• Aucun résultat trouvé

Watermark copy attack

N/A
N/A
Protected

Academic year: 2022

Partager "Watermark copy attack"

Copied!
11
0
0

Texte intégral

(1)

Proceedings Chapter

Reference

Watermark copy attack

KUTTER, Martin, VOLOSHYNOVSKYY, Svyatoslav, HERRIGEL, Alexander

Abstract

Research in digital watermarking has progressed along two paths. While new watermarking technologies are being developed, some researchers are also investigating di erent ways of attacking digital watermarks. Common attacks to watermarks usually aim to destroy theembedded watermark or to impair its detection. In this paper we propose a conceptually new attack for digitally watermarked images. The proposed attack doesnot destroy anembedded watermark, but copies it from one image to a di erent image. Although this new attack does not destroy awatermark or impair its detection, it creates new challenges, especially when watermarks are used for copyright protection and identi cation. The process of copying the watermark requires neither algorithmic knowledge of the watermarking technology nor the watermarking key. The attack is based on an estimation of the embedded watermark in the spatial domain through a ltering process. The estimate of the watermark is then adapted and inserted into the target image. To illustrate the performance of the proposed attack we applied it to commercial and non-commercial watermarking schemes. [...]

KUTTER, Martin, VOLOSHYNOVSKYY, Svyatoslav, HERRIGEL, Alexander. Watermark copy attack. In: Ping Wah Wong and Edward J. Delp. IS\&T/SPIE's 12th Annual Symposium, Electronic Imaging 2000: Security and Watermarking of Multimedia Content II . 2000.

Available at:

http://archive-ouverte.unige.ch/unige:47812

Disclaimer: layout of this document may differ from the published version.

(2)

The Watermark Copy Attack

Martin Kutter a

and Sviatoslav Voloshynovskiy a,b

and AlexanderHerrigel a

a

Digital Copyright Technologies, Stauacher Strasse 149, 8004 Zurich,Switzerland

b

CUI-University of Geneva, 1211Geneva,Switzerland

Securityand Watermarkingof MultimediaContent II,

Vol. 3971,January2000,

SanJose,CA,USA.

ABSTRACT

Researchin digitalwatermarkinghas progressedalong twopaths. Whilenewwatermarkingtechnologiesare being

developed,someresearchersarealso investigating dierentwaysofattackingdigitalwatermarks. Commonattacks

towatermarksusuallyaimtodestroytheembeddedwatermarkortoimpairitsdetection. Inthispaperwepropose

aconceptually new attackfor digitally watermarked images. The proposed attackdoesnotdestroy anembedded

watermark,butcopiesitfromoneimagetoadierentimage. Althoughthisnewattackdoesnotdestroyawatermark

orimpair itsdetection,itcreatesnewchallenges,especiallywhenwatermarksareusedforcopyrightprotectionand

identication. Theprocessof copyingthe watermark requires neither algorithmicknowledge of thewatermarking

technology nor the watermarking key. The attack is based on an estimation of the embedded watermark in the

spatial domain through a lteringprocess. The estimate of thewatermarkis then adapted and inserted into the

targetimage. Toillustratetheperformanceoftheproposedattackweappliedittocommercialandnon-commercial

watermarkingschemes. Theexperimentsshowedthattheattack isveryeectivein copyingawatermarkfromone

image to a dierent image. In addition, we havea closer look at application dependent implications of this new

attack.

Keywords: digitalwatermarking,attack,robustness

1. INTRODUCTION

About700yearsafter theinventionofthewellknownpaperwatermarksin Fabriano, 3

Italy,asimilar conceptwas

applied todigitalmedia, suchasimages, audioandvideo. Researcheortsin theeld ofdigitalwatermarkingare

increasing fastalloverthe world. Furthermore, people such ascontent providersand intellectual property owners

aremoreandmoreinneedforeÆcientsolutionstoprotect,track,andmonitordigitalmedia.

