• Aucun résultat trouvé

Snow load on buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Snow load on buildings"

Copied!
64
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Technical Translation (National Research Council of Canada), 1959

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=0de1857c-4aef-48bf-bb16-2f6ea7a6c455 https://publications-cnrc.canada.ca/fra/voir/objet/?id=0de1857c-4aef-48bf-bb16-2f6ea7a6c455

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Snow load on buildings

(2)

PREFACE

I n Canada t h e l o a d of snow r e p r e s e n t s u s u a l l y t h e h e a v i e s t l o a d t h a t r o o f s have t o c a r r y . It i s t h e r e f o r e obvious t h a t t h e magnitude of t h e snow l o a d s used i n d e s i g n h a s c o n s i d e r a b l e

i n f l i ~ e n c e on t h e c o s t of c o n s t r u c t i o n .

The d e s i g n snow l o a d s s p e c i f i e d by t h e N a t i o n a l B u i l d i n g Code of Canada (1953) a r e based d i r e c t l y on snow depth measurements made on t h e ground. It i s known t h a t i n many c a s e s t h e a v e r a g e d e p t h of t h e snow on r o o f s i s a p p r e c i a b l y l e s s t h a n t h a t on t h e ground. A t t h e same t i m e c e r t a i n s h a p e s of r o o f s t e n d t o

accumulate snow, due t o d r i f t i n g under wind a c t i o n , t o a depth which i s much g r e a t e r t h a n t h e a v e r a g e depth on t h e ground.

R e a l i z i n g t h i s s i t u a t i o n t h e Advisory S t r u c t u r a l Group of t h e A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code asked t h e

D i v i s i o n o f B u i l d i n g Research t o u n d e r t a k e a country-wide s u r v e y of a c t u a l snow l o a d s on r o o f s . The f i r s t o b j e c t i v e was t h e deter- mination of t h e r e l a t i o n s h i p between t h e snow l o a d on t h e ground and t h e a c t u a l snow l o a d on v a r i o u s t y p e s of r o o f s .

The second o b j e c t i v e was t h e s t u d y of t h e v a r i o u s f a c t o r s a f f e c t i n g snow l o a d s on r o o f s . For example, t o what e x t e n t do wind, t e m p e r a t u r e , i n s o l a t i o n and h e a t l o s s a f f e c t snow accum~xla- t i o n on r o o f s ? What i s t h e i n f l u e n c e of o r i e n t a t i o n , shape and s i z e of r o o f s ? With answers t o q u e s t i o n s l i k e t h e s e i t i s hoped t h a t magnitudes and p a t t e r n s o f snow l o a d s can be e s t a b l i s h e d which a r e more a c c u r a t e t h a n t h o s e used now,

The s u r v e y was s t a r t e d d u r i n g t h e w i n t e r of 1957-58 w i t h o b s e r v a t i o n s of depth and d e n s i t y b e i n g made a t o v e r 6 0 s t a t i o n s a c r o s s Canada. These o b s e r v a t i o n s have a l r e a d y i n d i c a t e d t e n t a t i v e answers t o some of t h e q u e s t i o n s , b u t b e f o r e any d e f i n i t e conclu-

s i o n can be drawn, t h e r e s u l t s of s e v e r a l w i n t e r s w i l l be r e q u i r e d . I n o r d e r t o g a i n f u r t h e r i n f o r m a t i o n on snow l o a d s it was

t h o u g h t a d v i s a b l e t o review t h e work o f o t h e r c o u n t r i e s on t h i s s u b j e c t , e s p e c i a l l y t h o s e c o u n t r i e s w i t h w i n t e r c o n d i t i o n s similar t o Canada's. To t h i s end a number of R u s s i a n p u b l i c a t i o n s d e a l i n g w i t h snow l o a d s have been t r a n s l a t e d and a r e p r e s e n t e d here. The

s i m i l a r i t y of R u s s i a n and Canadian w i n t e r s makes t h e s e t r a n s l a t i o n s p a r t i c u l a r l y p e r t i n e n t

.

The t r a n s l a t i o n s were made by M r .

D.E.

A l l e n who w a s a member of t h e B u i l d i n g S t r u c t u r e s S e c t i o n of t h e D i v i s i o n u n t i l September 1958 b u t i s now a g r a d u a t e s t u d e n t a t t h e U n i v e r s i t y of B r i t i s h Columbia. The v a l u a b l e a s s i s t a n c e of M r . G. Belkov of t h e

N a t i o n a l Research C o u n c i l ' s T r a n s l a t i o n s S e c t i o n i n checking a l l

t h e t r a n s l a t i o n s Is g r a t e f u l l y acknowledged.

O t t a w a

(3)

TAHLX

OF CONTENTS

----

SNOlJ

LOADS

ON F31JIIlDINGS

A o F o

Nikolaev (of the Research Institute of Industrial

construction).

Stroitelt (The Auilder),

8 (10):

18-26,

1 9 3 5 . . . o . . . . o ~ * * * * * * * ~ * ~ * * * ~ ~ ~ ~ ~ ~ o ~ . ~ ~ o ~ o ~ 3

SNOW

IIOADS

SPECIFIED

BY THE RUSSIAN RU1LT)INCr CODE

Stroltel'nye Nor~ny

i Pravila (Constructlon Standards

and Regulations), Part 11, Section

R ,

Chapter 1,

Para.

4, pp. 46-48 (Loads

and Load Coefficients for

Hulldings and Industrial Structures)...

25

UNSOLVED PROBLEMS IN RFTiI(?NS

OF

INTENSE SNOWFAL:.

V.P. Abovskli,

A.M.

Veksman, V.M. Volkov and

G o V o

Matysek. Stroitel'nnia Promyshlennostl (Constructlon

Industry), (11): 30-31,

1954............................

29

THE PROBLEM

OF

SNOW LOAD SPECIFICATION

Y.D. Kan-Khut. Stroltel'naia Promyshlennost'

(construction ~ndustry), (12): 22-23, 1954...

35

SNOW LOADS ACCORDING TO STRUCTURAL STANDARDS AND REGULATIONS

1.1. Cdldenlblat,

R.G. Korenev and A.M.

Sizov (of the

Central Resenrch Institute of Industrial Construction

-

TsNIPs).

Stroitel'nala Promyshlennost' (Constructlon

Industry),

(6): 25-27, 1956... 40

SNOW LOADS

EoD. Kan-Kkut. Stroitel'nala Promyshlennost'

(Construction Industry), (1):

50,

1957...

50

LESSONS FROM TWO ROOF COLLAPSES

A.M. Korablinov and L.S. Krauze. Stroltel'nala

Promyshlennost' (Construction ~ndustry),

(7):

(4)

SNOW LOADS ON BUILDINGS

by Eng. A . F, N i k o l a e v ( o f t h e R o s e a r c h I n s t i t u t e of I n d u s t r i a l c o n s t r u c t i o n )

T r a n s l a t e d f r o m " S t r o i t e l ' (The ~ u i l d e r ) " , 1935, v o l ,

8,

no. 10, p a g e s 18-26

The problem of s p e c i f i e d snow l o a d s on b u i l d i n g s , e s p e c i a l l y on i n d u s t r i a l b u i l d i n ~ s , i s e x t r e m e l y i m p o r t a n t i n o u r c o u n t r y d u r i n g t h i s e x t e n s i v e growth i n c o n s t r u c t i o n ,

However i t s a c c u r a t e s o l u t i o n p r e s e n t s g r e a t d i f f i c u l t i e s , When snow f a l l s w i t h o u t any wind, i t must b e e v e n l y d i s t r i b u t e d o v e r t h e r o o f s u r f a c e , But t h i s i s o n l y a t t h e b e g i n n i n g ,

Because of i n a d e q u a t e r o o f i n s u l a t i o n t h e b u i l d i n g t e m p e r a t u r e b e g i n s t o m e l t t h e snow u n e v e n l y , Where t h e snow i s i n c o n t a c t w i t h heat-conduc t i v o m a t e r i a l s , e,g. g l a s s ( s i n g l e g l a z i n g ) , t h e snow w i l l m e l t more q u i c k l y t h a n o v e r wooden s p a n s , T h i s w i l l a l s o o c c u r p a r t l y on warm r o o f s ,

D u r i n g s n o w f a l l w i t h wind, snow w i l l a c c u m u l a t e on r o o f s , b u t u n e v e n l y , Snow a c c u m u l a t e s i n p r o t e c t e d

p l a c e s of low wind s p e e d , However, i f a t a g i v e n wind f l o w d i r e c t i o n a n d a t a g i v e n s p e e d snow a c c u m u l a t e s i n p l a c e s of calm, a t a n i n c r e a s e of wind f l o w speed w i t h o u t a change i n d i r e c t i o n a p l a c e of c a l m i s n o lonrger c a l m and snow w i l l n o t f a l l i n t h i s p l a c e . I n p l a c e s where snow a c c u m u l a t e s a t

a l l wind s p o e d s ( i . e . i n c a l m p l a c e s ) t h e snow a c c u m u l a t i o n w i l l b e t h e g r e a t e r t h e h i g h e r t h e wind s p e e d s f o r a g i v e n

(5)

a s q u a r e u n i t per u n i t of t i m e w i l l be g r e a t e r w i t h h i ~ h wind s p c c d t h a n w i t h low wind speed.

