverse functions, for
example,inadhesion,trafficking,generegulationand sig-naling.Manymorepatientsexistforwhichthemutantgene isnotyetknown.Polymicrogyriageneshavediverse
func-tions and expression patterns. These include GPR56,
Figure1
(a)
(c)
(b)
Current Opinion in Neurobiology
Multipolar(Kif2A)andbipolar(Bicd2,Tubg1,Cep85L)neuronphenotypesrevealedbythestudyofMTcytoskeletalgenes.(a)Schemashowing keycelltypesinvolvedinrodentcorticaldevelopmentduringembryogenesis.InapicalregionsofRGs,MTs(orangelines)andaprimarycilium (bluetriangle)areindicated.Dync1h1,Bicd2,Kif2aandTubg1playrolesinRGs,althoughwefocusinthisreviewontheirroleduringmigration.It iscurrentlyunclearifCep85lplaysaroleinprogenitors.(b)AbipolarmigratingneuronisshownwithseveralMTfeaturesindicated.(c)Kif2a mutantcells,relatedtoalossofanMT-depolymerizingactivity,showlonger,nocodazole-resistantMTs,shownhereforsimplicityatthe
Reviewedherearenewgenes/mechanismsassociatedwith thesedisordersrevealingcorticaldevelopmentalprocesses.
MT
dynamics
and
function
in
migrating
neurons
Migrating corticalneurons undertake multiple dynamic
changes, first transitioning from multipolar to bipolar
morphologies[11], involvingprocess growthand
retrac-tion, and the polymerization and depolymerization of
MTs. Duringmigration,MTsaidforwardmovementof
the nucleus(nucleokinesis) following themovement of
the centrosome (the MT organizing centerinvolved in
nucleation)(Figure1b,[17]).Withinstableneuritic pro-cesses,MTtracksarerequiredfor traffickingofcargoes andorganelles.Anumberofrecentstudieshave
interro-gatedmutantMTandassociatedproteinsduring
migra-tion.Surprisingly,variableeffects areobserved showing thecomplexityofthecytoskeletonactingindifferentcell compartments(Table1).
Gilet et al. [18]studied KIF2A, akinesin MT
depoly-merizer. Mutations give rise to pachygyria and
micro-cephaly [19].Using anelegantconditionalknockin(KI)
strategy,miceweregeneratedexpressing apatient
mis-sensemutationinparticularcelltypes.Crerecombinase linesusedwere:ubiquitousRosa-Cre,progenitor
Nestin-Cre orimmatureneuronNex-Cre.Rosa-KIand
Nestin-KI miceare smaller in size and show microcephaly. At
E18.5inthesemice,corticesweremoreseverelyaffected thanNex-KImice,showingaroleforKif2ainprogenitors.
TheRGscaffoldrevealednomajoranomaliesin
Nestin-KImice,howevercelldeathwasgreatlyincreasedmainly
in IPsandneurons.Nex-KImicealsoshowedincreased
neurondeath. Time-lapseimagingandinutero
electro-porations(IUE)revealednormalneuronmigration
veloc-ityandpausing,butaprobleminthetransitionof
migrat-ing neurons from multipolar to bipolar morphologies
(Figure 1c). MTsshowedaresistance to
depolymeriza-tion, most probably via deficient ATP turnover and
persistent MT association of mutant KIF2A. Plus end
MT polymerization was also increased in mutant cells.
ThusarobustderegulationofMTdynamicsisobserved
duetoKIF2Amutations,affectingprogenitors,aswellas multipolarto bipolarneurontransitions.
MT motor proteins also play a key role in neuronal
migration.Dyneinandkinesinstransportcargoesin oppo-sitedirectionsalongMTs,transportMTsthemselves,and
are also implicatedin nuclearmovement [11].Denovo
heterozygotemutationsindynein(DYNC1H1)cangive
rise to a spectrum of brain phenotypes, and/ or spinal
muscularatrophy[19–22]andreferencestherein].Recent
studies focused on BICD2, a dynein adaptor protein
associatedwithspinalmuscularatrophy,butalso perisyl-vianpolymicrogyria[23].Willetal. [24]performed
cell-type specific knockouts (cKOs) of Bicd2 using Emx1
(earlyforebrain-specificprogenitors)andNex-Cremouse lines.Migrationdefectswereidentifiedinbipolarradially
migratingneuronsforbothcKOs.Althoughabnormalities
werealsoobservedinprogenitorsintheEmx1-CrecKO
(Bicd2 plays arole in interkinetic nuclear migration in
RGs), migration deficits were similar between the two
lines,revealingacell-intrinsicroleforBicd2inmigrating
neurons.Mutantmigratingneuronshadlongerandmore
branched leadingprocesses, as well as aberrantly
orga-nizedGolgiapparatuses(Figure1c).Thepolymicrogyria patientmutationinBICD2occursinabindingdomainfor
thesmallGTPaseRab6(involvedinGolgifunction)and
the nucleoporin RanBP2 (aiding dynein recruitment to
thenuclearenvelopeindividingcells).Thecontribution ofthedifferentorganellestothemigrationandprogenitor
defectsremainto beestablished.
Denovovariantsing-tubulin(TUBG1)werealso
iden-tified in patients with pachygyria and corpus callosum
abnormalities[19,25,26].g-tubulinisknownfor itsrole
nucleatingMTs,formingpartofthecentrosome.Tubg1
+/ mice show nocortical defects[27], howevereither
KDorKI(ubiquitousorneuron-specific)offour
hetero-zygote patient variants disrupted neuronal migration,
with one mutation also perturbing proliferation. Four
days afterIUE, unlikeWTneurons whichhad reached
theupperlayersoftheCP,mutantcellshadonlyreached
the IZand were arrestedin their migration:time-lapse
studies showed many non-migrating bipolar neurons.
Interestingly, mutant proteins were correctly localized
at the centrosome, and MT nucleation properties
appeared normal however,MT dynamics were altered,
with adecrease inpolymerization rate,resultingin less
organized and shorter MTs. Thus, studying different
models,mainlymigrationdefectsareobserved,associated
withdampenedMTpolymerization(duepotentiallytoa
non-centrosomal function of g-tubulin) in neurons of
normalbipolar morphology(Figure 1c).
Patients wereidentified withrareheterozygousvariants
in CEP85L, coding for acentrosome-associated protein
locatedtothemothercentriole[28,29].Mutationsgive
risetoanagyria,pachygyria-SBHspectrum,mostsevere
overoccipital,temporalandparietallobes.CEP85Lwas
(Figure1LegendContinued)centrosome.Thisperturbsthemultipolartobipolartransition.Bicd2bipolarneuronsareslowedintheirmigration andshowincreasedbranchingoftheirleadingprocesseswithaberrantlyorganizedGolgiapparatuses,relatedtodynein-dependentfunctions.In Tubg1mutantneurons,althoughMTnucleationseemstooccurproperly,thereisadecreaseinMTpolymerizationrate,MTsarehenceshorter,as wellasbeinglessstraight,eveninnon-centrosomalregions.Cep85LmutantcellsremainblockedintheIZ(multipolarversusbipolarneuronswere notassessed).Inthiscase,thereisacentrosomalaccumulationofvariousMTproteinsleadingtooverabundantMTs,sinceCep85Ltogetherwith Cdk5normallyrestrictsthebindingoftheseMTproteins.Corticalbipolarmigratingneuronshavethecentrosomeinfrontofthenucleus,oftenina visiblebulge.Nuclear-centrosomalcoordinationisimportantforcellmovement.