Sincethebeginningofthedigitalwatermarkingareathetechnologieshaveevolvedinanimpressiveway,resulting

inveryeÆcientcommercialsolutions. Furthermore,besidestheideaofhidinginformationindigitaldatainarobust

manner,theconceptoffragiledigitalwatermarksforthevericationofdataintegrityemerged. Foranintroduction

todigitalwatermarkingandanoverviewofdierenttechnologiesthereaderisreferredtoHartungandKutter.

3

Similartothepaperwatermarkindustry,theinventionofdigitalwatermarksnotonlytriggeredworldwideresearch

on digital watermarking technologies, but also ways of attacking, counterfeiting and falsifying digitalwatermarks

with the goalof makingillegal protorbypassinglaws. Theresearch on watermarkattacks hasthe positiveside

eect thatitencouragespeopledoingresearchondigitalwatermarkingtechnologiestodevelopnewmethodswhich

are resilient to the attacks. In this article we focus on attacks on robust digitalwatermarkingschemes. We will

introduceanewattack,calledthewatermarkcopyattack,whichhasanimportantimpactoncurrentoveralldigital

watermarkingsolutionsforavarietyofapplicationssuchascopyrightprotection,monitoringandtracking.

Before we have acloser look at the proposed attack, we givean overview in Section 2of current attacks. In

Section3wepresentthenewattackandthenoutlinetheconceptualpartsoftheattack,thatiswatermarkprediction

Furtherauthorinformation:

M.K.: E-mail:martin.kutter@kutter.ch

S.V.: E-mail:svolos@cui.unige.ch

A.H.:E-mail:alexander.herrigel@dct-ch.ch

(3)

Attacks on Digital Watermarking Systems

Geometrical Attacks Cryptographic Attacks

Global, local warping

Jittering

Collusion Averaging

Copy attack Denoising

Remodulation Lossy compression Quantization

Global, local transform.

Brute forth key search

Removal Attacks Protocol Attacks

Orcale

Watermark inversion

Figure1. Typesofattacksondigitalwatermarkingsystems.

inSection4,andcopyinsertioninSection5. TotesttheeÆcacyoftheattackweappliedittotwopubliclyavailable

watermarkingtools. Theresultsofthese attacksarepresentedin Section6. Beforedrawingthenalconclusions in

Section8wewilldiscussomeimplicationsoftheattackinSection 7.

2. ATTACKS ON WATERMARKING SYSTEMS

Acloserlookatmaliciousattacksonrobustdigitalwatermarkingschemesshowsthattherearemainlyfourinherently

dierentattackingconcepts: removalattacks,geometricalattacks,cryptographicattacks,andprotocol attacks. We

willnowbrieylookateachconcept. Inaddition,Figure2showsasummaryofthedierentattacks.

Removalattacksaimat completely removingawatermarkfrom thecoverdata. These approachesconsiderthe

inserted watermark as noise with a given statistic and try to estimate the original, non watermarked cover data

from the stego, that is watermarked, data. EÆcient removal attacks based on denoising have for example been

proposed byLangelaaret al.

8

Theyproposeto apply asequenceoperationsto thewatermarkedimage, including

median ltering,highpassltering,andnon-lineartruncation. Voloshynovskiyet al.

15

proposeaspatialwatermark

predictiontroughalteringprocessbasedonamaximumaposteriori(MAP)watermarkestimationwithfollowing

remodulationtocreatetheleastfavorablenoisedistribution forthewatermarkdetector.

In contrastto removalattacks,geometrical attacksintendnotto removetheembedded watermark,but distort

it through spatial or temporal alterations of the stego data. The attacks are usually such that the watermark

detectorloosessynchronizationwiththeembeddedinformation. Theresultisthefailureofthewatermarkdetection

process,andthisalthoughthewatermarkisstillinthedata. Firstattacksbasedongeometricalalterationshavebeen

proposedfordigitalimages. Heremainlytwoutilitiesaretomention,UnzignandStirmark. Unzign 13

introduceslocal

pixel jitteringandisveryeÆcientin attackingspatial domain watermarkingschemes. Stirmark 5,6

introduceslocal

geometricalbending in additionto aglobalgeometrical transformation. Fornaturalimagesthis attackintroduced

barely noticeableartifactsandat themomentofwritingthisarticlenoknownwatermarkingtechnology isresilient

toit.