Even i f only two f a c t o r s a r e kaken i n t o a c c o u n t , t o m p e r a t u ~ e and wind speed f o r a g i v e n d i r e c t i o n , t h o

accumulation of snow i s e x t r e m e l y complex. I f a l l f a c t o r s a f f e c t i n g snow accumulation on r o o f s a r e t a k e n i n t o a c c o u n t , i . e . t h e shape of t h o r o o f , t h e roughness of t h e r o o f , t h e speed and d i r e c t i o n of t h e wind, p h y s i c a l p r o p e l B t i e s of t h e snowflakes e t c . , i t i s n o t p o s s i b l e t o s o l v e t h i s problem i n t o t a l . I t i s onl-1 p o s s i b l e t o t a k e i n t o account

a

g i v e n f a c t o r i n f l u e n c i n g t h e i r r e g u l a r i t y of l o a d s i f we can

s t u d y one f a c t o r by e l i m i n a t i n g a l l t h e r e s t . This

c o n d i t i o n f o r c e s t h e r e s e a r c h e r t o make use of models s e t up under a r t i f i c i a l c o n d i t i o n s ,

Theref o r e t h e problem of d e t e r m i n i n g accumulation of snow on r o o f s i s t o be s o l v e d a p p r o x i m t e l y w i t h s u f f i c i e n t a c c u r a c y f o r p r a c t i c a l r e q u i r e m e n t s .

Snow l o a d s p e c i f i c a t i o n s e x i s t i n g up t o J u l y 1933, were much t o o l a r g e , w i t h i n s u f f i c i e n t b a s i s and n o t

r e f l e c t i n g t h e r e a l snow l o a d s ,

The new s p e c i f i c a t i o n OST 7626 ( w i t h a new e d i t i o n OST

4535/3

b e i n g p p i n t e d ) c a n be r e g a r d e d a s a f i r s t

approximation t o t h e t r u t h , a l t h o u g h t h e y s u f f e r f r o m a

number of ahortcornin;.;s and r e q u i r e more p r e p a r a t i o n p a r t i c u l a r l y f o r complicated r o o f s h a p e s ,

The aim of t h i s a r t i c l e i s t o e x p l a i n s t a n d a r d 7626, p o i n t i n g o u t t h i s problem of t h e b u i l d e r , and i t s e s t i m a t i o n

(6)

from t h e p o i n t of vlew of observations a n ? experiments conducted a t t h e Research I n s t i t u t e of I n d u s t r i a l C o n s t r u c t i o n .

1. B a s i c C a l c u l a t i o n Formula

" U n l f l e d S t a n d a r d s " d e t e r m i n e snow l o a d s from t h e mean of t h e rnaxirn~im snow d e p t h s on t h e ground*.

"1. Snow l o a d s i n kg/m2 of h o r i z o n t a l roof p r o J e o t i o n a r e determined from t h e mean of t h e y e a r l y max1mr.m observed snow d e p t h s on t h e ground i n a c c o r d a n c e w i t h T a b l e I.

The ground snow depth h , i n c e n t i m s t r e s , i s t a k e n from t h e n e a r e s t m e t e o r o l o g i c a l s t a t i o n a s t h e mean of t h e maximum observa- t i o n s from t h e l a s t t e n y e a r s . Where t h e r e are no such r e c o r d s h i s

t a k e n from t h e accolnpanylng c h a r t , ' a n d f o r mountain a r e a s

-

from the accompanying t a b l e .

A s a b a s i s f o r snow l o a d c a l c u l a t i o n t h e formula Ps = l.6h 2

e x p r e s ~ s s t h a t t h e l a r g e s t snow l o a d (Ps kg/m h o r l z o n t a l roof pro- j e c t i o n a t a p i t c h of 20° t o 30°) depend l a r g e l y on t h e ground snow c o v e r depth (h i n em)." I f h i s e x p r e s s e d I n cm., t h e n t h e dimensions of t h e co- 2 e f f i c i e n t 1 . 6 must be kg/m x cm. E x p r e s s i n g t h e l e n g t h i n m e t r e s , f o r a c o e f f i c i e n t of 1.5, we o b t a i n

ka=

kg = I 0 0

2

m2 crn

m2

m/100 m Thus t h e c o e f f i c i e n t 1.6 = 160

2

m2 crn m

g i v e s t h e weight of snow p e r u n i t volume (1.4 p e r m").

-

(7)

By ~ ; i v i n g t h e u n i t weight of snow a v a l u e of 160 kg/tn3 a t t h e end of w i n t e r ( i . e . i n March) and n o t 240 t o 250 kC/m3, which i s t h e a c t u a l u n i t weight, s i g n i f i e s t h a t only 64-67 p e r c e n t of t h e snow on t h e ground accumulates on t h e r o o f .

The Research I n s t i t u t e of I n d u s t r i a l C o n s t r u c t i o n , engaged i n i n v e s t i g a t i o n s of snow l o a d s on b u i l d i n g s , have c a r r i e d o u t measurements of snow accumulation on t h e r o o f s of i n d u s t r i a l b u i l d i n g s . Such measurements were a l s o c a r r i e d o u t on r o o f s of t h e second s t a g e of c o n s t r u c t i o n of 1 GPZ

(Feb. 9, 1933). The b u i l d i n g was n o t m a i n t a i n e d and was heated very l i t t l e d u r i n g t h e 1932-33 w i n t e r , and t h e r e f o r e t h e i n f l u e n c e of i n s i d e t e m p e r a t m e on snow melt c a n b e n e g l e c t e d .

F i g . 1 shows a snow l o a d p r o f i l e on a c r o s s - s e c t i o n of t h e second s t a g e of t h e GPZ shop. The h o r i z o n t a l a x i s shows t h e h o r i z o n t a l p r o j e c t i o n of t h e c l e r e s t o r e y e d r o o f c r o s s - s e c t i o n and t h e v e r t i c a l a x i s shows t h e t o t a l snow

l o a d on a l l f o u r elements of each c l e r e s t o r e y span ( t h e f o u r t h p a r t b e i n g t h e s p a c e between t h e c l e r e s t o r e y s )

expressed i n cm2 of t h e snow accumulation c r o s s - s e c t i o n . If t h e l o a d on a l l of t h e b u i l d i n g was evenly d i s t r i b u t e d over i t s h o r i z o n t a l p r o j e c t i o n , t h e d e p t h of

snow c o v e r would b e 1 9 cm. If t h i s i s compared t o t h e snow d e p t h on t h e ground which, a c c o r d i n g t o t h e r e c o r d s of Tirniriazev A g r i c u l t u r ~ l Academy was 27.5 cm. on

March 9, i t a p p e a r s t h a t snow l o a d s f o r r o o f s of t r a p e z o i d a l c l e r e s t o r o y s of t y p e 1

GPZ

i n Moscow a r e 69% of t h e ground

(8)

l o a d , which i s 2-4$ g r e a t e r t h a n t h e c a l c u l a t e d ( t h e r o o f and growid snow d e n s i t i e s a c c o r d i n g t o our measurements were t h e same a t 0.24 t o 0.25). To g e t r o o f and ground l o a d s , we m u l t i p l y t h e d e p t h i n m e t r e s b y t h e u n i t weight. 0.275

x

240 = 66 kg/m2 f o r d e n s i t y of 0.24 o r 0.275

x

2 5 0

=

68.75

kg/m2 f o r d e n s i t y of 0.25 on t h e ground. On h o r i z o n t a l p r o j e c t i o n of r o o f we have 0.19

x

240 = 45.6 kg/m2 o r 0.19 x 250 =

47.5

kg/m2 According t o t h e c a l c u l a t i o n f o r m u l a t h e e v e n l y d i s t r i b u t e d l o a d on t h e h o r i z o n t a l p r o j e c t i o n of t h e r o o f i s

P,

= l6Oh

=

1 6 0

x

0.275

=

44

kg/m2 1.e. 1.6

-

3.5

kg/m2 l e s s t h a n t h e a c t u a l , which i s 3.6% f o r a d e n s i t y of 0.24 and

8%

f o r a d e n s i t y of 0.25. Although t h e c a l c u l a t i o n i s somewhat u n d e r e s t i m a t e d , i t meets t h e a c t u a l v a l u e c l o s e enough. 2. D e t e r m i n a t i o n of snow l o a d on a b u i l d i n g

o or

c o m p l i c a t e d r o o f p r o f i l e s : w i t h t r a p e z o i d a l o r r e c t a n g u l a r c l e r e s t o r e y s ( l e n g t h w i s e and t r a n s v e r s e ) , w i t h unequal h e i g h t s of t h e d i f f e r e n t p a r t s , multi-bayed

c y l i n d r i c a l r o o f s e t c

.