Table1
Humanmalformationandmousephenotypes
Gene Reference Mouse Phenotype Humanmodel Comments Pathology
BICD2 [23,24] cKO:Emx1-Cre; Nex-Cre
Intheneocortex, migrationdefectsin bipolarneurons-longer andmorebranched leadingprocesses.cKOs showedseveremigration defectsinupperlayer neurons,withaswella mixingofneuronsin layers5and6.Maturing neuronsincreased apoptosis.
– – Heterozygote.Bilateral
perisylvianPMG, enlargedlateral ventricles,thincorpus callosum,hypoplastic cerebellarvermis, retrocerebellarcyst
CEP85L [28,29] KD:shCep85l E13.5-E17.5
LessneuronsinCPmore inIZ,SVZ.Persistanceat P7
Expressionfrom fetalcortex lysates
– Heterozygous(canhave
autosomaldominant inheritance). Posterior-predominantpachygyria. Mildcerebellaratrophy. CEP83 [30,31] cKO:Emx1-Cre OverproliferationofRGin
medio-dorsalregions, macrocephaly – – Recessive.Infantile nephronophthisisand intellectualdisability ECE2 [49] KD:miRNAs directedagainst ECE-2and overexpression (E13-E16). DetachedRG,ectopic neurons,rosettes/ nodules,disruptedVS KD/Crispr-Cas9 KO/PHOSinh.in cerebral organoidsand 2Dcultures. Overexpression. DetachedRG,ectopic progenitorsandneurons, slowedmigration. Progenitorsincreased, neuronsdecreased(KD), oppositewith overexpression. Recessive.DiffusePH DCHS1/ FAT4 [39,41] KOsandKD: shRNAsdirected againstDchs1 andFat4(E13 -E16/E18).
KOs:cortexnormal structureatE18.Lethality. Overproliferation.Many cellsremainin proliferativezones.KDs: changesinRG morphology, overproliferation (Yap-mediated),neuronal migrationdefects. Patient mutations/ Crispr-Cas9KO/ KD,incerebral organoidsand 2Dcultures. Neuronalnodulesat ventricularpositions. Poorlyorganized germinalzone.Disrupted RGmorphology(e.g. processestwisted, FAT4).Perturbedcilia. Slowedmigration.
Recessive.Van Maldergemsyndrome. PHtypicallyaround posteriorhornsbutcan extendanteriorly. Simplifiedgyriinaffected regions. EML1 [32,33,34] Spontaneous mutation(HeCo) Neocorticalheterotopia. DampenedMT polymerization(EB3). Perturbedspindles,cilia andGolgiapparatus.
Fibroblastsand humandorsal cortical progenitors
Defectiveciliogenesis andGolgiapparatus
Recessive.
Megalencephalywitha characteristicribbon-like subcorticalandPH combinedwithpartialor completecallosal agenesisandanoverlying PMG-likecortical malformation. Hydrocephalus. FLNA [12,13,14,15] KO:Flna,cKO:
FlnaEmx1Cre; cKO/KO:Flna/ Flnbmice
KO:Embryoniclethal, abnormalvessels,cardiac defects;thinCP;cKO: Mildphenotypein neuroependyma.Flnb KO/FlnacKOPH, mislocalizedandexcess IPs,lossofepithelial-like featuresofmutantRG cells
– – X-linked.PH
predominantlyliningthe anteriorhornsand ventricularbodiesofthe lateralventricles. Hypoplasiaofthe cerebellarvermisand posteriorfossacystsare common
Table1 (Continued)
Gene Reference Mouse Phenotype Humanmodel Comments Pathology
KIF2A [18] cKI:Nestin,Nexor Rosa-Cre Microcephalyand disorganizedlayers (Rosa,Nestin-Cre). Hippocampal heterotopia.Problemin multipolar-bipolar transition.Celldeath increased.MTsresistant todepolymerization. Fibroblasts Defective depolymerizationofMTs (nocodazoleassay). Increasedpolymerization (EB3). Heterozygote.Posterior pachygyriaand microcephaly MAP1B [16,44] Map1B-deficient mice Defectsinneuron migration,neurite extensionandsynapse development Co-expression analysesofPH genesbasedon brain-specific human transcriptomic resources
FLNAandINTS8similar pathologyand expression
Heterozygous.Bilateral frontal-predominantPH, canbeassociatedwith perisylvian/insularPMG
MOB2 [43] KD:miRNAs directedagainst Mob2IUE(E13 -E16).Dchs1KD also. IncreasedcellsinVZ, decreaseinouterCP. Nuclear-ciliadistance increasedinmigrating neurons(andsometimes multi-cilia).Positionand/ ornumberofciliain migratingneuronswas aberrantuponDchs1KD.
Humancerebral organoid cultures
Defectsincilianumber uponMOB2knockdown
Recessive.BilateralPH
NEDD4L [50] KO:Nedd4l;KD: shRNA. Overexpressionof mutantvariants. IUEE14-E16or E18. KOperinatallethal;KDno migrationdefect; overexpressionmutants: migrationarrestinVZ/ SVZ/IZ.Proliferation defectsatE16. Rapamycin-rescued neuronalposition – – Heterozygous.Bilateral frontal-predominantPH, cleftpalateandmildtoe syndactyly PCDH19 [54] KD:Inutero injectionof retrovirusshRNA (E11)and overexpression KD:Fewerneuronsin clones.InSVZ/IZneurons hadmoreneurites.More laterallydispersed. Impactonsisterneuron connectivity.
Overexpression:more neuronsinclonesand laterallyclustered. Increasedconnectivity.
Femalesaffected. Relatedtomosaicism andabnormalcellsorting. PCDH19isaTBR2target.
X-linked.Early-onset epilepsyandintellectual disabilityinfemales,FCD, cortexthickeningand abnormalfolding, occasionalmicrocephaly PLEKHG6 [48] KD:miRNA (isoform1),and overexpressionof PLEKHG6_4in mouse(E13-E16) Overexpressiondisrupts VZintegrity.Plekhg6_1 KDdisrupts neuroprogenitor differentiationand neuronalmigration Overexpression inhuman cerebral organoid cultures Impairedventricular surfaceintegrityandPH formation
Recessive.Bilateral, posterior-predominant, PH.