Cryptographicattacksareverysimilartoattacksusedincryptographyandmaybeofdierentnature. Thereare

thebruteforthattackswhichaimatndingasecretthroughanexhaustivesearch. Sincemanywatermarkingschemes

usea secretkeyit is veryimportant touse keyswithasecure length. Another attackis theso called Oracle 10,2,1

attackwhichcanbeusedtocreateanon-watermarkedimagewhenawatermarkdetectordevice isavailable. Other

attacksin thisgrouparestatisticalaveraging,andcollusionattacks. Theformerdescribesanattackin whichmany

instancesofagivendataset,eachtimesignedwithadierentkeyordierentwatermark,areaveragedtocompute

theattackeddata. Ifthenumberofdatasetsislargeenough,theembeddedwatermarkmaynobedetectedanymore.

Inthe collusionattack,again manyinstance of thesamedata areavailable,but this timethe attackeddata set is

generatebytackingonlyasmallpartofeachdataset andrebuildingannewattackeddatasetfrom theseparts.

Theattacksin thelastgroup,theprotocol attacks,doneitheraimat destroyingtheembeddedinformationnor

disable the detection of the embedded information through local or global data manipulation. The goalof these

(4)

Watermark

Prediction Adaptation

Attacked Image Stego Image y

Target Image t

w w

t Counterfeit /

Figure2. Thebuildingblocksofthewatermarkcopyattack.

attacksistoattacktheconceptofthewatermarkingapplication. Therstprotocolattackwas proposed byCraver

et al.

16

They introduced the concept of invertiblewatermarksand showedthat for copyright protectionpurpose

watermarksneedto be non-invertible. This requirementonthewatermarkingtechnology meansthatit shouldnot

bepossibletoextractawatermarkfrom anon-watermarkedimage.

Althoughthepresentedclassicationallowsforaclearseparationbetweenthe attacks,it should be notedthat

veryoften amaliciousattackerappliesnotonly onesingleattackat themoment,but rather acombinationof two

ormoreattacks.

Thewatermarkcopyattackproposedin thisarticlebelongsto thelastgroup,theprotocol attacks. Thegoalof

theattackitto copyawatermarkfromstego datato thetargetdata withouthavinganyspecic knowledgeabout

thewatermarkingtechnology. AswewillseeinSection7,dependingontheapplicationofthedigitalwatermarking

technology,thisattackmayhaveveryseriousimplications.

3. THE WATERMARK COPY ATTACK

As mentionedabove,theideaof thewatermarkcopyattackbelong tothe groupofprotocolattacks, which means

thegoal of theattack isnot to destroythe embedded watermark, but jeopardize theapplication for whichdigital

watermarksareused. Thebasicideaoftheattackistocopyawatermarkfromoneimagetoanotherimage,andthis

withoutanpriorinformationaboutthewatermarkingtechnologyandadditionalinformationsuchasthesecretkey.

Figure2showsthefunctionalblocksoftheattack. Theinputstothesystemarethestegoimage,whichcontains

thewatermarkto becopied,andthetarget image,into which thewatermarkformthestego imageisto becopied.

From atechnical pointof viewtheattackconsist ofthree main steps. Inthe rststepthewatermarkinthe stego

image is predicted, resultingin w.^ Theprediction is then processed in the nextstep. The goalof this processing

is to adapt the watermarkto the target image in order to maximizeits energy under the constraintof keepingit

imperceptibleafterinsertioninthetargetimage. Inthelaststep,thepredictedandprocessedimageisaddedtothe

targetimage.

4. WATERMARK PREDICTION

4.1. Introduction

Predicting the embedded watermark is the key operation in the watermark copy attack and to a large extend

inuences the eectiveness of the attack. Predictingthe embedded watermark canbeperformed in two ways: 1)

direct prediction,2)denoising. Inthiswork wefocusonwatermarkpredictionthroughdenoisingasitallowsus to

usethewelldevelopedapparatusofthedenoisingtheory.

Independentofthewatermarkingtechnology employed,wecanmodelthewatermarkingprocessasanaddition

ofawatermarkto thecoverimageinthespatialdomain:

y=x+w; (1)

whereyisthestegoimage,x theoriginal/coverimageandwthewatermark. Consideringthestegoimageasanoisy

image, then the watermarkis the noiseand wecan compute anestimate of thenoise/watermarkw^ bytaking the

dierencebetweentheestimatex^ofthecoverimageandthestegoimage:

^

w=y x:^ (2)

(5)

Estimator x w y

Figure3. Watermarkpredictionthroughdenoising.

Thisapproachofpredictingtheembeddedwatermarkthroughdenoisingisillustratedin Figure3.

Ifassumeto havenopriorinformationaboutthestatisticsof thestego imagewecanuseamaximumlikelihood

(ML)-estimate of the watermark. On the other hand, a Maximum a posteriori Probability (MAP) estimate can

be used if we assume to have prior information about the image statistics.

4

Depending on the statistics, closed

formsolutionsexist incertaincasesforbothapproaches. An overviewof thesolutionsforspecialcasesisshown in

Figure4.

4.2. ML-estimate

Ifweassumeto havenopriorinformationon thestatisticsoftheimage andprior informationaboutthestatistics

ofthenoise/watermark,wecanuseaML-estimator. Theestimatorisgivenby:

^

x=argmax

~ x2R

N flnp

w

( yj~x)g; (3)

wherep

w

(:)istheprobabilitydensityfunction ofthewatermark.

TheML-estimate hasaclosed form solutionfor the two caseswhen thewatermarkhaseither a Gaussian ora

Laplaciandistribution. IfthewatermarkhasaGaussiandistributiontheML-estimateisgivenbythelocalmeanof

y:

^

x=localmean(y); Gaussianwatermark: (4)

Onthotherhand,ifthewatermarkfeaturesaLaplaciandistributionthesolutionoftheML-estimateisgivenby

thelocalmedian:

^

x=localmedian(y); Laplacianwatermark: (5)

ComputingtheML-estimateofthecoverimagethereforereducesto computingthelocal meanorlocal median.

Todoso,severalapproachesexistsuchassimplycomputingtheaverageormedianinasquarewindow. However,if

weassumetoworkwithnaturalimagesthen wecancomputemoreaccurateestimatesofthelocalmeanormedian

byconsideringonlypixelinacross-shapedneighborhood. Thisisduetothefactthatnaturalimagesfeatureahigher

correlationinhorizontaland verticaldirection.

4.3. MAP-estimate

Ifweassumetohaveapriorinformationaboutthestatisticsofboththecoverimageandthewatermark/noise,then

wecanuseanMAP-estimator. TheMAP-estimatorisgivenby:

^

x=argmax

~ x2R

N flnp

w

( yj~x)+lnp

x

(~x ))g; (6)

wherep

x

(:)istheprobabilitydensityfunctionofthecoverimage.

It is not possible to nd a closed form solution for the MAP-estimate in all cases. We model the image as

stationary generalized Gaussian distribution and the watermark asGaussian. The generalizedGaussian model is

givenby:

p

x (x)=

()

2 ( 1

)

!N

2

1

jdetR

x j

1

2

expf ()(jx xj

2

) T

R

2

x

jx x j

2

g; (7)

(6)

(no prior on image) ML-estimate

Local Median Laplacian Watermark Local Mean Gaussian Watermark

MAP-estimate (with prior on image) Watermark Prediction

Wiener (Lee) Filter Gaussian Watermark Gaussian Image

Gaussian Watermark Laplacian Image Soft-Shrinkage

Gaussian Watermark Iterative RLS Solution Generalized G. Image

Figure4. Principles forwatermarkprediction.

where()= r

( 3

)

( 1

)

and (t)= R

1

0 e

u

u t 1

duisthegammafunction. R

x

isadiagonalautocovariancefunction of

dimensionN. ForthestationarymodeltheelementsofR

x

areequaland constant. iscalled theshapeparameter

of the generalized Gaussian distribution. For =2 the generalized Gaussian distribution reduces to the normal

Gaussiandistributionandfor( =1)itreducestotheLaplaciandistribution. Forrealimagestheshapeparameter

isintherange0:31.

Forourapproach,thatis GaussianwatermarkandstationarygeneralizedGaussiancoverimage,there existsno

closedformsolutionfortheMAP-estimateofthecoverimage. Therefore,weproposetoreformulateitasareweighted

leastsquares(RLS)problem,whichallowsustoderiveaniterativeoptimalsolution.

14

Thenequation(6)isreduced

tothefollowingminimization problem:

^ x

k +1

=arg min

~ x2R

N f

1

2 2

n ky x~

k

k 2

+w k +1

kr k

k 2

g; (8)

where

w k +1

= 1

r k

0

(r k

); (9)

r k

= x

k

x k

k

x

; (10)

0

(r)=[()]

r

jrj 2

; (11)

wherekisthenumberofiterations,andisagaintheshapeparameterofthegeneralizedGaussiandistribution. In

thiscase,thepenaltyfunction isquadraticforaxedweightingfunction w.

Assumingwisconstantforaparticulariterationstep,onecanwritethegeneralRLSsolutioninthenextform:

^ x=

w 2

n

w 2

n +

2

x x+

2

x

w 2

n +

2

x

y: (12)

(7)

ThissolutionissimilartotheclosedformWienerltersolution. ThesameRLSsolutioncouldalsoberewritten

intheformof Leelter 9

:

^ x=x+

2

x

w 2

n +

2

x

(y x ): (13)

The principal dierence with classical Wiener orLee lters is the presence of the weighting function w. This

weightingfunctiondependsontheunderlyingassumptionsaboutthestatisticsofthecoverimage. Intherestofthis

paper,wewillonlyconsidertheLeeversionofthesolutionwhichcoincideswiththeclassicalcaseofGaussianprior

(shapeparameter =2) ofthecoverimage(w =1). It isimportant tonote that theshrinkagesolutionof image

denoisingproblem previouslyused onlyin thewavelet domain caneasilybeobtainedfrom Equation8in thenext

closedform:

^

x=x+max(0;jy xj T)sign(y x); (14)

where T =

2

n

x p

2isthethreshold forpracticallyimportantcaseof Laplacianimageprior. This coincides withthe

soft-thresholdingsolutionoftheimagedenoisingproblem.

11

5. COPY INSERTION

The predicted watermark from the previous section could directly be added to the target image. However, this

solutionis notoptimal and would result in avariety ofartifact in the target image. Therefore, before adding the

predictedwatermarktothetargetimageweneedtoprocessit. Asmentionedabove,thegoaloftheprocessingisto

adaptthecopyofthewatermarktothetargetimagein ordertokeepitimperceptiblewhilemaximizingitsenergy.

Thisprocessisactuallythesameasinastandardwatermarkembeddingscheme. Therearemanywaystoadaptthe

watermarkto thetargetimage, such as methodsexploiting thecontrastsensitivityand maskingphenomenaofthe

HVS.

7,12

Inthis work wedecided toused thenoise visibilityfunction (NVF) proposedbyVoloshynovskiyet al.

14

Thenoisevisibilityfunction isdenedas:

NVF =

!

!+ 2

x

; (15)

where 2

x

thecoverimagevariance,and!isalocalweightingfunction denedby:

!=[()]

1

jrj 2

; (16)

wherer= x x

x

. isatuning parameterdened by:

= 100

2

max

(17)

ThereNVFcanbeusedfortwodierentmodels. Intherstmodel weassumeanon-stationaryGaussiancover

image. InthiscasetheNVF inEquation15reduces to:

NVF(i;j)= 1

1+ 2

x (i;j)

; (18)

where 2

x

(i;j)denotes thelocalvarianceoftheimage inawindowcenteredat thecoordinates(i;j). Inthesecond

model we assume a stationary generalized Gaussian coverimage. In this case, the NVF dened in Equation 15

reducesto:

NVF(i;j)=

!(i;j)

!(i;j)+ 2

x

; (19)

where!(i;j)isthelocalweightingfactor,and 2

x

isconstant. Forthewatermarkcopyattackwewillworkwiththe

non-stationaryGaussianmodel,andthereforeuseEquation18.

The NVF characterizesthe local texture of the image and varies between0 and 1, where it is 1for at areas

and 0for highly texturedareas. It canthereforebeused todescribethelocal texturemasking phenomenaforthe

watermark,thatisinareswithhighactivitythewatermarkstrengthmaybeincreasedduetothemaskingeect. In

additionto themaskingeect,wewill alsotakethecontrastsensitivityintoaccountand combineitwith thenoise

(8)

thresholdofnoiseisapproximatelyproportionaltothelocalluminance. Thenalweightisthengivenas:

W =((1 NVF)+NVF(1 ))lum; (20)

where =(0;:::;1) describes therelation between the watermarkstrength in textured areas and atareas, and

lumthelocalluminance. Ifweset =1,thewatermarkwill be concentratedontextured areas,thatis edgesand

corners. Iftheset=0,thewatermarkwillmainly beputintoatareas.

The fakewatermarkedimage isthen generatedby scalingtheweightingfunction W, multiplyingit bythesign

ofthepredictedwatermark,andthenaddingtheresulttothetargetimage:

~

t=t+Wsign(w);^ (21)

where is theoverallwatermarkstrength.

6. RESULTS

To test the proposed watermark copy attack we applied it to two publicly available watermarkingtools for still

images. WerefertothesetoolsassoftwareAand B.Thewatermarkingtechnologiesintheattackedtoolshavethe

followingproperties:

Software A:spatial domainspreadspectrumbasedwatermarkingwith afrequencytemplateforgeometrical

reference,64bitspayload.

Software B: spatialdomainspreadspectrumbasedwatermarkingschemewithweightingmaskbasedonthe

humanvisualsystem,64bitspayload.

Theattackwastestedonthetwograyscaleimageslenaandcameraman,bothofsize256256.Forthewatermark

predictionweused astandardadaptiveWienerlterwithawindowsizeof 55. Thetestswereasfollows. First,

wesignedthelena imageusing oneof thementionedwatermarkingtools. Thenwecopiedthewatermarkfromthe

watermarkedlena image to the cameraman imageand tried toextract thewatermarkform thecounterfeit image.

ThetoptwoimagesinFigure 6showthewatermarkedimagescorrespondingto thetwowatermarkingtoolsA)and

B).Thesecond rowof thesamegure showsthepredictedwatermarkfrom thestego images in thetoprow. It is

interesting to note the dierent characteristics for thepredicted watermarks. Thelast row of Figure 6showsthe

targetimagesafter insertingascaled versionofthesignofthepredictedwatermark.

Inbothcaseswewereabletoretrievethewatermarkformthecounterfeitimages. Wemadeadditionaltestwith

dierentimagesandsucceededeachtimetocopythewatermarkfrom theoriginalstegoimagetothetargetimage.

7. DISCUSSION

Independent of the application of the digitalwatermarking technology, the proposed attack puts in question the

link between the cover data and the embedded information. Let us consider one specic application of digital

watermarkingandlookat theweaknesscausedbytheproposed attack. Weconsiderthecasewherethewatermark

has an identication or authentication purpose in a passport picture. The idea of this application is to embed

informationabouttheownerof thepassport,such asthenameorsocialsecuritynumber,into theimage. Thegoal

ofthewatermarkistouniquelylinktheimagetothelegalownerofthepassport. Ifsomeonechangestheimageina

passport,thenewimagewouldnotcontaintherequiredwatermarkandhenceallowforthedetectionofthefalsied

document. However, if we can show that the watermarkingtechnology used to protect thepassport images does

notresistthewatermarkcopyattack,thenthewatermarkisuselessbecauseanyonecouldeasilyreplacetheoriginal

imagebyanewimageandcopytheoriginalwatermarktothenewimage.

Similarscenariosarepossibleifthewatermarkisusedforcopyrightprotectionordatamonitoring. Ifawatermark

doesnotresist thewatermarkcopyattack,then ausercannewerbesureifadetectedwatermarkreallybelongsto

thedataunderinspection. Asaresult,in manyapplicationstheuseofawatermarkwouldbeuseless.

(9)

(c)Predicted watermarkSoftwareA (d)Predicted watermarkSoftwareB

(e)CounterfeitimageSoftwareA (f)CounterfeitimageSoftwareA

Figure 5. Watermarkcopyattackappliedtotwowatermarkingtools.

(10)

Thewatermarkcopyattackis anew attackbelonging to thegroupofprotocolattacks. Theconcept oftheattack

consistsin copyingawatermarkfromastegoimagetoatargetimagewithoutusinganyspecicinformationabout

thewatermarkingtechnology. Theattackconsist of threemain steps. Intherststepwecomputeapredictionof

thewatermarkin the stego data. Insteadof directly predictingthe embedded watermark, weproposeto compute

the prediction through a denoising process. In other word, the watermark prediction is computed by taking the

dierencebetweenthestego image andadenoisedversionofthestego image. Toperform thedenoisingwelooked

at ML-estimatesandMAP-estimatesofthecoverimageand proposeclosed formanditerativesolutionsforspecial

casesofnoiseandcoverimagestatistics. Inthesecondstepthepredictedwatermarkisprocessed. Thegoalofthe

processingstepis to maximizetheenergyof thewatermarkunder theconstraintofimperceptibility. Toadapt the

watermarktothetargetimageweproposetouseanoisevisibilityfunction. Inthelaststeptheprocessedprediction

ofthewatermarkisaddedtargetimage.

Theeectiveness oftheattackwastestedbyapplyingitto twopubliclyavailablewatermarkingtools. Wehave

shown that forboth toolsit was possible to copy the watermarkfrom the stego image to the target image. This

newattackhasseveralimportantimplicationsdependingontheapplicationofdigitalwatermarking. Ifatechnology

doesnotresist tothecopyattack,ausermaynotbesureifadetectedwatermarkreally belongsto thedataunder

inspection. This is abig problem for may applications. Newwatermarkingtechnologiesshould therefore takethe

watermark copy attack into account during the technology design process. We are current working on optimized

versions of the attack for avariety of media. Furthermore, we are investigating solutionsto make watermarking

technologiesresilienttothewatermarkcopyattack.

REFERENCES

1. I.J.CoxandJ.-P.Linnartz. Somegeneralmethodsfortamperingwithwatermarks. IEEE JournalonSelected

Areasof Communications(JSAC),1997.

2. I.J. Cox,J.-P. Linnartz, andT. Shamoon. Publicwatermarksandresistanceto tampering. InProceedings of

the InternationalConference onImage Processing (ICIP),1997.

3. FrankHartungandMartin Kutter. Multimedia watermarkingtechniques. Proceedings IEEE:SpecialIssue on

IdenticationandProtection of MultimediaInformation,87(7):1079{1107,July1999.