,

t h e possibility of snow accuinulati,on i n lowered r o o f p a r t s blown away from t h e h i z h e r p a r t s

should b e t a k e n i n t o a c c o u n t . T h e r e f o r e snow l o a d s ta!cen from t h e maxima of T a b l e 1 ( c o r r e s p o n d i n g t o a p i t c h of

(9)

2 0 - 3 0 ° ) R r u rerillcod 50 p e r c e n t f o r h.ip;her b a r t s , but a r e t a k e n

n o t l e s s t h a n 25 lct:/mL. Thia 50 p e r c e n t i n t r a n r r f e r r e d i l a a n e v e n l y ( I l s t r i b ~ l t e d a d d i t i o n a l l o a d on one s i d e of t h e a x i s of t h e lower p a r t of t h e r o o f ,

I f t h e h i g h e r r o o f p a r t h a s a concave p r o f i l e , no r e d u c t l o n of l o a d on t h e hi.zhor p a r t i s made, b u t lower p a r t s t a k e an a d d i t i o n a l l o a d of 50 p e r c e n t .

For r o o f s w i t h o u t a t t i c s , which a r e planned f o r m e l t - i n g o f snow, t h e l o a d i s reduced t o conform w i t h t h e c a l c u l a t e d h e a t c o n d i t i o n s , namely:

( a ) For r o o f s which have moderate h e a t l o s s ( w i t h a

t h e r m a l r e s i s t a n c e from 1.10 t o 0 . 7 5 ) a t i n g i d e t e m p e r a t u r e of

15'

( c )

and h a v i n g 2 / 3 t h e r o o f a r e a o v e r h e a t e d a i r s p a c e , snow l o a d s a r e reduced 50 p e r c e n t . ( b ) F o r r o o f s w i t h g r e a t h e a t l o s s ( w i t h a t h e r m a l r e s i s - t a n c e l e s s t h a n 0.75) and h e a t f l o w o v e r 8 ~ 0 cal./hour/m2 of h o r i - z o n t a l r o o f p r o j e c t i o n , t h e snow l o a d s a r e reduced

75

p e r c e n t . ( c ) I n a d d i t i o n , i n t h e above c a s e s , s t r e s s e s a r e t o be checked f o r t h e f u l l snow l o a d ( w i t h no r e d u c t i o n f o r m e l t - i n g ) and t h e p e r m i t t e d s t r e s s e s i n t h e r o o f e l e m e n t s s h o u l d be i n c r e a s e d by

35

p e r c e n t . " C o n s e q u e n t l y , a c c o r d f n g t o " U n i f i e d s t a n d a r d s " t h e l o a d s on t h e p r o f i l e GPZ c a n be c a l c u l a t e d a s f o l l o w s :

The ground snow d e p t h i s d e t e r m i n e d from t h e t a b l e and c h a r t ; ? g i v e n i n t h e s t a n d a r d s . F o r Moscow t h i s d e p t h i s 1;8 cm. From T a b l e I ( i n b o l d p r i n t ) f o r h = 60 cin. 2 o r l e s s , t h e g r e a t e s t l o a d i s 100 kc/m ( c o r r e s p o n d i n g t o a -x- T a b l e s and c h a r t s a r e n o t g i v e n i n t h i s p a p e r . . .

(10)

0!i Set l; L c > n I ( Il'i r;. 2 ) t h o l o a d 1.3 On S o c t i o n 11, t h e l o a d tnlccn i s Ps 0.sL2 p l u s h d f t h e l o a d on t h e higtlor s e c t i o n , o r 0.5 PsTtl, o r a l a d T h i s , l o a d must b o e v e n l y d i s t r i b u t e d on l e n ~ t h L2. T h e r e f o r e , t h e l o a d p e r rn2 of p r o j e c t i o n of S e c t i o n I1 i s e x p r e s s e d a s : On S o c t i o n I11 of F i g . 2 t h e l o a d i s

Q3

= 0.5 PsL2 ke/lin.m. = 0.5 x 1 0 0

"

= 100 kg/*?

S i n c e t h e r o o f of

GPZ

has modorata h e a t l o s s and an i r i s i d e t e m p e r a t u r e of

+

1S0(c) accordirig t o "Tlnif i ed S t a n d r r d s " t h e snow l o a d s are r e d u c e d 5 0 p e r c e n t . T h e r e f o r e , f i n a l l y , t h e l o a d on S e c t i o n

I,

Q1 =

25

lq;/rn 2 Secl;ion

I?,

Q?

=

76

kG/m2 S e c t i o n 111,

e3

= 50 kC/1n2 F i g w e

3

s k i o r ~ s a cor!:pn~-l-(-m of a c t u a l snow l o a d i n lcg/in2 of h o r i z o n t a l . r o o f p r o j e c t i o n from o b s e r v a t i o n s by t h e R e s e a r c h I n x t i t u t e w i t h l o a d s a c c o r d . i n ~ t o s t a r l d a r d @ST 7026

.

T h e ;jar:!-l,crl l i n e : ; st-tow t h e r ' c a l :;now lolrds on S e c t i o n 1, 11 and I11 and t h e ! - ~ . o r L ~ o n t a l 13.n~:: show .th.c s p e c j . f i e d . l o a d or1

(11)

c l e r e s t o r s y (> (1l'i.c;. 11) a r o l a r < q e r only i n some c a s e s and t h e n f o ~ s h o r t periocis, n o t more t h a n t t r e e t o s i x days, t h a n t h e s p e c i f i e d . TTowever, i n ~ : e n e r a l t h e a c t u a l snow l o a d s a r e l e s s t h a n t h e s p e c i f i e d .

Such a s t a t e z ~ e n t , however, c a n b e made only f o r t h e w i n t e r of 193Lk-35 when s n o w f a l l was l i g h t . According t o t h e weathel- r e c o r d s , t h e g r e a t e s t snow d e p t h i n t h e I;oscow r i v e r b a s i n i n t h e 1934-35 w i n t e r was 39 cm. on t h e second t e n - d q p e r i o d of February. Consequently, f o r w i n t e r s w i t h g r e a t s n o w f a l l s , much g r e a t e r a c t u a l snow l o a d s t h a n t h o s e specified and over l o n g e r p e r i o d s of t i m e a r e t o b e expected.

For r o o f s having two s l o p i n g s u r f a c e s o r having

a curved shape, "Unified Standards'' recommend two c a l c u l a t i o n s of snow l o a d (1) f u l l uniform l o a d over t h e whole s u r f a c e and ( 2 ) one-sided l o a d on h a l f t h e span.

Where a r o o f a d j o i n s a h i g h v e r t i c a l s u r f a c e t h e p o s s i b l e f o r m a t i o n of snow accumulation should b e c o n s i d e r e d e q u a l t o t h e w a l l h e i g h t , b u t n o t g r e a t e r t h a n f o u r t i m e s t h e ground snow d e p t h

(kh).

The u n i t weight of l o o s o snow i s t a k e n as 100 k c ~ m 3 .

Consequently, i n t h i s c a s e t h e l o a d

Q = 2 h 1 100 = 1.25 P s l i n k g / l i n . m. ( F i g .

5 ) .

The s t a n d a r d ,c:ives no i n d i c a t i o n a s t o t h e l e n g t h of t r i a n g u l a r accumulation. However, from t h e aerodynamic c o n s i d e r a t i o n a s g i v e n i n a s s i s t a n t Prof. E. I. R e t t e r l s ; : -

(12)

11

a l - t i c l e d e a l 3 . n ~ w i t h t h e irif l uonce of h c i f h t s New s t a n d a r d s f o r wind l o a d s on b u i l d i n g s " , t h i s l e n ~ t h c a n be approximated by 20 h.

The ~ m i t weight of l o o s e snow i s recommended a t

100 1cg/m3 by "Standards". O b s e r v a t i o n s , s p e c i a l l y t a k e n by t h e Hesearch I n s t i t u t e , have shown t h e u n i t weight of f r e s h l y f a l l e n snow t o vary between

85

and 190

ki.,/m3.