TUBG1 [26] KD:shRNA,KI: variantsbyIUE: andconstitutiveKI mousemodel (Tubg1-Y92C). Dcxpromoterfor KI. Mainlypost-mitotic defects.Migration defectsinbipolar neurons.AtE18.5,layer 5wasmorespread-out andlayer6was decreased,thelatter defectsalsoobservedin theadultbrain.The cerebellum,anterior commissure,fimbriaand hippocampuswerealso affected.DecreasedMT polymerization.
Fibroblasts Lessstraightandshorter MTs Heterozygote. Posterior-predominantpachygyria, corpuscallosum abnormalitiesand microcephaly
Abbreviations:CPcorticalplate;FCDfocalcorticaldysplasia;IPintermediateprogenitor;IUEinutero;electroporation;IZintermediatezone;KD knockdown;KOknockout;MTmicrotubule;PHperiventricularheterotopia;PMGpolymicrogyria;RGradialglialcell;SVZsubventricularzone;VZ ventricularzone.
Figure2 (a) (c) (b)
Delaminating
cell
Delaminating
cell
Akna up Plekha7 down Mutant Eml1 Cep83 mutant WT ECE2 mutant WT Slower Neuron Migrating neuronRadial glial cell
Apical endfeet
Adhesive contacts
Current Opinion in Neurobiology
(a)SchemafocusingonapicalendfeetofRGs,whichcontainacentrosomeorganizinganMTnetwork(goldlinesinenlargedendfoot).Molecular alterationsinapicalendfeetcanfavorizecelldelamination.(b)Cep83mutantendfeetarelarger,duetoaslightlymorebasalpositionofthe centrosomewhichweakenstheMTs,andhasanimpactontheactin-richcellcortex.Changedmechanicaltensionsincreasethesizeofthe endfeet,activatingtheHipposignalingpathway.(c)ECE2mutantcellshaveachangedsecretome(ECMrepresentedinorangeandgrey surroundingendfeet),aswellashavinganalteredactincytoskeleton(pink,shownjustsurroundingadherensjunctions,representedinblue).ECE2 mutationalterstheECMandcytoskeleton(actinandMTs),perturbingadhesionandleadingtoRGdelamination.Migratingneuronsarealso abnormalmostlikelyduetocytoskeletonandadhesionchanges(representedintheleadingprocesses).
foundtobemorestronglyexpressedinhumanvisualthan in frontal cortex [29] which might help explain the
milderor unaffected frontallobes.WithKD byIUEin
themouse,Cep85l-depletedcellswerefoundblockedin
theIZ[28,29].Inscratch-woundmigrationassays,cells
were found to correctly orient their centrosomes,
how-ever,impairedMTdynamicswereidentifiedsurrounding
thecentrosomewithanoverabundanceof
newly-synthe-sized MTs[29]. CEP85L was shown to interact with
LIS1,NDE1,KIF2A,DYNC1H1andCDK5[29],with
CDK5activitynecessarytorestrictthecentrosomal
accu-mulation of these lissencephaly proteins. They hence
accumulateatthecentrosomeinCEP85L-depletedcells
andoverabundantMTsresult.Interestingly,
phosphory-latedCDK5 alsoshowedastrongerexpression invisual
than in frontal cortex, which might help explain the
posterior-predominant phenotype in CEP85L patients.
This study hence links together functions of several
lissencephaly-relatedgenesandnotablytheirroles
influ-encing MTdynamicsatthecentrosome(Figure 1c).
Together, study of these genes reveals individual
phe-notypes at the subcellular level. Abnormal MTs were
foundinvariouscellcompartments,aswellasindifferent celltypesorstages(progenitorsandmultipolarorbipolar
neurons).ClearlyvariableMTimpactscanhavethesame
end-resultof abnormalmigration.
Proteins
influencing
the
centrosome
in
progenitors
Centrosomes (made up of centrioles) are positioned in
apical endfeet of RGs during interphase (Figure 2a).
They are important for ciliogenesis and contribute to
RGpolarity,influencingalsoRGcell-contactsand
attach-ment in theVZ[1]. DisruptedRGcentrosomal
mecha-nisms can also impact neuron production (including in
microcephaly,notfurthermentionedhere),organization
andmigration,oftennon-cellautonomously. Several-spe-cificcases arementionedhere.
CEP83isassociatedwithintellectualdisability[30],and
was recently shown to be involved in mother centriole
function[31].Aforebrain-specificcKOledto
overpro-liferation and enlarged mouse brains (macrocephaly),
especially affecting medio-dorsal regions which even
exhibited folding. There were increased RGs, as well
as IPsfromearly-midcorticogenesis.Centrosomeswere
found to be marginally displaced in apical endfeet of
mutantRGs(Figure2b).MTssupportingthecellcortex wereaffected,influencingtherigidityoftheapical mem-braneandactivatingsignalingpathways(suchasHippo), in turninfluencing proliferation.Thisstudyemphasizes
the intricate relationship between the interdependent
actinand MTcytoskeletons.
Mutations in an MT-binding proteinEML1 leadingto
human subcortical heterotopia, polymicrogyria and
macrocephaly [32]also affect RG apical endfeet in the mouse [33,34]. In this case, centrosome position and primary ciliaare severely disrupted and aproportion of
RGs detach (Figure 2a). Apical end feet size are also
enlarged which may be a consequence of cell
detach-ment. Ultimately non cellautonomous neuronal
migra-tion defects causing heterotopia are observed in the
mouse [32], appearing to closely mimic the human
phenotype.
Also, important in progenitors, thecentrosomal protein
Akna associateswith themothercentriole[35].There
arehigherlevelsofAknawhenRGstransitiontobecome
basalprogenitors(Figure2a).AknarecruitsMTandactin
cytoskeleton components from RG apical endfeet cell
junctions to the centrosome. Its action also then helps
retaincellsintheSVZ.Thus,withitsKDthereisafaster multipolar to bipolar transition. This is hence a highly dynamicprotein,regulatingmultiplestepsof corticogen-esis.Plekha7alsoactsatcelljunctionsinRGs,makinga linkwiththeMTcytoskeleton[36,37].Itsmutationby
Crispr/Cas9 also causes RG delamination from the VZ
mostlikelybydismantlingadhesivejunctionscombined
withcytoskeletalrearrangements[36].
Thus, mechanisms are emerging by thestudy of these
genes, which influence adhesive, cytoskeletal and
bio-physical aspects of RGs, especially in apical endfeet,
henceregulating celldetachment.