4. CarlW.Helstrom. Probability andStochasticProcesses forEngineers. Macmillan,1991.

5. Markus G. Kuhn and Fabien A. P. Petitcolas. StirMark. <http://www.cl.cam.ac.uk/~fapp 2/wat erma rkin g/

stirmark/>,November1997.

6. M. Kutter and F. Petitcolas. A fair benchmark for image watermarking systems. In Ping Wah Wong and

EdwardJ.Delp,editors,Proceedings of theSPIE,SecurityandWatermarking ofMultimediaContents, volume

3657,pages226{239,SanJose,CA,USA,January1999.IS&T,TheSocietyforImagingScienceandTechnology

andSPIE,TheInternationalSocietyforOpticalEngineering,SPIE.

7. MartinKutter.DigitalImageWatermarking: HidingInformationinImages. PhDthesis,SwissFederalInstitute

ofTechnology,Lausanne,Switzerland,1999.

8. G. Langelaar, R. Lagendijk, and J. Biemond. Removing spatial spread spectrum watermarks by non-linear

ltering. InProceedings EUSIPCO98,volume4,pages2281{2284,1998.

9. JaeS. Lim. Two-DimensionalSignalandImage Processing. PrenticeHall,1990.

10. AdrianPerrig.Acopyrightprotectionenvironmentfordigitalimages.Diplomadissertation,

EcolePolytechnique

FederaledeLausanne,Lausanne,Switzerland,February1997.

11. P.MoulinandJ.Liu. Analysisofmultiresolutionimagedenoisingschemesusinggeneralized-gaussianpriors. In

Proc.IEEESig.Proc.Symp.onTime-FrequencyandTime-ScaleAnalysis,Pittsburgh,PA,USA,October1998.

12. ChristineI.Podilchukand WenjunZeng. Image-adaptivewatermarkingusingvisualmodels. IEEEJournalon

SelectedAreasof Communications(JSAC),16(4):525{539,May1998.

13. Unknown. UnZignwatermarkremovalsoftware. http://altern.org/watermark/,July1997.

14. SviatoslavVoloshynovskiy,AlexanderHerrigel, NazaninBaumgrtner,and ThierryPun. Astochastic approach

tocontentadaptivedigitalimagewatermarking.InProceedingofInternationalWorkshoponInformationhiding,

Dresden,Germany,September1999.

(11)

eralizedwatermarkingattackbasedonwatermarkestimation andperceptualremodulation. InProceedings of

SPIE:SecurityandWatermarking ofMultimediaContentII,SanJose,CA,USA,January2000.SPIE.

16. S. Craver N. Memon B.-L. Yeo and M. Yeung. Resolving rightful ownerships with invisible watermarking

techniques:limitations,attacks,andimplications. IEEEJournalonSelectedAreasinCommunications (Special

issueonCopyright andPrivacy Protection),16(4):573{586,May1998.

Références

Documents relatifs

Amplitude parameters of functions #( are obtained by mea- sures from the original spectrum and source spectrum. It would be possible to calculate from the analytical form of

De plus, pour ces composés 5b-d, on observe la présence d’une phase cristal liquide smectique pour laquelle les molécules ne possèdent plus d’ordre de position au sein des

Le produit brut est purifié par chromatographie sur silice flash (hexane/toluène 9 : 1) suivi d’une recristallisation à partir d’un mélange méthanol/toluène pour obtenir un

Zhu, “High-performance organic field effect transistors : molecular design, device fabrication and physical properties,” Journal of Physical Chemistry B, vol.. Bao and

Similar to the no-delay licensing equilibrium of Section 3, we focus on the equilibrium outcome such that, after the first entry, the innovator and all active imitators

The underWater AcousTic channEl Replay benchMARK (Watermark) is a realistic simulation tool now made available to the underwater communications community.. It is a shell around

This order is seldom useful and it presents the disadvantage of doubling space “disc” of the concept in the total base of the user.. The produced concept can be destroyed (order

Proposed algorithm uses correlation between corresponding fragments of different images in the image series and allows de- tection intra-image copy-move and inter-image copy-move..