T a b l e 2 g i v e s some u n i t w e i g h t s of f r e s h l y f a l l e n snow. From t h e t a b l e i t i s s e e n t h a t t h e u n f t weight of new snow a v e r a e e s

135

lce/m3.

3.

The I n f l u e n c e of' Wind on Snow

-

I q o n d

-- -

The i n f l u e n c e of wind on snow l o a d i s t a k e n i n t o account by t h e s t a n d a r d s a s f o l l o w s :

"For u n s h e l t e r e d l o c a l i t i e s , s u b j e c t t o s t r o n g

*

and f r e q u e n t w f n t e r winds ( s p e e d s of 1 2 m/sec. o r more) which p r e v e n t s snow accumulation on r o o f s , t h e l o a d s g i v e n

i n S e c t i o n 1 ( T a b l e 1 ) a r e reduced

50

per c e n t , b u t n o t l e s s t h a n 25 kg/m2."

Thus " u n i f i e d S t a n d a r d s " do n o t g i v e any

i n d i c a t i o n of t h e snow d i s t r i b u t i o n a c c o r d i n g t o t h e roof s u r f a c e ancl depending on t h e wind d i r e c t i o n , They t a k e

i n t o a c c o u n t only t h e p o s s i b l e f o r m a t i o n of snow accumulation i n d e p r e s s e d r o o f p a r t s c a l c u l a t e d from t h e snow blown away from t h e h i g h e r p a r t s , The d i r e c t i o n of t h e wind, p r e v a i l i n g

.*

5.-

The wind s p e e d s a r c talcen a s t h e mean of t h e rr~xima ( s e a s o n a l ) f r o n t h e recol7ds of t h e n o a r e s t m e t e o r o l o g i c a l s t a t i o n s , A speed of 12 in/sec, c o r r e s p o n d s t o

7

on t h e B e a u f o r t s c a l e ; a speecl wbLtch swzys t r e e b r n n c h e s o r t h i n t r u n k s . 11

(13)

d w i n c s n o w f a l l , a r e n o t c o n s i d e r e d by "Unified S-tandards" a t a l l . However, t h e s i g n i f i c a n c e of t h i s f a c t o r i s enormous. To l o o k a t t h e i n f l u e n c e of wind d i r e c t i o n , t h e Research I n s t i t u t e made f i e l d o b s e r v a t i o n s on b u i l d i n g s d u r i n g t h e s p r i n g of 1934 ( A p r i l 1 4 ) . On t h i s d a y , t h e snow accompanied w i t h a n o r t h - west wind f e l l on t h e roof which was p r e v i o u s l y f r e e of snow. The wind speed determined f r o m a V i l ' d weather vane r e a c h e d

14

m/sec. ( p l a t e d e f l e c t e d t o t h e h o r i z o n t a l

p o s i t i o n ) . The C A G I anemometer a t t h i s time r e g i s t e r e d a speed of a p p r o x i m a t e l y 24 m/sec. The t e m p e r a t u r e was -0.5O ( C ) .

During t h i s t i m e on t h e I s e c t i o n of t h e

GPZ

r o o f , snow d e p t h s were measured on f i v e of t h e c l e r e s t o r e y s :

13,

11, 6 ,

3

and. 1 a t t h e i r mid-section, p e r p e n d i c u l a r t o t h e a x i s of t h e c l e r e s t o r e y (Fig.

4 ) .

The f o l l o w i n g photographs of snow a c c u m u l a t i o n were t a k e n a t t h e time of o b s e r v a t i o n . F i g u r e 6 shows a g e n e r a l view of c l e r e s t o r e y 1 3 a f t e r t h e A p r i l s n o w f a l l . The sloped. p a r t of t h e c l e r e s t o r e y w i t h windows i s snowless. I n t h e i n t e r - c l e r e s t o r e y s p a c e t h e snow d e p t h I s minimum. C r o s s i n g t o t h e o t h e r c l e r e s t o r o y s t h e snow d e p t h i n c r e a s e s a p p r e c i a b l y . F i g u r e

7

shows t h e leeward s i d e of c l e r e s t o r e y

3

and t h e windward s i d e of c l e r e s t o r e y 2. The snow accumulated

(14)

on t h e leeward s i d e , whereas t h e windward s i d e 1 ~ 1 1 3 snowless.

Comparing t h e s e c l e r e s t o r e y s w i t h t h e former,

i t

i s seen t h a t i n c r o s s i n g t h e c l e r e s t o r e y s ( i n t h e d i r e c t i o n of t h e wind), t h e amount of p r e c i p a t e d snow i s i n c r e a s e d ,

F i g u r e 8 g i v e s t h e change of snow load, t o t a l l e d over each c l e r e s t o r e y , according t o t h e wind d i r e c t i o n , The a b s c i s s a g i v e s t h e accumulated p r o j e c t i o n of c l e r e s t o r e y c r o s s - s e c t i o n , and t h e o r d i n a t e g i v e s t h e a m ~ u n t of snow d e t a i n e d by t h e s e p a r a t e c l e r e s t o r e y s , expressed i n cm 2

of snow accumulation on each c r o s s - s e c t i o n , I n t h i s form t h e c u r v e d i s t i n c t l y shows, a c c o r d i n g t o t h e a b l a t i o n of t h e c l e r e s t o r e y depending on t h e wind d i r e c t i o n , s t a r t i n g from c l e r e s t o r e y

13,

t h e amount of snow p r e c i p i t a t e d on t h e c l e r e s t o r e y i n c r e a s e s . This i n c r e a s e i s observed t o c l e r e s t o r e y 2, and then t h e load b e g i n s t o d e c r e a s e .

Thus t h e magnitude of snow load on c l e r e s t o r e y 3

i s

7.7

t i m e s t h e l o a d on c l e r e s t o r e y 13.

F i g u r e

9

shows t h e change of snow load on t h e S e c t i o n s I, 11, 111, I V . From t h e graph, it i s s e e n t h a t , t h e snow load on S e c t i o n s I11 and I V , l y i n g i n t h e leeward of t h e c l e r e s t o r e y s , i n c r e a s e s t o c l e r e s t o r e y

3

and t h e n s h a r p l y d e c r e a s e s ; t h e snow load on S e c t i o n s I and 11, l y i n g i n t h e windward of t h e c l e r e s t o r e y s , i n c r e a s e s t o

c l e r e s t o r e y

6 ,

and t h e n g r a d u a l l y d e c r e a s e s t o c l e r e s t o r e y 1, Thus, i f t h e r e i s snowfall w i t h win4 whose

d i r e c t i o n i s p e r p e n d i c u l a r t o t h e c l e r e s t o r e y a x i s , t h e f o l l o w i n g c o n c l u s i o n s can be made of t h e accumulation of

(15)

snow on c l e r e s t o r e y s u r f a c e s .

1. Tho g r e a t e r p a r t of snow accumulates on t h e leeward p a r t of t h e c l e r e s t o r e y ( S e c t i o n s 111 and I V ) .

2, The amount of snow accumulatfne on each c l e r e s t o r e y , and on e a c h s e c t i o n of each c l e r e s t o r e y ,

i n c r e a s e s ( u p t o c e r t a i n l i m i t s ) i n c r o s s i n g from c l e r e s t o r e y t o c l e r e s t o r e y i n a d i r e c t i o n p e r p e n d i c u l a r t o t h e c l e r e s t o r e y

axis and i n t h e d i r e c t i o n of t h e wind.

In t h e c a s e of t h e snowstorm of A p r i l

14,

t h e d i f f e r e n c e i n t h o amount of snow a c c u m u l a t i n g on two c l e r e s t o r e y s w a s such t h a t t h e l o a d on c l e r e s t o r e y

3

w a s

a l m o s t e i g h t t i m e s

(7.7)

t h e l o a d on c l e r e s t o r e y

13,

l o c a t e d 120 m. a p a r t . We s h a l l t r y t o e x p l a i n t h e c a u s e of uneven snow accumulation a c c o r d i n g t o t h e r o o f p r o f i l e .

I f t h e problem of t h e motion of a snow p a r t i c l e

i n

a i r i s approached m a t h e m a t i c a l l y ,

i t

l e a d s t o t h e

i n t e g r a t i o n of d i f f e r e n t i a l e q u a t i o n s of t h e motion of t h e p a r t i c l e , which i n t h e end a r e n o t always p o s s i b l e t o

e v a l u a t e . Attempts a t a mathematical a p p r o a c h t o t h e s t u d y of t h e motion of a snow p a r t i c l e i n a i r , which i s t i e d t o t h e problem of snow accumulation a t o b s t a c l e s , has been

4:-

made by d i f f e r e n t a u t h o r s

.

Among t h e most i n t e r e s t i n g i s t h e work of P r o f ,

.N.