Cell
interactions,
adhesion
and
the
cytoskeleton
Cytoskeletalmechanismsinfluencingadhesion,linked toPH
Celladhesionisanessentialprocess duringbrain devel-opmentasitprovidesnotonlystability,particularlyatthe apicalsidewhereRGsdonothaveaphysicalstructureto
attach to, but also mechanical signals which result in
intracellularresponses[1].PHgeneshavepossibleroles
in actin remodeling and vesicle trafficking, likely to
control cell adhesion. For example, the first PH gene
identified,FLNAencodesalargephosphoproteinwhich
cross-linksactinfilamentsintonetworksandreorganizes
thembyinteractingwithplasmamembraneproteinssuch
as integrins[11,12,38].ARFGEF2, thesecondPHgene
identified, codes for brefeldin-A-inhibited guanine
exchange factor-2 and seems likely to play a role in
endocytosis[13].Aquestionhasbeeniftheimportance
of these processes is in migrating neurons and/or
peri-ventricularRGs,asbothcouldberelevantforthis disor-der[13].Cell-typespecificdefectsarebeingrevealedfor
certain genes in mouse and human models (Table 1),
aidedbysinglecelltranscriptomics.Recentstudiesalso identifyraregeneticvariantsgivinghintsofwider
Aheterophiliccadherinreceptor-ligandpair,DCHS1and
FAT4, exhibit mutations in a PH-associated syndrome
(VanMaldergem,[39]).Amousemodelshowedarolefor thesemoleculesinRGs[39]andtheywerealsoshownto
be involved in apically-located adhesive complexes in
other cell types [40]. A more recent studyemphasized
their importance in migrating neurons using human in
vitromodels[41].InDCHS1(homozygous)andFAT4
(compoundheterozygous)patientmutation,or
CRISPR-Cas9 generated KO organoids, RG processes and the
apicalsurfacewereshowntobedisrupted,and
periven-tricularnoduleswererevealed.SinglecellRNA
sequenc-ing of mutant organoids revealed transcriptional
signa-turesofdelaminatedmutantprogenitorsandanexcessof
differentiated neurons. In mutant migrating neurons,
time-lapsemicroscopyshowedmorepausesand
tortuos-ity,aswellasdecreasedvelocity.Interestingly, hierarchi-calclusteringanalysis revealedan alteredpopulation of
neurons unexpectedly expressing ROBO3 with other
dysregulated adhesion and guidance molecules, which
could suggest incorrect regulation of specification and
guidance. Similarto Cep83, in mouse, Dchs1and Fat4
canalsoinfluencetheHipposignalingpathwayandlead
to hyperproliferation [39,42]. This information helped
identify rare biallelic variants in aHippo factor MOB2
in one PH patient [43]. Mouse Mob2 KD showed a
proportionofcellsblockedintheVZandIZ,inparticular,
migrating neurons with reduced levels of Mob2 show
centrosome/cilia defects, and similar defects were
observed in cerebral organoids. Mob2 was shown to be
linkedtoNdr1/2kinases,abranchoftheHipposignaling
pathway controlling actin-cytoskeletal arrangements.
FlnA phosphorylation was also increased with Mob2
KD, expectedto impairFlnA turnover, elevateprotein
levels, thus increasingactin cytoskeletalassembly,
sug-gestingconvergingmechanismsleadingtotheformation
of PH in the case of FLNA, DCHS1, FAT4 and MOB2
mutations[38,41,43].
RarePHvariants were identified in theMT-associated
proteingene,MAP1B[16],whichisexpressedinneural progenitorsanddeveloping/regeneratingneurons[44,45].
Fromprevious studies it is known that,as well as
per-turbedMTbinding,RacandCdc42activitiesarereduced
in Map1b-deficient neurons, while RhoA activity is
increased [46]. Indeed, dosage of RhoA is critical for migration[47].However,asevereRG-relatedheterotopia
phenotypeisobservedinaRhoA(Emx1-Cre)cKOmouse,
with neurons arrested in the VZ [47]. One of the first
observed changes was perturbed cell-cell adhesion
between RGs at the apical side, supporting a primary
role in the maintenance of adhesion. Furthermore,
O’Neill et al. [48] also showed a rare homozygous PH
mutation in theRhoA activator, PLEKHG6,leading to
thelossof aprimate-specific isoformof this protein.As
wellasaroleforPLEKHG6inmigration,cerebral
orga-noidand overexpression/KDmouse modelsshow a
dis-ruptedbalancebetweenapicalandbasalprogenitorsand
neurons,alsomediatedbylossofcell-celladhesionatthe
apical side. RhoA and PLEKHG6 are thus pleiotropic
proteinsplayingarolein bothprogenitorsand neurons,
underlining the complexity of cortical development
phenotypes.
Furthermore,anewPHgene,ECE2,hasrecently been
associatedwithrolesinactinandMTcytoskeletonaswell
as adhesion mechanisms, influencing neurogenesis and
migration [49]. KO, overexpression and/or KD in
Figure3
Anterior
Posterior
Current Opinion in Neurobiology
Manycorticalmalformationsshowanterior-posteriorgradientsofseverity.Severalgenesarenoted(notexhaustive)toillustratethispoint.Of these,fewgeneshavebeenassociatedwithparticularexpressionpatternsorinteractingpartners,toexplainthegradient.Itishoweverthecase forGPR56(bilateralfrontoparietalpolymicrogyriaorperisylvianpolymicrogyria)whichisregulatedbytheRFXtranscriptionfactorswhichshow regionalexpressionpatterns[63].ItisalsothecaseforCEP85LwhichinteractswithCDK5,bothofwhicharemorehighlyexpressedinvisual thanfrontalcortex[28].
cerebral organoids and the mouse cortex showed
detachedRGsandectopicneurons,formingproliferative
rosettes and neuronal nodules in the mouse.
Interest-ingly, many ectopic cells had notdirectly received the
mutantconstructrevealinghenceanon-cellautonomous
effect. Furthermore, proteomics analyses showed that
ECE2 is involved in the generation and secretion of
extracellular matrix(ECM)componentsandthesewere
downregulated inthemutant situation,potentially
con-tributingtothephenotypesobserved(Figure2c).Thus,it
seemsimportanttotakeintoaccountextracellular(ECM
as well as cell-cell contacts) effects when deciphering
thesedisorders.
Adhesivecomplexesandsignalingrelatedtofocal corticaldysplasia(FCD)
Perturbed mTOR signaling is also associated with PH
[50].Inaddition,somaticmutationsinthemTOR path-waycanleadtofocalcorticaldysplasia(FCD),associated
withabnormal neuronalmigrationandlocallyperturbed
cortical lamination. It was shown that hyperactivated
mTORsignaling disruptsciliogenesis and the
multi-to-bipolar transition (via altered Wnt signaling)disrupting hencecorticallamination[51].Perturbedneuronal
cilio-genesiswascausedbydisruptedautophagymakingalink
betweenthisprocess andcorrectcorticallamination. MutationsinPCDH19(acelladhesionmolecule,Table1) werealsoidentifiedinfemaleswithFCDassociatedwith
a thickened cortex and abnormal folding, as well as
epilepsy and intellectual disability phenotypes [52,53].
ArecentpapershowsthatPCDH19isregulatedbyTBR2
[54],atranscriptionfactorexpressedinIPs.TBR2 muta-tions cangiverise to perisylvian polymicrogyria, micro-cephalyandcorpuscallosumagenesis[55].Interestingly,
in Tbr2mousemutants,neuronsshow reducedlevelsof
Pcdh19 andbecome morelaterallydispersed, impairing
clonally-related synapse development [54]. Neurons in
theSVZ/IZshowincreasedprocessesandthisislikelyto
contribute to the dispersed tangential distribution.
Branching of leading processes and lateral dispersion
wasalsoanalyzedbyMartinez-Martinezetal.[56],finding
more intheferretthanmouse cortex.
Conclusions
Newstudiespresentedhereexplorethesubcellular
mech-anisms critical to either progenitors and/ or migrating
neurons.Complexityisrevealedwithpleiotropicproteins playingaroleinmultiplecelltypes.Conditionalmutants andsinglecellanalysesarecriticaltoidentifycell autono-mousphenotypes,withextracellularrolescontributingas welltonon-cellautonomousdefects.Futurestudiesneed to comprehensively addressthese differentpossibilities. Additionalasyetunidentifiedcentralplayersmayalsobe
hiddenduetohighheterogeneity.Newglobalapproaches
canhelptoidentifytheseactors,forexample,Luetal.[57]
whotookadvantageoftransposon-mediatedmutagenesis
in mouse,to exploregenes withpreviously unidentified
rolesincorticaldevelopment.Furtherunbiasedanalyses willhelpinterpretgeneticsdatafrompatientstoidentify rarevariants,helpingtopiecetogetherpathwaysimportant forcorticaldevelopment.
WediscussedheremechanismsaffectingMTsin
migrat-ingneurons. Theseand previousworksshow thatMTs
canbetoostraight(TUBA1A,[58]),notstraightenough
(TUBG1), too polymerized (KIF2A), too abundant
(CEP85L), not polymerized enough (TUBG1). There
hence canbemanyimpactsand theaffectedMT
com-partment in the cell (outside the centrosome) can be
variable. Independently of the way MTs are impaired,
commonglobalphenotypescanbeobserved(e.g.
neuro-nal migration). Of note, systematically analyzing each
stageof migration,forexample,themultipolar– bipolar transition,aswellasbipolarmigration,couldshedfurther lightoncontributingphenotypes.Post-translational
mod-ifications of MTs could also play a role and influence
corticalmalformations(e.g.acetylation,phosphorylation,
tubulinchaperones,whichallregulateMTs)andwecan
expectthatmutationsinsomeoftheseregulatingfactors willbeidentified(e.g.TBCD,[59]).Also,tangential(but
not radial) migration of interneurons has recentlybeen
shown to be fine-tuned by the CCP1 enzyme, which
promotesglutamylation,apost-translationalmodification of MTs [60]. Further data of this nature will almost
certainlyappear moreabundantly inthefuture.
Cortical malformations can be associated with intrinsic
mechanisms in migrating neurons and this seems less
complexthan,forexample,PHpathogenesis.Indeed,PH
proteinsmayinfluencetheactinandMTcytoskeletons,
adhesion,signalingaswellasECM,andcanhave
poten-tiallydifferentimpactsinprogenitorsandmigrating
neu-rons. Gene dosage and splicing, and primate-specific
isoforms, are further mechanisms to take into account
for understandingPHpathogenesis.ECMandadhesive
mechanismscouldrepresentahubforthisdisorderwith
downstreamsignalingimpactingthecytoskeleton.
Recent work from Long and colleagues [61] has
highlightedsomeoftheessentialspecies-specific
differ-encesinthecompositionofECM.Somehuman
compo-nentsarecriticalforlocalmodificationsinstiffness, sup-porting the generation of folds and fissures, typical of
gyrencephalic species. Extracellular signals have not
been deeply characterized in the context of neuronal
migration disorders but they could be an interesting
sourceof differencesbetweenmouse and humanand a
possible explanationofdiscrepanciesamongst the
mod-els. Modeling lissencephaly Karzbrun and colleagues
[62]showeda clearenrichmentin dysregulated ECM
genes in organoids derived from LIS1 patients.
progenitor-basedstructures,duetoalteredmechanicalforces,
possi-blymediatedbydifferencesinthematrixcomposition.
Brain folding, disrupted in many disorders, is a rather
complex process not present in rodents, and several
mechanismsunderlyingthisprocesshavebeenidentified:
apical RG detachment, essential for the formation of
bRGs [4]; local modifications of ECM components
[63];andadhesivemechanismsregulatingneuronal orga-nization,forexample, shownby theinactivationof Flrt
molecules in the mouse leading to abnormal neuron
clusteringandtheformationofgyri[64].Humanmodels
of PH, as well as progenitor abnormalities, can show
dysregulated neuronal adhesion/axon guidance
mole-cules, suggesting that processes mediating neuron-RG
celladhesioncouldcontributetothecorrectmigrationof
some neuron populations. Thus, processes associated
withbrainfoldingemergeaspotentiallyimportant
mech-anismsinneuronalmigrationdisordersandadapted
mod-els are required to study them [65]. Furthermore, each malformationcaneitherbediffusewith similarseverity acrossthecortex,or canshowan anterior–posterior gra-dient(Figure3).Moreinformationisrequiredonhuman
gene expression (genes and partners) to help explain
thesegradients[66,29].Theseperspectiveswillgreatly
contributeto decipheringpathomechanisms.
CRediT
author
statement
FFandSCwrotethisreview.
Conflict
of
interest
statement
Nothingdeclared.
Acknowledgements
FFwasassociatedwiththeBioPsyLabexprojectandtheEcoledes NeurosciencesdeParisIle-de-France(ENP)network.Salariesandthelab weresupportedbyInserm,Centrenationaldelarecherchescientifique (CNRS),SorbonneUniversity.FFandSCaresupportedbytheE-Rare-3 theERA-NetforResearchonRareDiseases(ERARE18-049,
HETEROMICS,ANRtoFF),aswellastheEuropeanCooperationon ScienceandTechnology(COSTActionCA16118NEURO-MIG).FFis supportedbytheJTC2015NeurodevelopmentalDisordersaffiliatedwith theANR(forNEURON8-Full-815-006STEM-MCD).
References
and
recommended
reading
Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:
ofspecialinterest ofoutstandinginterest
1. UzquianoA,Gladwyn-NgI,NguyenL,ReinerO,Go¨tzM, MatsuzakiF,FrancisF:Corticalprogenitorbiology:keyfeatures mediatingproliferationversusdifferentiation.JNeurochem 2018,146:500-525.
2. TavernaE,Go¨tzM,HuttnerWB:Thecellbiologyof
neurogenesis:towardanunderstandingofthedevelopment andevolutionoftheneocortex.AnnuRevCellDevBiol2014, 30:465-502.
3. BorrellV,Go¨tzM:Roleofradialglialcellsincerebralcortex folding.CurrOpinNeurobiol2014,27:39-46.
4. PenissonM,LadewigJ,BelvindrahR,FrancisF:Genesand mechanismsinvolvedinthegenerationandamplificationof basalradialglialcells.FrontCellNeurosci2019,13:381.
5.
TelleyBartoliniL,G,AgirmanVitaliI,G,CadilhacPradosC,J,AmbergHippenmeyerN,Fie`vreSetS,al.:OberstTemporalP, patterningofapicalprogenitorsandtheirdaughterneuronsin thedevelopingneocortex.Science2019,364eaav2522
Single-cellRNAsequencingidentifiestranscriptionalidentityofcellsearly inmousebraindevelopment.Followsprogenitordiversityanddaughter cellneuronstatesovertime.
6. FrancisF,MeyerG,Fallet-BiancoC,MorenoS,KappelerC, SocorroAC,TuyFP,BeldjordC,ChellyJ:Humandisordersof corticaldevelopment:frompasttopresent.Eur.JNeurosci 2006,23:877-893.
7. BarkovichAJ,GuerriniR,KuznieckyRI,JacksonGD,DobynsWB: Adevelopmentalandgeneticclassificationformalformations ofcorticaldevelopment:update.Brain2012,135:1348-1369.
8. GuerriniR,DobynsWB:Malformationsofcorticaldevelopment: clinicalfeaturesandgeneticcauses.LancetNeurol2014, 13:710-726.
9. Bahi-BuissonN,PoirierK,FourniolF,SaillourY,ValenceS, LebrunN,HullyM,BiancoCF,BoddaertN,ElieCetal.:Thewide spectrumoftubulinopathies:whatarethekeyfeaturesforthe diagnosis? Brain2014,137:1676-1700.
10. RomanielloR,ArrigoniF,FryAE,BassiMT,ReesMI,BorgattiR, PilzDT,CushionTD:Tubulingenesandmalformationsof corticaldevelopment.EurJMedGenet2018,61:744-754.
11. StoufferMA,GoldenJA,FrancisF:Neuronalmigration disorders:Focusonthecytoskeletonandepilepsy.Neurobiol Dis2016,92:18-45.
12. RomeroDM,Bahi-BuissonN,FrancisF:Geneticsand mechanismsleadingtohumancorticalmalformations.Semin CellDevBiol2018,76:33-75.
13. LianG,SheenVL:Cytoskeletalproteinsincortical developmentanddisease:actinassociatedproteinsin periventricularheterotopia.FrontCellNeurosci2015,9:99.
14. HuJ,LuJ,GoyalA,WongT,LianG,ZhangJ,HechtJL,FengY, SheenVL:OpposingFlnAandFlnBinteractionsregulateRhoA activationinguidingdynamicactinstressfiberformationand cellspreading.HumMolGenet2017,26:1294-1304.
15. ParriniE,RamazzottiA,DobynsWB,MeiD,MoroF,VeggiottiP, MariniC,BrilstraEH,DallaBernardinaB,GoodwinLetal.: Periventricularheterotopia:phenotypicheterogeneityand correlationwithFilaminAmutations.Brain2006, 129:1892-1906.
16.
HeinzenChenMH,EL,DobynsO’NeillWB,AC,FreytagZhuX,AllenS,GuerriniAS,BahloRetM,al.:ChellyEpi4KJ, consortium;epilepsyphenome/genomeproject:denovoand inheritedprivatevariantsinMAP1Binperiventricularnodular heterotopia.PLoSGenet2018,14e1007281
Collection of rare variants found to be causative of PH, previously associatedwithahandfulofgenes.
17. JossinY:Molecularmechanismsofcellpolarityinarangeof modelsystemsandinmigratingneurons.MolCellNeurosci 2020,106103503.
18.
GiletDrouotJG,N,IvanovaCourraudEL,J,TrofimovaSkoryV,VoulleminotD,RudolfG,PMezianeetal.:ConditionalH,BroixL, switchingofKIF2Amutationprovidesnewinsightsintocortical malformationpathogeny.HumMolGenet2020,29:766-784
Niceconditionalknockinapproachinthemouse–couldbeveryimportant forstudyingpatient-specificmutations.
19. PoirierK,LebrunN,BroixL,TianG,SaillourY,BoscheronC, ParriniE,ValenceS,PierreBS,OgerMetal.:Mutationsin TUBG1,DYNC1H1,KIF5CandKIF2Acausemalformationsof corticaldevelopmentandmicrocephaly.NatGenet2013, 45:639-647.
20. ChenY,XuY,LiG,LiN,YuT,YaoRE,WangX,ShenY,WangJ: ExomesequencingidentifiesdenovoDYNC1H1mutations associatedwithdistalspinalmuscularatrophyand
malformationsofcorticaldevelopment.JChildNeurol2017, 32:379-386.
21. LinZ,LiuZ,LiX,LiF,HuY,ChenB,WangZ,LiuY:Whole-exome sequencingidentifiesanoveldenovomutationinDYNC1H1in epilepticencephalopathies.SciRep2017,7:258.
22. Laquerrie`reA,MaillardC,CavallinM,ChaponF,MarguetF, MolinA,SigaudyS,BlouetM,BenoistG,FernandezCetal.: Neuropathologicalhallmarksofbrainmalformationsin extremephenotypesrelatedtoDYNC1H1mutations.J NeuropatholExpNeurol2017,76:195-205.
23. RavenscroftG,DiDonatoN,HahnG,DavisMR,CravenPD, PokeG,NeasKR,NeuhannTM,DobynsWB,LaingNG:Recurrent denovoBICD2mutationassociatedwitharthrogryposis multiplexcongenitaandbilateralperisylvianpolymicrogyria. NeuromusculDisord2016,26:744-748.
24. WillL,PortegiesS,vanScheltJ,vanLuykM,JaarsmaD, HoogenraadCC:DyneinactivatingadaptorBICD2controls radialmigrationofupper-layercorticalneuronsinvivo.Acta NeuropatholCommun2019,7:162.
25. BrockS,StouffsK,ScalaisE,D’HoogheM,KeymolenK, GuerriniR,DobynsWB,DiDonatoN,JansenAC:
Tubulinopathiescontinued:refiningthephenotypicspectrum associatedwithvariantsinTUBG1.EurJHumGenet2018, 26:1132-1142.
26.
IvanovaCollinsSC,EL,AsselinGiletJG,L,SulimenkoBroixL,DrouotV,DuchonNetal.:A,RudolfTUBG1G,missenseRungeK, variantsunderlyingcorticalmalformationsdisruptneuronal locomotionandmicrotubuledynamicsbutnotneurogenesis. NatCommun2019,10:2129
Multiplemodelsinthemouseused,forexample,cell-typespecific(IUE) andknockinmouse.
27. Yuba-KuboA,KuboA,HataM,TsukitaS:Geneknockout analysisoftwogamma-tubulinisoformsinmice.DevBiol2005, 282:361-373.
28. TsaiM-H,KuoPW,MyersCT,LiSW,LinWC,FuTY,ChangHY, MeffordHC,ChangYC,TsaiJW:PathogenicvariantsinCEP85L causesporadicandfamilialposteriorpredominant
lissencephaly.Neuron2020,106:237-245.
29.
KodaniIsaccoL,A,PartlowKennyC,JN,LaiO’DonnellA,GonzalezA,DM,McWalterStrongeKetE,al.:SejournePosteriorGM, neocortex-specificregulationofneuronalmigrationby CEP85Lidentifiesmaternalcentriole-dependentactivationof CDK5.Neuron2020,106:246-255
Interestingbecauseofthestudyofgradients(A-P)withhumangene expressionpatterns,aswellascentrosomalfunctionandidentificationof corticalmalformationproteinregulationtolimitMTs.
30. FaillerM,GeeHY,KrugP,JooK,HalbritterJ,BelkacemL,FilholE, PorathJD,BraunDA,SchuelerMetal.:MutationsofCEP83 causeinfantilenephronophthisisandintellectualdisability. AmJHumGenet2014,94:905-914.
31.
AndersonShaoW,YangKV,ZhangJ,HeM,J,TsouYuXY,MBLeeetal.:CH,CentrosomeYangZ,JoyneranchoringAL, regulatesprogenitorpropertiesandcorticalformation.Nature 2020,580:106-112
Novelcentrosomalfunctioninradialapicalendfeet,associatingMTand actin mechanisms with mechanical tension. Regional folding in the mouse.
32. KielarM, Tuy FP, Bizzotto S, LebrandC, deJuanRomeroC, PoirierK, OegemaR,ManciniGM,Bahi-BuissonN,OlasoRetal.:Mutations inEml1leadtoectopicprogenitorsandneuronalheterotopiain mouseandhuman.NatNeurosci2014,17:923-933.
33. BizzottoS,UzquianoA,DingliF,ErshovD,HoullierA,ArrasG, RichardsM,LoewD,MincN,CroqueloisAetal.:Eml1loss impairsapicalprogenitorspindlelengthandsomashapein thedevelopingcerebralcortex.SciRep2017,7:17308.
34.
UzquianoDingliF,MaillardA,Cifuentes-DiazC,BolandC,A,JabaliDeleuzeA,JF,RomeroLoewDM,DetHoullieral.: A, MutationsintheheterotopiageneEml1/EML1severely disrupttheformationofprimarycilia.CellRep2019, 28:1596-1611.e10
Explores perturbed subcellular mechanisms and interacting proteins which together lead to the identification of new human heterotopia mutations.
35.
CamargoSahuSK,OrtegaHirstW,G,SchlichthaerleFalkS,JohanssonT,DeJuanPA,PeyreRomeroE,BroixC, L, DraganovaKetal.:ThecentrosomeproteinAKNAregulates neurogenesisviamicrotubuleorganization.Nature2019, 567:113-117
Veryinterestingstudyshowingdynamicactionsofanimportantmolecule Akna, playing arole inseveralsubtypes(shuttling MTs andjunction proteinsfromthecellcortexinapicalendfeet),akeymoleculeinIPs forthemulti-tobipolartransition.
36.
TavanoWilsch-Bra¨uningerS,TavernaM,E,KalebicParidaenN,JTML,HaffnerHuttnerC,NambaWB:Insm1T,DahlA, inducesneuralprogenitordelaminationindeveloping neocortexviadownregulationoftheadherensjunction belt-specificproteinPlekha7.Neuron2018,97:1299-1314.e8
Identificationofatranscriptionalrepressorimportantforregulating adhe-sion molecules inthe AJ belt and allowing progenitordelamination. IdentificationofakeytargetPlekha7.
37. ShahJ,GuerreraD,VasilevaE,SluysmansS,BertelsE,CitiS: PLEKHA7:cytoskeletaladaptorproteinatcenterstagein junctionalorganizationandsignaling.IntJBiochemCellBiol 2016,75:112-116.
38. StosselTP,CondeelisJ,CooleyL,HartwigJH,NoegelA, SchleicherM,ShapiroSS:Filaminsasintegratorsofcell mechanicsandsignalling.NatRevMolCellBiol2001,2:138-145.
39. CappelloS,GrayMJ,BadouelC,LangeS,EinsiedlerM,SrourM, ChitayatD,HamdanFF,JenkinsZA,MorganTetal.:Mutationsin genesencodingthecadherinreceptor-ligandpairDCHS1and FAT4disruptcerebralcorticaldevelopment.NatGenet2013, 45:1300-1308.
40. IshiuchiT,MisakiK,YonemuraS,TakeichiM,TanoueT: MammalianFatandDachsouscadherinsregulateapical membraneorganizationintheembryoniccerebralcortex.J CellBiol2009,185:959-967.
41.
KlausRiesenbergJ,KantonS,O’NeillS,KyrousiAC,CampC,Ayo-MartinJG,ToccoAC,C,DiSantelGiaimoMetR,al.: Alteredneuronalmigratorytrajectoriesinhumancerebral organoidsderivedfromindividualswithneuronalheterotopia. NatMed2019,25:561-568
Oneofthefirstpapersofitskindcombininghumanandmousemodelsfor PH(nodulesinorganoids),performingtime-lapsemicroscopyofhuman migratingneurons,aswellassinglecelltranscriptomicstoidentifymutant signatures(delaminatedprogenitorsandROBO3positiveneurons). 42. BadouelC,ZanderMA,LiscioN,Bagherie-LachidanM,SopkoR,
CoyaudE,RaughtB,MillerFD,McNeillH:Fat1interactswith Fat4toregulateneuraltubeclosure,neuralprogenitor proliferationandapicalconstrictionduringmousebrain development.Development2015,142:2781-2791.
43. O’NeillAC,KyrousiC,EinsiedlerM,BurtscherI,DrukkerM, MarkieDM,KirkEP,Go¨tzM,RobertsonSP,CappelloS:Mob2 insufficiencydisruptsneuronalmigrationinthedeveloping cortex.FrontCellNeurosci2018,12:57.
44. Gonzalez-BillaultC,Jimenez-MateosEM,CaceresA,Diaz-NidoJ, WandosellF,AvilaJ:Microtubule-associatedprotein1B functionduringnormaldevelopment,regeneration,and pathologicalconditionsinthenervoussystem.JNeurobiol 2004,58:48-59.
45. JayachandranP,OlmoVN,SanchezSP,McFarlandRJ,VitalE, WernerJM,HongE,Sanchez-AlberolaN,MolodstovA, BrewsterRM:Microtubule-associatedprotein1bisrequired forshapingtheneuraltube.NeuralDev2016,11:1.
46. Montenegro-VenegasC,TortosaE,RossoS,PerettiD,BollatiF, BisbalM,JausoroI,AvilaJ,Ca´ceresA,Gonzalez-BillaultC: MAP1Bregulatesaxonaldevelopmentbymodulating Rho-GTPaseRac1activity.MolBiolCell2010,21:3518-3528.
47. CappelloS,Bo¨hringerCR,BergamiM,ConzelmannKK, GhanemA,TomassyGS,ArlottaP,MainardiM,AllegraM,CaleoM etal.:Aradialglia-specificroleofRhoAindoublecortex formation.Neuron2012,73:911-924.
48. O’NeillAC,KyrousiC,KlausJ,LeventerRJ,KirkEP,FryA,PilzDT, MorganT,JenkinsZA,DrukkerMetal.:Aprimate-specific isoformofPLEKHG6regulatesneurogenesisandneuronal migration.CellRep2018,25:2729-2741.
49.
BuchsbaumKyrousiC,KhattakIY,KielkowskiS,SieberP,SA,GiorgioRobertsonG,O’NeillSP,CappelloAC,DiGiaimoS:ECE2R, regulatesneurogenesisandneuronalmigrationduringhuman corticaldevelopment.EMBORep2020,21:e48204
Anexcellentpapercombininghumanandmousemodelsanddetailed proteomicsstudies,discoveringanimportantroleoftheECM,aswellas cytoskeletalandadhesivemechanisms.
50. BroixL,AsselinL,SilvaCG,IvanovaEL,TillyP,GiletJG,LebrunN, JaglineH,MuracaG,SaillourYetal.:MutationsintheHECT domainofNEDD4LleadtoAKT-mTORpathwayderegulation andcauseperiventricularnodularheterotopia.NatGenet2016, 48:1349-1358.
51. ParkSM,LimJS,RamakrishinaS,KimSH,KimWK,LeeJ, KangHC,ReiterJF,KimDS,KimHH,LeeJH:Brainsomatic mutationsinMTORdisruptneuronalciliogenesis,leadingto focalcorticaldyslamination.Neuron2018,99:83-97.
52. KurianM,KorffCM,RanzaE,BernasconiA,Lu¨bbigA,NangiaS, RamelliGP,WohlrabG,Nordli DRJr,BastT:Focalcortical malformationsinchildrenwithearlyinfantileepilepsyand PCDH19mutations:casereport.DevMedChildNeurol2018, 60:100-105.
53. PederickDT,RichardsKL,PiltzSG,KumarR, Mincheva-TashevaS,MandelstamSA,DaleRC,SchefferIE,GeczJ,PetrouS etal.:AbnormalcellsortingunderliestheuniqueX-linked InheritanceofPCDH19epilepsy.Neuron2018,97:59-66.
54. LvX,RenSQ,ZhangXJ,ShenZ,GhoshT,XianyuA,GaoP,LiZ, LinS,YuYetal.:TBR2coordinatesneurogenesisexpansion andprecisemicrocircuitorganizationviaProtocadherin19in themammaliancortex.NatCommun2019,10:3946.
55. BaalaL,BriaultS,EtcheversHC,LaumonnierF,NatiqA,AmielJ, BoddaertN,PicardC,SbitiA,AsermouhAetal.:Homozygous silencingofT-boxtranscriptionfactorEOMESleadsto microcephalywithpolymicrogyriaandcorpuscallosum agenesis.NatGenet2007,39:454-456.
56. Martı´nez-Martı´nezMA´,CiceriG,Espino´sA,Ferna´ndezV,Marı´n O, BorrellV:Extensivebranchingofradially-migratingneuronsinthe mammaliancerebralcortex.JCompNeurol2019,527:1558-1576.
57. LuI-L,ChenC,TungCY,ChenHH,PanJP,ChangCH,ChengJS, ChenYA,WangCH,HuangCWetal.:Identificationofgenes associatedwithcorticalmalformationusinga
transposon-mediatedsomaticmutagenesisscreeninmice.NatCommun 2018,9:2498.
58. BelvindrahR,NatarajanK,ShabajeeP,Bruel-JungermanE, BernardJ,GoutierreM,MoutkineI,JaglinXH,SavariradjaneM, IrinopoulouTetal.:Mutationofthea-tubulinTuba1aleadsto straightermicrotubulesandperturbsneuronalmigration.J CellBiol2017,216:2443-2461.
59. FlexE,NicetaM,CecchettiS,ThiffaultI,AuMG,CapuanoA, PiermariniE,IvanovaAA,FrancisJW,ChillemiGetal.:Biallelic mutationsinTBCD,encodingthetubulinfoldingcofactorD, perturbmicrotubuledynamicsandcauseearly-onset encephalopathy.AmJHumGenet2016,99:962-973.
60.
SilvaMagnoCG,L,PeyreKrusyE,N,AdhikariAgirmanMH,G,TielensMagieraS,MMTancoetal.:S,VanCell-intrinsicDammeP, controlofinterneuronmigrationdrivescortical
morphogenesis.Cell2018,172:1063-1078
Identificationofpost-translationalmodifications regulatinginterneuron migrationand reflections onpopulation-level control ofmigration by modeling.
61.
LongWimbergerKR,NewlandP,HuttnerB,WB:FlorioExtracellularM,KalebicN,matrixLangencomponentsB,KoltererA, HAPLN1,Lumican,andCollagenIcausehyaluronic acid-dependentfoldingofthedevelopinghumanneocortex.Neuron 2018,99:702-719
HumanstudyidentifyingaroleoftheECMintheformationofneocortical folds.Showsthatlocalchangesintissuestiffnessinfluencefolding. 62.
KarzbrunbrainorganoidsE,KshirsagaronachipA,CohenrevealSR,theHannaphysicsJH,Reineroffolding.O:HumanNat Phys2018,14:515-522
Innovative biophysical study growing reprogrammed human cells in multifluidicorganoidcultures, explainingbucklingofthetissue which isreducedinLIS1mutantconditions.
63. LongKR,HuttnerWB:Howtheextracellularmatrixshapes neuraldevelopment.OpenBiol2019,9180216.
64. DelToroD,RuffT,Cederfja¨llE,VillalbaA,Seyit-BremerG, BorrellV,KleinR:Regulationofcerebralcortexfoldingby controllingneuronalmigrationviaFLRTadhesionmolecules. Cell2017,169:621-635.
65. PinsonA,NambaT,HuttnerWB:MalformationsofHuman neocortexindevelopment-theirprogenitorcellbasisand experimentalmodelsystems.FrontCellNeurosci2019,13:305.
66. BaeB-I,TietjenI,AtabayKD,EvronyGD,JohnsonMB,AsareE, WangPP,MurayamaAY,ImK,LisgoSNetal.:Evolutionarily dynamicalternativesplicingofGPR56regulatesregional cerebralcorticalpatterning.Science2014,343:764-768.