E.

Zukovskii.

9

Eng. D o ~ ~ o v , N. E. Combatting snow on R u s s i a n r a i l r o a d s ;

P r o f , Rykin, N. A. Tile work of t h e a e r o m e c h a n i c a l l a b o r a t o r i e s , p u b l i c a t i o n of t h e I n s t i t u t e of Communication, P e t r o g r a d , 1 9 4 , No. 11; P r o f . Zukovskii, N. Z . ( 1 ) on s n o w d r i f t s and ( 2 ) on

s n o w d r i f t s and s i l t i n g of r i v e r s , p u b l i c a t i o n of t h e l i s t e d a r t i c l e s of Narkomzem, no. 30 and o t h e r s .

(16)

I n h i s f i r s t a r t i c l e

N,

E,

Zukovskii e x p l a i n s t h e f o l l o w i n g phenomenon, When a snows t o r n c a r r y i n g snow

near

t h e ground meets i n

i t s

p a t h m o t i o n l e s s o b s t a c l e s ,

then

in

f r o n t of t h e o b s t a c l e a r e formed snow hollows, m d

BB g e m d i s t a n c e from t h e o b s t a c l e a r e formed snow mounds.

Z u k s v e k i i s i m p l i f i e s t h e problem by supposing t h a t t h e o b s t a c l e i s a l a r g e l o n g round c y l i n d e r whose h o r i z o n t a l axis i s p e r p e n d i c u l a r t o t h e wind d i r e c t i o n ,

By s e l e c t i n g a combination of flow p a t h s whose t o t a l r e s u l t a n t f l o w would p a s s over t h e c y l i n d e r g i v i n g a

complete a s p o s s i b l e d e s c r i p t i o n of snow a c c u m u l a t i o n a c t u a l l y observed and N, E, Zukovskii g i v e s a m a t h e m a t i c a l a c c o u n t of t h i s p r o c e s s which i s q u a l i t a t i v e l y well-known from.

o b s e r v a t i o n s i n t h e n a t u r a l c o n d i t i o n s , The b a s i c c a u s e of snow a c c u m u l a t i o n I n s p e c i f i c p l a c e s remains o b s c w e ,

The second a r t i c l e of P r o f , N. E, Zukovskii, "on snow d r i f t s and s i l t i n g of r i v e r s " , i s devoted t o t h e

s o l u t i o n of t h e problem, C o n s i d e r i n g t h e motion of a snow p a r t i c l e on a v e r t i c a l p l a n e o n l y , P r o f , Zukovskii g i v e s t h e f o l l o w i n g e q u a t i o n of motion:

( U

-

u )

and (V - v ) a r e t h e h o r i z o n t a l and v e r t i c a l p r o j e c t i o n of t h e r e s i s t a n c e of t h e a i r t o t h e moving

(17)

t h e

x

and y a x i s , which i n g e n e r a l terms a r o f u n c t i o n s of t h e c o - o r d i n a t e s and of time; U and

v

-

t h e speed components 'of t h e snow p a r t i c l e on t h e same axes; .mg

-

t h e weight of %ha

snow p a r t i c l e

.

The e q u a t i o n s show, t h a t i n p l a c e s of calm, i . e . where U and V a r e n e a r l y zero, t h e r e i s always a n i n c r e a s e d snow accumulation. The a c t i o n of g r a v i t y s e t s out t h e

primary motion i n which snow p a r t i c l e s begin t o s e t t l e on t h e ground or r o o f . On t h e o t h e r hand, where t h e wind speeds

U and V a r e l a r g e , we c a n n e g l e c t t h e weight of t h e p a r t i c l e i n t h e above e q u a t i o n s s i n c e

i t s

e f f e c t i s r e l a t i v e l y small. I n t h i s c a s e t h e component of t h e p a r t i c l e speed i s e q u a l t o t h e component of t h e wind speed, and t h e t r a j e c t o r i e s of t h e snow p a r t i c l e s c o i n c i d e w i t h t h e l i n e s of a i r flow.

Regarding t h e f u l l d e t e r m i n a t l o n of t h i s problem, n o t c o n s i d e r i n g i n d e t a i l t h i s very i n t e r e s t i n g a r t i c l e ,

i t

i s n e c e s s a r y t o determine mathematlcally t h e speed i n

each point of space.

Thus t h e unevenness of snow accumulation on t h e p r o f i l e of one of t h e c l e r e s t o r e y s c a n be explained by t h e uneven d i s t r i b u t i o n of wind stream speed a t d i f f e r e n t p o i n t s n e a r t h e c l e r e s t o r e y p r o f i l e .

An anemometer survey, t a k e n on 1 GPZ, confirms t h i s s t a t e m e n t . Fig. 10 g l v e s t h e speeds, measured i n t h e space between t h e c l e r e s t o r e y s .

(18)

Measurements were t a k e n by two Fuss anemometers. The speed a t each p o i n t i s e x p r e s s e d a s a p e r c e n t a g e of t h e wind speed a t a h e i g h t of 2 m. f r o m t h e c l e r e s t o r o y s u r f a c e . Measurements were t a k e n a t t h i s p o i n t i n every c a s e and

s i m u l t a n e o u s l y w i t h t h e speed measwemeilts of t h e o t h e r p o i n t s

.

F i g u r e 11 d e p i c t s t h e aerodynamic flow, o b t a i n e d by photographing b l a c k r l b b o n , hanging i n t h e space between t h e c l e r e s t o r e y s , spaced 1 m, a p a r t .

F i g u r e 12 shows a s k e t c h of t h e flow, o b t a i n e d i n a t r a y i n t h e hydrodynamic l a b o r a t o r y of P r o f , N. E, Zukovskii i n MGU. The f l o w was o b t a i n e d by decomposition of water

a c c o r d i n g t o t h e method of P r o f . D. S. V i l t k e r . The t e s t s were done by E. I. R e t t e r ,

B e

V. Gladkov and t h e a u t h o r .

By comparing t h e d i s t r i b u t i o n of wind speed i n t h e i n t e r - c l e r e s t o r e y s p a c e ( F i g , 1 0 ) w i t h t h e snow

a c c u m u l a t i o n on t h e c l e r e s t o r e y p r o f i l e ( F i g .

6

and

71,

i t i s s e e n t h a t snow i s d e t a i n e d i n calm p l a c e s . The d e p o s i t i o n of snow i s f a c i l i t a t e d by t h e f a c t t h a t n e a r p o i n t A of F i g . 11 and 1 2 t h e wind speed v e c t o r forms a n o b t u s e a n g l e w i t h a l l of t h e snow p a r t i c l e v e c t o r s . A t p o i n t B t h i s a n g l e i s a c u t e .

The unevenness of snow accumulation over a l l t h e c l e r e s t o r e y s , t a k e n a t one c r o s s - s e c t i o n , c a n b e s i m i l a r l y e x p l a i n e d , i . e . t h e i n c r e a s e of snow accumulating on a c l e r e s t o r e y i s e x p l a i n e d by t h e d e c r e a s e of wind speed a t t h i s s e c t i o n . T h e snow-wind f l o w strenni which has a f o r c e T upon c o n t a c t w i t h c l e r e s t o r e y

13

(Fig.

8

and

4)

l o s e s

(19)

p a r t of

i t s

energy, A s t h e flow passes t o o t h e r c l e r e s t o r e y s t h e l o s s of k i n e t i c energy, owing t o t h e r e t a r d i n g of t h e snow-wind stream becomes even g r e a t e r . However, t h e decrease of speed i s observed only t o c l e r e s t o r e y

3,

whereupon t h e speed again i n c r e a s e s ,

Thus t h e d i r e c t i o n and speed of wind d u r i n g snowfall r e n d e r s enormous i n f l u e n c e on t h e uneven snow load d i s t r i b u t i o n

on b u i l d i n g r o o f s ,

Uneven snow d i s t r ib u t i o n i s observed:

( 1 ) Between s e p a r a t e p a r t s of any one c l e r e s t o r e y

-

c o n s i d e r i n g t h e same c r o s s - s e c t i o n ( 2 ) Between s i m i l a r p a r t s of d i f f e r e n t c l e r e s t o r e y s

-

o o n s i d e r i n g t h e same c r o s s - s e c t i o n .

( 3 )

A t s t r e a m flow d i r e c t i o n s n o t perpendicular t o t h e c l e r e s t o r e y a x i s , d i f f e r e n t l o a d s a r e observed a l s o on t h e same p a r t of a c l e r e s t o r e y b u t a t d i f f e r e n t c r o s s - s e c t i o n s ,

(20)

-

Q)

S

8

0 d U 0 Q

-

0 k I& d d -P d 0 N d

8

-

'Yi

\

2

V PC I 4

g

d V) UI '4-4 0 0

4

u d 0 4 MJ

2

k 0 m 0 4 -P va 4

Id

-P

8

9

d U U Q ~ ~ O U 'ON

8

$

a'

0 f!

ii

0 0 0 : . d o \O 0 o - P c r \ f d \ O cl

2 P g

a

9

E: -P - d o cd & d - P c r \ - P -P 0 d 4'

3 : k i l s

a a - P

03

d 3 g 4' d d m 0 -P w s t p

b

S Z d d d

A d

d 2

d -P a ol \o\ Q ) U d

k z $

Z E b

83

m -Pa \ \ a a d m m d a) & d m m o o c\l c \ l a m 0 0 0 cU w a r n 0 0 0 0 m m o o cU c \ l a m 0 0 0 cU c r \ \ O r n u\ 0 0 0 cu 3 C O cU rl u\ 0 0 0 N m o m u\ 0 0 0 cy m 0 d

3

m m 0 cu 3 r n 3 d m N C0 0O c\l 0 *PPd d 0 -P

2

= ' a

,o

k

5

m

%

Q, d

= j F

g 4

0 0 m 0 w 3 0

s

0

2

0 0 cr\ 0 0 cU 0 0 d 0 0

(21)

TABLE

I1

, 1935 Date

5

Feb.

7

Feb* 10 Feb. 1 0 Feb. 20 Feb. 22 March Depth of F a l l e n Snow ( c m ) 2 1

5

1 0

13

13

1 2 Temperature -2.6

-7.7

-5

-5.3

-5.1

+1.8

-5.3

-5.4

U n i t Weight of Sn3w (kg/m )

85

11 0

156

170 190 100 Wind Speed (m/sec.) 6.0

3.5

3

.6

5.0 5.0 3.0 Snowfall D u r a t i o n ours) 9 1 0

3

3

3

3

(22)

Fig. 1

Change of total clerestorey snow loads in crn2 of cross-section

( G P Z on March, 1933)

Fig. 3

Comparison of actual and speclfled snow loads in kg/tn2 hcrizontel roof projection on clerestorey 6 of GPZ during February and March

(23)

F i g . 4

Plan showing clerestoreys on 1 GPZ of the Kaganovitch works

(24)

; * L

F i g . 7

Change of t o t 2 1 c l e r e s t o r e y snow load according

t o

t h e wind d i r e c t i o n on A p r i l 1 4 , 1934. 1 GPZ

Fig. 9

Change of snow load according t o wind d i r e c t i o n on 4 s e c t i o n s of t h e c l e r e s t o r e y s April 1 4 , 1934. 1 GPZ

(25)

W i n d Fig. 10 D i s t r i b u t i o n

of

wind speeds i n t h e i n t e r - c l e r e s t o r e y space, 1 GPZ, June 1 6 , 1934 Fig. 11 Aerodynamic f l o w I n t h e I n t e r - c l e r e s t o r e y space, Jan. 8 , 1934. Wind speed 6-7 m/sec

(26)

SNOW

LOADS

SPECIFIED BY THE RTJSSIAN B U I L D I N G CODE

T r a n s l a t e d f r o m t h e R u s s i a n " S t r o i t e l l n y e Normy 5. P r a v i l a

( C o n s t r u c t i o n S t a n d a r d s and Re u l a t i o n s ) " P a r t 11, S e c t i o n B, C h a p t e r 1, Para.

4,

pp. 46-48 ?Loads and Load Coefficients

f o r B u i l d i n g s and I n d u s t r i a l S t r u c t u r e s ) . Snow Loads

The snow l o a d p e r s q u a r e m e t e r a r e a of h o r i z o n t a l p r o j e c t i o n of roof i s determined a c c o r d i n g t o t h e f o r m u l a

PC

=

PC ( 1

.lc)

wh.ere p = weight of snow c o v e r i n kg/m 2

depending on t h e r e g f o n of t h e USSR a c c o r d i n g t o T a b l e

4

c = c o e f f i - c i e n t depending on t h e p r o f i l e of t h e r o o f a c c o r d i n g t o T a b l e

5.

The l o a d f a c t o r "n" f o r snow l o a d s h a l l be t a k e n e q u a l t o

1.4.

The. Weight of Snow Cover P T a b l e

4

Note: I n mountain d i s t r i c t s , as w e l l a s i n t h e r e g i o n s

-

of extreme n o r t t i and f a r e a s t t h e wefght of snow c o v e r p i n kg/& s h a l l b e t a k e n n u m s r i c a l l y e q u a l t o 2t1, where h = d e p t h of snow c o v e r i n cm, t a k e n from r n c t e o r o l o ~ . , i c a l o b s e r v a t i . o n s :LS tllc tiican of t h e maximum y e a r l y d e p t h a t a s k : c ? l l , c ? r c c l l o c a t i o n f o r t h e No. I 2

3

4

5

Region of USSR ( S e e F i g . 2) I I1 I11 I V

v

Weight of Snow Cover i n kg/m2 ( psf

.

)

50

( 1 0 ) 70 ( 1 4 ) 100 ( 2 0 ) 150 ( 3 1 ) 200

(41)

(27)

p a s t 10 y e a r s , I n t h e mountain d i s t r i c t s t h e weight of snow cover s h a l l be taken not l e s s

t h a n 60 kg/m2 ( 1 2 p.s.f.)." Value of C o e f f i c i e n t c Table

5

No 1

2

3

Shape of roof Simple r o o f , Pentroof and Gable roof

s l o p e

a

4 2s0

a

>, 60°

Simple arched roof

Complex roof w i t h t r a n s v e r s a l or l o n g i t u - d i n a l c l e r e s t o r e y s , w i t h unequal h e i g h t s of s o p a r a t e p a r t s , e t c .

I

c 1.0 0.0 4 /10f I n accord w i t h Fie;.

3

Note A t i n t e r m e d i a t e a n g l e s of roof p i t c h t h e c o e f f i c i e n t c i s found by i n t e r p o l a t i o n where4

=

span of a r c h f = r i s e of a r c h The c o e f f i c i e n t c s h a l l n o t be g r e a t e r t h a n 1.0 nor l e s s t h a n 0.3 The d i f f e r e n c e i n h e i g h t H

i s

given

i n

metres

(28)

0 Y /.\ w P c C rl 0 a h .A h 0 tL 0 0 h o a d Ql a s k . S O F

:

"i.4

0 I/) a d 0

.

p u m c ( d cd2

:

3 b 0 c e V) O)e A d m IH Y O E : 0 r l r l 'H Ti Y O

g2

5

b7 a " N rl o m K a 4 a 5 k*" w d 0 4 - a c k o 5 m o a 4 El 5 4 4 0 ,Q k d rl d rl Y a d 2 (d Y c o d d 2 4 3 4 O c d C m m o rl

(29)

P = 2OOH. but n o t

<

s

c and not 2 4q

b u t n o t < 5.0m. and not 7 10.0 m.

Fig. 3

(30)

UNSOLVED PROBLIXS I N REGIOl\TS OF INTENSE SIJO~C,'!I?,T.

by V.

P,

Abovskii, A , M a V e k s m , V.

M a

Volkov, G o

V,

Matysek

( E h g i n e e r s )

T r a n s l a t e d from t h e Russian " S t r o i t e l t n a i a Promyshlennostf ( C o n s t r u c t i o n ~ n d u s t r y ) ' ; 1954, no. 11, pp, 30-31

Observations d u r i n g more t h a n 20 y e a r s of m a i n t a i n i n g r o o f s of i n d u s t r i a l b u i l d i n g s i n S i b e r i a show t h a t t h o s e

r e s p o n s i b l e f o r d e s i g n of p r o j e c t s do n o t , t o a c o n s i d e r a b l e e x t e n t , t a k e account of f a c t u a l m e t e o r o l o g i c a l f e a t u r e s

which d e t e r m i n e t h e mechanism and magnitude of snow cover on r o o f s ,

For many p a r t s of S i b e r i a , wind r e c o r d s show t h a t most s t r o n g winds d u r i n g snowstorms come from t h e s o u t h w e s t ,

T h i s i s confirmed f r o m t h e b a s i c m e t e o r o l o g i c a l o b s e r v a t i o n s d u r i n g 1931-1952 g i v e n i n Table I, The c o i n c i d e n c e of maximum m e t e o r o l o g i c a l f a c t o r s given i n T a b l e I c r e a t e s s t a b l e c o n d i t i o n s f o r snow d e p o s i t i o n behind o b s t a c l e s . O f s i g n i f i c a n c e i s snow a c c u m u l a t i o n when t h e r e i s no s n o w f a l l , i , e . w i n d - d r i f t i n g of s m a l l snow g r a i n s from t h e ground o r r o o f b r i n g s a b o u t a r a p i d s h i f t of snow and

v o r t i c a l accumulation w i t h compression behind o b s t a c l e s , T h i s r e s u l t s , f o r t h o s e c a s e s where t h e r o o f c o n f i g u r a t i o n d o e s n o t a l l o w a f r e e sweep-past of snow,

i n i n t e n s i v e a c c u m u l a t i o n of snow d r i f t s a t t h e r a t e of

1 metre i n

24

hours.

The u n i t weight of snow, from f i e l d measurements d u r i n g January-February, i s 300-350 kg/m3 and i n v n r c h i n c r e a s e s t o 450 kg/rn3.

(31)

F i g u r e a 1, 2 and

3

show I n s t a n c e s of i n t e n s i v e snow accumulation.

The d i r e c t consequences of t h e described. phenomena were i n a number of c a s e s , t h e q u i c k development of

s t r u c t u r a l d e f o r m a t i o n of l o a d b e a r i n g s t r u c t u r a l e l e m e n t s of t h e r o o f which l e d t o t h e f a i l u r e of p u r l i n s and t r u s s e s ,

Snow l o a d s a r e e s p e c i a l l y s i g n i f i c a n t f o r r o o f s w i t h l a r g e a r e a s ,

4-8

h e c t a r e s , which a r e now b e i n g e n c o u n t e r e d more o f t e n , e s p e c i a l l y because a s a t i s f a c t o r y mechanized method of snow removal on r o o f s h a s n o t y e t been d e v i s e d . Of i n t e r e s t i s t h e c o n s t r u c t i o n of a n i n d u s t r i a l b u i l d i n g i n S i b e r i a , whose r o o f i s shown i n F i g . 1.

Sudden o v e r l o a d s of snow on a r o o f under

c o n s t r u c t i o n b r o u g h t a b o u t d e f o r m a t i o n f a i l u r e of t h e t r u s s e d beam s u p p o r t l n g t h e r o o f , I n one c a s e , one f o r m a t i o n of

p u r l i n s had a s a g of 1 7 t o 24 cm, which i s

3

-

4

t i m e s l a r g e r t h a n t h e a l l o w a b l e ; i n o t h e r c a s e s t h e f a i l u r e of s u p p o r t i n g s l a n t members of m e t a l t r u s s e s brought a b o u t s a g g i n g i n t h e ctiords on t h e a v e r a g e of a b o u t

60

cm. ( F i g *

41,

However, t h e r e w a s no f a i l u r e of t h e r o o f s u p p o r t i n g beams o r t h e r o o f i n g s l a b s , T h i s i s e x p l a i n e d by t h e c o n t i n u o u s w i r e t i e s between c o n c r e t e r o o f i n g s l a b s and t h e bond of t h e cement j o i n t - f i l l e r , r e s u l t i n g i n a r o o f t h a t i s t o some

e x t e n t monolytt-lic and t h u s a b l e t o c a r r y a l o a d i n d e p e n d e n t l y o v e r a c o n s i d e r a b l e span w i t h o u t c o l l a p s e ,

(32)

In

t h e above c a s e of p u r l i n deformation, o f t r ~ removal of t h e snow l o a d , t h e s l a b b a s e s h i f t e d because of

t h e r e s i d u a l d e f o r m a t i o n of t h e p u r l i n and assumed a mean l o c a t i o n between t h e d e s i g n e d and maximum sag i n p l a c e s of overload.

To sum up, i t i s n e c e s s a r y :

( 1 ) t o q u i c k l y b r i n g i n t o r e a l i t y t h e d e c i s i o n of t h e

T e c h n i c a l O f f i c e of t h e M i n i s t r y of C o n s t r u c t i o n d e a l i n g w i t h t h e problem mentioned here. The d e c i s i o n n o t e d

" t h a t t h e Research I n s t i t u t e (TsNIPS) and H y p r o t i s up t o now have n o t been g i v i n g proper a t t e n t i o n t o t h e h i g h l y s e r i o u s problem of f i n d i n g a s p e c i f i c a t i o n f o r snow d e p o s i t i o n on r o o f s of i n d u s t r i a l b u i l d i n g s and t h a t a method of p r o t e c t i o n a g a i n s t snow l o a d s on i n d u s t r i a l b u i l d i n g s must be a n i n d i s p e n s a b l e p a r t of t h e p r o j e c t " .

(2)

t o r e f r a i n from a f o r m a l a t t i t u d e toward t h e d e s i g n of r o o f s of i n d u s t r i a l b u i l d i n g s

i n

S i b e r i a and t h e Far E a s t b u t t o t a k e i n t o account t h e i n f l u e n c e of l o c a l m e t e o r o l o g i c a l c o n d i t i o n s .

(3)

t o d e s i g n r o o f s of a shape which p r o v i d e f o r a

maximum sweep away of snow; i n p a r t i c u l a r

it

i s

d e s i r a b l e t o a r r a n g e r o o f s w i t h o u t v e r t i c a l p r o j e c t i o n s i n t h e d i r e c t i o n of t h e p r e v a i l i n g wind, w i t h c l e r e s t o r e y s a r r a n g e d p a r a l l e l t o wfnd d i r e c t i o n w i t h a s t r e a m l i n e

shape of t h e c l e r e s t o r e y ends; i n c a s e s where it i s p o s s i b l e , t o s u b s t i t u t e f o r r o o f s w i t h c l e r e s t o r e y s ones w i t h o u t c l e r e = t o r e y s .

(33)

(4)

For r o o f s of l a r g e s i z e , h a v i n g more t h a n two s l o p e s , t h e p o s s i b i l i t y of mechanized snow c l e a r i n g s h o u l d n o t b e o v e r - r a t e d e s p e c i a l l y s i n c e d u r i n g a snowstorm, c l e ~ n i n 3 i s n o t p o s s i b l e , On t h e b a s i s of t h e f o r e g o i n g , one c a n c o n c l u d e t h a t i n t h o s e c a s e s where on a r o o f p a r t t h e r e i s observed i n t e n s i v e snow accumulation, t h e s t r u c t u r a l c a l c u l a t i o n of r o o f t r u s s e s f o r t h i s p a r t must b e based on a c t u a l

a c c u m u l a t i o n , i.e. s t r u c t u r e s must t a k e t h e snow l o a d even i f a minimum c o e f f i c i e n t of r e s e a r c h i s used.

The s c i e n t i f i c i n v e s t i g a t i o n and p l a n n i n g

o r g a n i z a t i o n s must soon g e n e r a l i z e a v a i l a b l e methods of r o o f maintenance i n S i b e r i a , t h e F a r E a s t and o t h e r r e g i o n s

of t h e Union. Along w i t h t h i s t h e problem should b e t h o r o u g h l y s t u d i e d i n l a b o r a t o r y c o n d i t i o n s , s i n c e t h e d a t a used a t p r e s e n t , t h o s e on which t h e s t a n d a r d s a r e b a s e d , and t h o s e used i n t e c h n i c a l l i t e r a t u r e have become

o b s o l e t e . T a b l e I

3

2.8 0.4 Wind D i r e c t i o n Wind Frequency

$

Mean Wind Speed m/sec.

Snow Storm Wind

d Frequency ,o 1 0 4.8 1LO E E S S S W W N W 2 5

5.l4

29.0

7

2,6

0.5

32

6.2

56.0 1 3 3.6 3.0 N

4

2.6 0.1 NE 6 3.0 0.1

(34)

Fig. 1

Snow on a roof between t h e south ends of t h e c l e r e s t o r e y s and t h e w a l l p r o t r u d i n g above the r o o f . The snow depth i s 2.3

m

Fig. 2

Snow d r i f t s between t h e ends of t h e c l e r e s t o r e y s .

(35)

F i g . 3

Snow d r i f t s on a r o o f along t h e n o r t h e n d s of the c l e r e s t o r e y s

Fig. 4

Metal r o o f s t r u c t u r e a f t e r removal o f r o o f slabs ( v i e w o f the

(36)

THE PROBLEM OF SNOI-J LOAD SPECIF'ICATION

-

by

E m

D.

Kan-Xhut

T r a n s l a t i o n from t h o Russian " S t r o i t e l f n a i a Promyshlennost C o n s t r u c t i o n ~ n d u s t r y " 19511, No. 12, pp. 22-23

I n t h e r e g i o n s of t h e USSR where t h e r e a r e f r e q u e n t and s t r o n g winds ( f o r example, i n most of Kazakstan) snow n e v e r accumulates on f l a t r o o f s b u t d o e s accumulate a s g r e a t d r i f t s behind r o o f p r o j e c t i o n s .

U p t o now, s t a n d a r d s on snow l o a d s (OST 90/058-40) and b u i l d i n g s t a n d a r d s and r e g u l a t i o n s do n o t talce i n t o account t h e s e l o c a l f e a t u r e s of c l i m a t e i n s u f f i c i e n t measure. I n Fig, 1 i s an i l l u s t r a t e d c o n t r a d i c t i o n between t h e s p e c i f i e d s t a n d a r d and t h e a c t u a l l o a d ( t a k e n i n Karaganda P r o v i n c e ) . ( a ) For f l a t r o o f s w i t h s l i g h t s l o p e , t h e e s t a b l i s h e d s t a n d a r d l o a d i s 70 kg/rn2

(14

p.s.f.) Snow on f l a t r o o f s a s t h e above i s n o t r e t a i n e d , Even i n t h e c a s e of s n o w f a l l w i t h o u t wind, which i s extremely uncommon i n Karaganda, t h e l o a d on f l a t r o o f s n e v e r comes n e a r t o t h e s t a n d a r d s p e c i f i e d . Only once i n

8

y e a r s (1933-1940) was t h e monthly s n o w f a l l more t h a n 1 0 cm.

( 4

i n . ) which i s , w i t h a d e n s i t y of 200 kg/m3 of l o o s e snow ( n o t packed by t h e wind), a l o a d of n o more t h a n 20 kg/m2

(4

p.s.f .). It should be t a k e n i n t o a c c o u n t t h a t t h e r e a r e no l o n g p e r i o d s i n Karaganda w i t h o u t s t r o n g winds, which sweep a l l t h e snow from f l a t r o o f s .

T h e r e f o r e f o r f l a t r o o f s w i t h s m a l l s l o p e ( u p

t o

10') a maximum l o a d of 20 kg/m2

(4

p a s .f .) c a n b e used.

(37)

-

36

-

The t h i c k n e s s of

i c e

d e p o s i t on r o o f s i s u s u a l l y s m a l l and i c e f o r m a t i o n i s l o c a t e d f o r t h e most p a r t n e a r c o r n i c e s . Because of t h i s , one c a n assume t h a t

i c e does n o t a f f e c t t h e d e s i g n l o a d f o r r o o f s v e r y much, ( b ) For a r o o f n e a r t h e w a l l s of a roof p r o j e c t i n g h i g h e r t h e OST 90/058-40 s t a n d a r d s p e c i f i e s a l o a d of

93

ke/m2 ( 1 9 p.s.f,), and t h e b u i l d i n g s t a n d a r d s and r e g u l a t i o n s 2 a snow l o a d of 112 kg/m ( 2 3 p . s . f , ) , I f t h e c o e f f i c i e n t of o v e r l o a d of

1.4

i s t a k e n i n t o a c c o u n t , t h e s t a n d a r d l o a d becomes 112 kg/mc x

1.4

=

157

kg/tn2 (32 p . s . f . ) .

The a c t u a l snow load depends f i r s t o f a l l on t h e h e l g h t of t h e p r o j e c t i o n

H.

Up t o a c e r t a i n v a l u e of H

(which w i l l d i f f e r f o r d i f f e r e n t l o c a l i t i e s ) , a

maximum

h e i g h t of snow d r i f t of

O,9H,

and a n a v e r a g e of

O.7H

can

be assumed ( F i g , 1).

From measurements on b u i l d i n g c o n s t r u c t i o n s i n t h e Karaganda i t w a s determined t h a t t h e d e n s i t y o f

snow d r i f t e d behind a p r o j e c t i o n r e a c h e s

350

ke/m3. For example, t a k i n g a h e i g h t of p r o j e c t i o n H

=

2.0

m.

which i s n o t very l a r g e , we o b t a i n a l o a d which i n t h i s c a s e i s t h e a c t u a l load

p

=

0.7I-I = 0.7

x

2.0

x

350 = 490 kg/m2 ( 9 8 p.s.f.), o r a p p r o x i m a t e l y t h r e e t i m e s t h e s t a n d a r d s p e c i f i e d ,

P e r i o d i c snow removal f r o m r o o f s does n o t p r e v e n t l a r g e snow accumulations behind p r o j e c t i o n s ,

s i n c e snow removal from behind p r o j e c t i o n s i s out of t h e q u e s t i o n d u r i n g snowstorms w i t h wind speeds from

15

t o

4~

m e t r e s p e r second.

(38)

-

37

-

( c ) For i n c l i n e d r o o f s t h e s p e c i f l e d snow l o a d d e c r e a s e s from 70 kg/rn2 (15 p.s.f.) t o 0 kg/m2 w i t h t h e f o l l o w i n g i n c r e a s e i n s l o p e s : a c c o r d i n g t o OST 90/058-1+0 from 2 s 0 t o

so0,

a c c o r d i n g t o t h e b u i l d i n g s t a n d a r d s and r e g u l a t i o n s from 250 t o 60'. A c t u a l l y on t h e leeward s i d e of r o o f s w i t h a s l o p o of

35'

-

45'

snow a c c u m u l a t i o n s up t o 1.0 m e t r e high have been observed ( F i g . 2 ) , t h a t i s a l o a d r e a c h i n e

350

lcg/m2 ( 7 0 p.s.f.).

The r e a s o n f o r t h e c o n t r a d i c t i o n between s p e c i f i e d and a c t u a l snow l o a d s i n p l a c e s where t h e r e a r e h i g h and f r e q u e n t winds, i s t h a t i n d e r i v i n g t h e d a t a only t h e amount of s n o w f a l l was c o n s i d e r e d , whereas d i s t r i b u t i o n

of snow i s a l s o a f u n c t i o n of t h e wind speedg. Both

OST 90/058-40 and t h e s t r u c t u r a l s t a n d a r d s g i v e t h e same snow l o a d s f o r Minsk and Kara~;anda, whereas snow i s

d i s t r i b u t e d on r o o f s d i f f e r e n t l y i n Kazakstan where t h e r e a r e h i g h e r winds t h a n i n B y e l o r u s s i a . The i n c o r r e c t c o n s i d e r a t i o n of snow l o a d s l e a d s t o t h e f o l l o w i n g e r r o r s : (1) A l l r o o f s w i t h a s l o p e l e s s t h a n 10' and w i t h o u t p r o j e c t i o n s have s p e c i f i e d l o a d s which a r e t o o l a r g e and a r e never encounteyed i n p r a c t i c e .

A d e c r e a s e of t h e s p e c i f i e d l o a d ( f r o m 70 t o 20 kg/m2 i n Karaganda) p r o v i d e s a s a v i n g of about

8

r u b l e s / s q . m. The i n t r o d u c t i o n of a supplement t o t h e e x i s t i n g s t a n d a r d snow l o a d s f o r some r e g i o n s of t h e

USSR would p o v i d e a n econotny of many m i l l i o n s of r u b l e s every y e a r .

(39)

( 2 ) All- r o o f s having s t e e p s l o p e s or pro j e c t i o n s have s p e c i f i e d snow l o a d s which a r e much l e s s than t h e a c t r ~ a l l o a d s . Because of t h i s i n one of t h e r e g i o n s d e f o r m a t i o n s and even c o l l a p s e s occur o f t e n ,

I n c o n n e c t i o n w i t h t h e use of l i g h t constrtlc t i o n s , t h e r a t i o of silow l o a d t o t o t a l l o a d becomes more

irnpox*t~nt; therefore t h e problem of c o r r e c t e s t i m a t i o n of snow 1o:id a c q t ~ i r o s s p e c i a l importance,

I n our o p i n i o n , i t i s a b s o l u t e l y n e c e s s a r y t h a t t h e C e n t r a l Committee (Ts.N.1

.P.S.

) as soon a s p o s s i b l e o r g a n i z e f i e l d o b s e r v a t i o n s and work o u t s p e c i f i c a t i o n p r o p o s a l s f o r snow l o a d s which t a k e i n t o a c c o u n t t h e a c t u a l a c c u m u l a t i o n s of snoM

i n

r e l a t i o n t o t h e v e l o c i t y of t h e wind.

(40)

*ind direction

--L

F i g * 1

Shape of snow-drift on a

roof

ledge

F i g * 2

Figure

TABLE  I1  , 1935  Date  5  Feb.  7  Feb*  10  Feb.  1 0  Feb.  20  Feb.  22  March  Depth  of F a l l e n  Snow  ( c m )  2 1  5 1 0  13 13 1 2  Temperature -2.6 -7.7 -5 -5.3 -5.1 +1.8  -5.3  -5.4  U n i t   Weight of Sn3w (kg/m ) 85 11 0 156 170 190 100
Fig.  4  Snow  cover
Fig*  5  Snow  cover

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers