• Aucun résultat trouvé

The DART-Europe E-theses Portal

N/A
N/A
Protected

Academic year: 2022

Partager "The DART-Europe E-theses Portal"

Copied!
160
0
0

Texte intégral

(1)

HAL Id: tel-01280780

https://tel.archives-ouvertes.fr/tel-01280780

Submitted on 1 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bilateral bargaining and farsightedness in networks : essays in economic theory

Rémy Delille

To cite this version:

Rémy Delille. Bilateral bargaining and farsightedness in networks : essays in economic theory. Eco- nomics and Finance. Université de Bordeaux, 2015. English. �NNT : 2015BORD0356�. �tel-01280780�

(2)

TH`ESEPR´ESENT´EE POUROBTENIRLEGRADEDE

DOCTEUR DE

L ’UNIVERSIT´ E DE BORDEAUX

ECOLEDOCTORALEENTREPRISE´ ,´ECONOMIE,SOCI´ET´E(ED42) SP´ECIALIT´ESCIENCES´ECONOMIQUES

ParR´ emy DELILLE

BILATERAL BARGAINING AND FARSIGHTEDNESSIN NET WORKS :

ESSAYSINECONOMIC THEORY .

Sousladirectionde:Nicolas Carayol,ProfesseurdesUniversit´es etJean-Cristophe Pereau,ProfesseurdesUniversit´es

Soutenuele14D´ecembre2015 Membresdujury:

M. Philippe SOLAL

Professeur des Universit´es, Universite´ de ST Etienne, rapporteur M. Tarik TAZDAIT

Directeur de recherche CNRS, Ecole des ponts, ParisTech, rapporteur Mme Ana MAULEON

Professeur des Universit´es, Universite´ de ST Louis, Bruxelles, examinatrice,présidente dujury Mme Noem`ı NAVARRO

Maˆıtre de conferences, Universite´ de Bordeaux, examinatrice

(3)

Contents

Introduction 13

1 Bilateralriverbargaining withexternalities 17

1.1 Introduction... 17

1.2 TheSeawallbargaininggame ... 17

1.2.1 LiteratureReview... 19

1.2.2 Thebenchmark... 20

1.2.3 NegotiationProtocols... 22

1.2.4 Example... 26

1.2.5 ConclusionsontheSeawallBargaininggame... 29

1.3 Theriverbargainingproblem ... 29

1.3.1 LiteratureReview... 30

1.3.2 Thebenchmark... 33

1.3.3 Negotiationprotocols... 36

1.3.4 Example... 43

1.3.5 ConclusionsontheRiverbargainingproblem... 46

1.4 AppendixA... 46

1.4.1 ProofofProposition1... 46

1.4.2 ProofofProposition2... 48

1.4.3 ProofofProposition3... 50

1.4.4 SummarizedResultsfortheSeawallbargaininggame... 50

1.4.5 ProofofProposition5... 53

(4)

1.4.6 ProofofProposition6... 55

1.4.7 ProofofProposition7... 57

2 Level-KFarsightednessinaverticallyrelatedeconomy 59 2.1 Introduction... 59

2.1.1 RelatedLiterature ... 61

2.1.2 Roadmap ... 64

2.2 Modelingnetworksof ManufacturersandRetailers... 64

2.3 FarsightedStability... 68

2.3.1 Thepairwiserationale... 68

2.3.2 Farsightedimprovingpaths ... 69

2.3.3 Pairwisefarsightedstability... 70

2.3.4 Level-K farsightedstability ... 72

2.4 Thealgorithm... 75

2.5 Theresults ... 80

2.5.1 The myopiccaseG1 ... 80

2.5.2 Greaterlevelsoffarsightedness ... 84

2.6 Welfareanalysis... 98

2.6.1 Paretooptimality...100

2.6.2 Strongefficiency ...103

2.7 Extensions...107

2.7.1 Moreonthereliabilityofthealgorithmicresults...107

2.7.2 Relationtothepairwisefarsightedstability ...108

2.7.3 Efficiencyoftheindustrialsegment...110

2.8 Conclusion...114

2.9 AppendixB...117

2.9.1 Payoffs...117

2.9.2 Pseudocode...118

(5)

3 Allocatingvalueamongfarsightedplayersinnetworkformation 123

3.1 Introduction...123

3.1.1 LiteratureReview...125

3.1.2 Roadmap ...127

3.2 Allocatingvalueamongfarsightedplayers ...128

3.3 VonNeumann-Morgensternfarsightedstabilitywithbargaining ...132

3.4 Pairwisefarsightedstabilitywithbargaining...138

3.5 Extensions...143

3.5.1 Moreontheroleoftopconvexity...143

3.5.2 Moreontheroleofequalbargainingpower...145

3.5.3 Moreontheroleofcomponentadditivity...146

3.6 Conclusions...147

3.7 AppendixC...147

3.7.1 ProofofProposition23...147

3.7.2 ProofofProposition25...149

Conclusion 151

(6)

L istofF igures

2.1 TypologyofOrganizationalStructure. ... 66

2.2 StabilityforK =1... 82

2.3 StabilityforK =2... 85

2.4 StabilityforK =3... 88

2.5 StabilityforK =4... 91

2.6 StabilityforK =5... 93

2.7 StabilityforK ≥6... 95

2.8 TypesofPareto-optimalregions...101

2.9 Thestronglyefficientnetworks...104

2.10Strongcorrespondencebetweenstablesetsandstronglystablenetworks. .105 2.11 PairwiseFrasightedstablesetsandthetransitivecorrespondence...109

2.12 Paretooptimalityoftheindustrialsegment...111

2.13StrongParetooptimalityoftheindustrialsegment...112

2.14Stronglyefficientnetworksoftheindustrialsegment...113

2.15StongcorrespondencebetweenstablesetsandStronglyefficientnetworks intheindustrialsegment. ...115

3.1 The Myersonvalue(Theplayer-basedflexiblenetworkallocationrule). ..132

3.2 Theplayer-basedflexiblenetworkallocationrule. ...137

3.3 Topconvexityandfarsightedstabilitywithbargaining...139

3.4 Valuefunctionnottopconvexandfarsightedstabilitywithbargaining...144

(7)

L istof Tab les

1.1 Theseawallbargaininggame... 28

1.2 SolutionsunderATS... 44

1.3 SolutionsunderUTI... 45

1.4 Efforts(ine)andpayoffs(inbe2)inthecooperativeandnon-cooperative cases.γ=c/bande=a/b. ... 51

1.5 Efforts(ine)andpayoffs(inbe2)inthetwo-by-twonegotiationprocess... 52

1.6 Efforts(ine)andpayoffs(inbe2)indoublenegotiation... 52

2.1 EquilibriumvaluesforgN... 67

2.2 Payoffsfor(d,k)=(0.7,0.005)... 81

2.3 Adjacenciesofthesupernetwork. ... 83

2.4 Level-2adjacencies... 86

2.5 Level-3adjacencies... 87

2.6 Level-4adjacencies... 90

2.7 Level-5adjacencies... 92

2.8 Level-6adjacenciesandover... 94

2.9 PayoffsfornetworksgNandx1...117

2.10 Payoffsfornetworksed1,m1,r1,s1andg ...117

2.11 Thecompare(g1,g2,g3,d,k)function...118

2.12 Thematfip(d,k)function...119

2.13 Thedevdet(G,g,g)function...120

2.14 Theinstab(G,MK)function...121

2.15 Theexstab(G,MK)function...122

(8)

3.1 Afarsightedallocationruleforvaluefunctionv ...135 3.2 Anotherfarsightedallocationruleforvaluefunctionv...136 3.3 Allocationssatisfyingw-weightedbargainingpowerforγ=2 ...145

(9)

Abstract[EN ]

Thethesisconsistsinfouressaysthatdealwithbargainingandnetworksinnoncoop- erativegametheory. Thefirstchapterintroduceriverbargaininggamesinthecontext ofexternalities. ThefirstsectionentitledTheseawallbargaininggamedealswithanon cooperativeapproachofaninvestmentgameinacontextofpositiveexternalities.In thissection,westudythesetofbilateralbargainingprocedureswhichcanbeundertaken amonggeographicallyrelatedplayers. The mainresultshowsthatthepositioningofthe agentsimpactstheirincentivestositatthebargainingtable,leadingtoachickengame. Resultsshowthatanintermediaryplayershouldleadthenegotiationstoimprovetheso- cietalwelfare. ThesecondsectiondealswiththeRiverbargainingproblem,thatis, more precisely,anoncooperativebargainingonaflowingresourceinthepresenceofnegative externalities. Thepurposeofthisstudyis:(i)tofindthebargainingequilibriagiven anexogenousbilateralbargainingprotocol,and(ii)tostudythesocietaldesirabilityof suchequilibriainthepresenceofheterogeneousplayers. Resultsshowthatdependingon theinstigatorofthebargainingsequences,thereareanalogiesbetweensolutionsunder the Absolute TerritorialSovereigntyandthe Unlimited TerritorialIntegrityprinciples. Theresultsalsoshowthat,dependingontheprotocol,theimpassepointreachedinthe firstnegotiationcaneitherstrengthenorweakentherelativepositionoftheagentsin theforthcomingnegotiations. Thesecondchapterdealswiththeformationofnetworks of manufacturersandretailersinthepresenceofnegativeexternalitieswhenplayersare level-K farsighted. Theaimofthechapterare,(i)tocharacterizethelevel-K farsighted stablesetsastheintensityofcompetition(theintensityoftheexternality),soasthecost oflinkingvary;(ii)toformalizeadefinitionofthesocialoptimaandtoconfrontthese

(10)

optimatothestablesets.Theresultsshowthat,(i)arelativelylowleveloffarsightedness issufficienttoreachtheinfiniteleveloffarsightedness;(ii)usualdefinitionsofoptimality orefficiencyfindlimitationswhenitcomestobeconfrontedtoaset-baseddefinitionof stability.(iii)Ifthereistransitivecorrespondencebetweenthepairwisefarsightedstable setandthelevel-∞ farsightedstableset,thenthissetislikelytobestronglyefficient.The lastchapterisentitledAllocatingvalueamongfarsightedplayersinnetworkformation.

ThistheoreticchapterproposestheconceptofavonNeumann-Morgensternfarsighted stablesetwithbargaining. Underthissolutionconcept,thestablenetworkssoasthe componentwiseegalitarianallocationruleemergeendogenously. Thischapterprovides necessaryconditionsunderwhichavonNeumann-Morgensternfarsightedstablesetwith bargainingsustainsthestronglyefficientnetworks.

(11)

Abstract[FR ]

Cetteth`eseconsisteenquatreessaisquitraitentden´egociationetder´eseauxenth´eorie desjeuxnoncoop´erative. Lepremierchapitrepr´esentedesjeuxden´egociationsdans uncontexted’externalit´es. Lapremi`eresectionintitul´eelejeuden´egociationsurla diguetraited’uneapprochenoncoop´eratived’unjeud’investissementdansuncontexte d’externalit´espositives. Danscettesection,nous´etudionsl’ensembledeproc´eduresbi- lat´eralesden´egociationquipeuventˆetremisesenplaceentredesagentsg´eographiquement li´es.Ler´esultatprincipaldelasectionmontrequelasituationdesagentsimpacteleursin- citations`aprendrepartauxn´egociationsetsesynth´etiseenun”jeudelapoulemouill´ee”. Dupointdevuesoci´etal,lesresultats montrentqu’ilestsocialementplusefficacequ’un joueurinterm´ediaire m`enelesn´egociations. Lasecondesectionduchapitretraitedu probl`emeden´egociationsurlarivi`ere.Ils’agitd’unjeuden´egociationnoncoop´eratif surl’utilisationdelaressourcefluvialeenpr´esenced’externalit´esn´egatives. Lebutde cette´etudeestde(i)d´eterminerles´equilibresden´egociation´etantdonn´eunproto- coleden´egociationexog`ene;(ii)d’´etudierl’int´erˆetsoci´etaldetels´equilibresenpr´esence d’acteursh´et´erog`enes.Lesr´esultatsmontrentqu’enfonctiondel’instigateurdess´equences den´egociations,ilexistedesanalogiesentrelessolutionsobtenuesdanslescasdeSou- verainet´eTerritorialeAbsolueetd’Int´egrit´eTerritorialeIllimit´ee.Lesr´esultatsmontrent aussique,enfonctionduprotocoleretenu,lepointd’impasseobtenulorsdelapremi`ere n´egociationpeutrenforcerouaffaiblirlapositionrelativedesagentsdanslesn´egociations

`

avenir. Ledeuxi`emechapitretraitedelaformationder´eseauxdeproducteursetde d´etaillantsenpr´esenced’externalit´esn´egativeslorsquelesjoueurssontclairvoyantsde degr´e-K. Lebutdecechapitreest(i)ded´eterminerlesensemblesder´eseauxstable

(12)

dedegr´e-K lorsquel’intensit´edelaconcurrence(l’intensit´edel’externalit´e)etlescoˆuts deliaisonvarient;(ii)dedonneruned´efinitionformelledesoptimasociauxafindeles comparerauxensemblesder´eseauxstables. Lesr´esultats montrentque(i)undegr´ede clairvoyancerelativementfaibleestsuffisantpouratteindrelaclairvoyanceabsolueou infinie;(ii)lesd´efinitionshabituellesdel’optimumoudel’efficienceneconviennentpas parfaitement`aunconceptdestabilit´eensembliste.(iii)S’ilexisteunecorrespondance transitiveentrelastabilit´eclairvoyanteparpairesetlastabilit´eclairvoyantededegr´ein- fini,alorsl’ensemblestablepeutˆetreefficient.Ledernierchapitreestintitul´eattribution delavaleurentrejoueursclairvoyantsdansleprocessusdeformationder´eseau.Ils’agit d’unchapitreth´eoriquequiproposeleconceptdestabilit´evonNeumann-Morgensternavec n´egociation. Dansceconceptdesolution,lesensemblesder´eseauxstables,ainsiqu’une r´epartition´egalitaireauseindescomposantsdur´eseausontd´etermin´esconjointement,et demani`ereendog`ene.Cedernierchapitremeten´evidencelesconditionsn´ecessairespour quelesr´eseauxvonNeumann-Morgensternavecn´egociationsoientefficients.

(13)

Acknow ledgments

IwanttothankmytwothesissupervisorsProfNicolasCarayolandProfJean-Christophe Pereaufortheircollaboration,helpfulcomments,supportandpatience. Igratefully acknowledgethe membersofthejury,PhilippeSolal,TarikTazdait,Ana Mauleonand Noem`ıNavarro.IalsoadressmygratitudetoVincentVannetelbosch,JosephHannaand St´ephaneLambrecht. Mybelovedfamilyandfriendsforsupportalongthislongjourney.

(14)

Introduct ion

Thethesisconsistsinfouressaysin microeconomics. Whiletheinternalcomposition ofthedocumentdealswithvarioustopics,thesefouressayshaveacommonpoint. The thesisstudiesbilateralrelationshipsinregardstoanetworkedstructure.Thefirstchapter addressesthequestionofthenegotiationinanexogenousnetworkstructureframework. Thesecondchapterdealswiththequestionofanendogenousnetworkformationwith farsightedplayers. Thelastchapterproposesanendogenousnetworkformationprocess thatintegratesabargainingprocedureandfarsightedplayers. Thestudyremainswithin thescopeofthenoncooperativegametheory.

Thefirstchapterdealswiththe managementofanaturalresource.Economicagents aregeographicallyscatteredalongariver.Inthisalignednetworkstructure,thegeo- graphiclocationdeterminestheaccesstothepublicgood.Indeed,regardingthenature ofthevaluationoftheestate,thestrategicaladvantagesdependsonthegeographiclo- cationoftheplayers. Traditionally,thestudyofpublicgoodshasbeenundertakenusing anidenticalaccesstotheresourceandhasidentifiedthesourcesofsocietalinefficiencies suchasfree-ridingorthetragedyofthecommons.Intheriversetting,theheterogeneous accesstotheresourceleadtoreconsidertheusualissuesandtherefore,itssolutions.The questionofthepropertyrights,ortherighttogetapriorityaccessquicklyarises.Indeed, giventheorientationofthestream,anex-antepropertyrightsdivisionorthefactofhav- ingapriorityaccessovertheresourceinducesdifferentformsofinefficienciesandthus, differentsolutionstodecentralizeasecond-bestequilibrium.Resultsfromthecooperative gametheoryusuallyleadtotheefficientoutcomebutoftenfailsatexplainingtheinner processleadingtothatsolution.Itappearsthatabargaining mechanismleadstothe

(15)

efficientoutcomebutthesequencesofnegotiationsneedtobefullydescribed. Thefirst chapteraimsatopeningthe”black-box”oftheriverbargainingusingthenoncoopera- tiveapproachoftheRubinsteinalternatingoffers modelinthecontextofexternalities. ThefirstsectionentitledTheseawallbargaininggameisinspiredfromapaperconjointly writtenwithmyPhD.supervisor:JeanChristophePereau.Inthispaper,theagentsare locatedfromdownstreamtoupstreamalonganestuaryandareexposedtoaflooding risk. Theplayershavetheabilitytoinvestinfacilitiestoprotectthemselvesfromthis hazard(forinstanceaseawall,adikeoraditch). Theagentslocatedupstreamtheriver benefitfromtheeffortsinprotectionoftheplayersdownstream. Asthebenefitsofthe localpublicgoodincreasealongtheestuary,upstreamagentshavetobargainfor mone- tarycompensationwiththemostdownstreamagentsinexchangeforagreaterprotection effort. Thesectionanalysesdifferentbargainingprotocolsanddeterminestheconditions underwhichagentsarebetteroff.Theresultsshowthatnobargainingprocedureisobvi- ouslypreferredbyalltheplayers.Theresultsshowthattheupstreamagentsareinvolved inachickengamewhenitcomestobargainwiththe mostdownstreamagent.

ThesecondsectionentitledTheriverbargainingproblem isbasedonanarticlecon- jointlywrittenwithJeanChristophePereauanddealswithariverbargaininggameinthe contextofnegativeexternalities.Inthis model,theplayersbenefitfromextractingthe resource.Thenatureoftheexternalityliesinthefactthattheresourceisscarceandthat thesumoftheindividualoptimalextractionsexceedstheamountofavailablewater.The sectionanalysestheoutcomesofdifferentnegotiationproceduresbetweenthreeagents locatedalongariverinaRubinsteinalternating-offers modelwhereagentsbargainover transfersandwaterconsumptionlevels.Twodifferentkindofsequentialproceduresgiven theex-antedivisionofpropertyrightsareinvestigated.Thedownstreambargainingpro- cedureisinstigatedbythe mostdownstreamplayerandtheupstreamprocedurebythe mostupstream. Resultsshowthatundersomeassumptionsonthenoncooperativelevel ofextractionsandgiventheAbsoluteTerritorialSovereigntyortheUnlimitedTerritorial Integrityapplies,theproceduresyieldanalogoussolutions. Unlikeforsimultaneousbar- gaining,agreementsinsequentialbargainingproceduresarenotefficientforsociety,even

(16)

iftheperiodbetweenstagesbecomesinfinitelysmall. Thisinefficiencyresultsfromthe player’sinsideoptions,whicharegivenbytheirtemporarydisagreementpayoffs. Results alsoshowthatdependingonthesequenceof moves,insideoptionsandimpassepoints canstrengthenorweakentherelativepositionoftheplayersinvolvedinthenegotiation process.

Whilethefirstchapterassumesthatthestructureofthenetworkisexogenous,driven bygeographicalconstraints,thesecondandlastchaptersreleasetheconstraintofan exogenoussocialstructureastheydealwithendogenousnetworkformation.

Thesecondchaptertakesplacethecontextofaverticallyrelatedeconomy.Thestudy ofverticalformsofeconomieshasdeephistoricalrootsinIndustrialOrganization.Indus- trialOrganizationhasraisedvariousformsofquestionsregardinganexogenousstructure ofverticalrelationships(incentivesfortheverticalintegration,theeffectsoffranchising andexclusivezones...). Newtheoretictoolssuchas”thestrategicnetworksanalysis”

formalizedtheendogenousformationofnetworksandthusshednewlightontheques- tioninginIndustrialOrganization.Iinvestigatethequestionofthestabilityofcommercial agreementsbetween manufacturersandretailersinregardtotheirabilitytoforecastthe likelyevolutionofthenetwork.Inthiscontext,Iquestionthetypologiesofnetworks thatmightbeformedwhentheproductionofasetofdifferentiatedmanufacturershasto bedistributedthroughasetofretailers. Thus,thescopeofthepaperencompassesthe bilateralformationofcommerciallinks,ie.theconsentofa manufacturerandaretailer isneededtobuildaconnection,whiledistributionchannelscanbeunilaterallysevered.

Commercialcontractsbetweenfirmscanbecostlytoendorseandeconomicagents havetoanticipatetheaftermathsinducedbytheirnewpartnershipsandalsotheconse- quencesofnewand/orrevokedpartnershipsofthirdparties. Thedecisiontodiscussa newcommercialcontractortoabolishanexistingrelationshipisdrivenbytheabilityto anticipate. Thisanalysisisthereforebasedonthedepthofreasoningoftheplayers. On thelowestlevelofreasoningplayersbilaterallyaddorunilaterallyseverexistinglinksat random,whileatthehighestlevelofreasoning,theplayersanticipateallthedeviations thattheirinitialactioninduce.

(17)

Computationaltoolsareusedtoestablishthesetofnetworksthatsatisfiesapairwise networkformationtogether withanadjustableleveloffarsightednessforanycostof linkingandanyintensityofcompetitionbetween manufacturers.

Beyondbeingastrategicasset,anticipationiscostlyintermsofgatheringinformation orintermsoftimeneededtotreattheinformation. Theresultsshowthatanintermedi- arylevelofanticipationoftheplayerissufficienttoachievethesameoutcomeastheone obtainedwhentheyarefullyfarsighted.Ithenconfrontthestablesetstoseveralopti- malityandefficiencycriteria.Itappearsthat,forlowvaluesofproductsdifferentiation andhighvaluesoflinkingcoststherecanbearelationbetweenstabilityandefficiency.

Thequestionoftheendogenousnetworkformationaccordingtoabargainingpro- cedure withfarsightedplayersisthepurposeofthethirdchapter. Thislastchapter isbasedonanarticleconjointlywrittenwith myPhDsupervisor NicolasCarayoland VincentVannetelbosch.Inthischapter,weproposeaconcepttostudythestabilityof socialandeconomicnetworkswhenplayersarefarsightedandallocationsaredetermined endogenously. AsetofnetworksisavonNeumann-Morgensternfarsightedlystableset withbargainingifthereexistsanallocationruleandabargainingthreatsuchthat(i) thereisnofarsightedimprovingpathfromonenetworkinsidethesettoanothernetwork insidetheset,(ii)fromanynetworkoutsidethesetthereisafarsightedimprovingpath tosomenetworkinsidetheset,(iii)thevalueofeachnetworkisallocatedamongplayers sothatplayerssufferorbenefitequallyfrombeinglinkedtoeachothercomparedtothe allocationtheywouldobtainattheirrespectivecrediblebargainingthreat. Weshowthat thesetofstronglyefficientnetworksistheuniquevonNeumann-Morgensternfarsightedly stablesetwithbargainingiftheallocationruleisanonymousandcomponentefficientand thevaluefunctionistopconvex. Moreover,thecomponentwiseegalitarianallocationrule emergesendogenously.

(18)

Chapter1

B i latera lr iverbarga in ing w ith externa l it ies

1 .1 Introduct ion

Thefirstchapterdealswithbargainingproceduresintheframeworkofexogenousnetwork andisdividedintwo mainsections. ThefirstsectiondealswiththeSeawallbargaining game.Inthisgame,playersareorderedalongariverfromdownstreamtoupstream.The playerslocatedupstreambenefitfromtheeffortsoftheplayersdownstream.Thecontext ofpositiveexternalitiesmakecoordinationhardertoachieveanddifferentbargainingpro- tocolarestudied. Abriefintroductionofthe motivationforthis modelareexposedin Section1.2.Thesection1.3handlestheriverbargaininggameinthepresenceofnegative externalities.Inthissection,playersareorderedfromupstreamtodownstreamalong ariver. Giventheprinciplethatprevails(Absolute TerritorialSovereigntyor Unlim- itedTerritorialIntegrity),twotypesofsequentialbargainingprotocolsarestudied(the downstreamandtheupstreamprocedure).

1 .2 TheSeawa l lbarga in inggame

Hirshleifer[26]shows withhis“AnarchiaIsland”fablethatcitizenshavesuccessfully agreedtobuildseawalls(ordikes)toprotectthemselvesfromstormsthreateningtoflood

(19)

thecoastlinedespitetheweakest-linkstructureofthatlocalpublicgood. Theseawall isknownasaparticularpublicgoodin whichthelevelofeffectiveprotectionforthe wholeislanddependsonthecitizenwhohasconstructedthelowestseawall.Thischapter analysesasimilarproblemofflood-protectionwhenagentsarelocatedsubsequentlyfrom downstreamtoupstreamalonganestuaryandexposedtoafloodinghazard.Inthatcase, floodprotectiondoesnotonlyconsistinbuildingthehighestseawall,italsorequiresthe constructionofotherfacilities,suchasafirstseawalltobreakthewave,theuseofwetland asfloodwaterretentionland,anetworkofditchestocontrolthefloodorasecondseawall. Thisestuarinegeographyfeatureimpliesthatwhentheseaenters,theprotectioneffort implementedbyanagentwillbeapublicgoodfortheagentslocatedupstreamfromhis position. Atthetwoendsofthespectrum,themostdownstreamagent(theclosesttothe sea)doesn’tgetadditionalbenefitsfromtheupstreamfacilities,whilethemostupstream agentbenefitsfromalltheeffortsexertedbytheplayersdownstream. Thus,theseawall bargaininggameisnolongeraproblemofpublicgoodwithaweakest-linkaggregation technology,butisapublicgoodwithpositiveexternalitiesthatincreasealongtheestuary. Sincethebenefitofthepublicgooddependsonthegeographicalposition,itappearsthat cooperationishardtoachieve.Inordertosustainahighlevelofeffortfromthe most downstreamagent,upstreamagentshavetheabilitytobargain monetarytransfers. The modelingofthenegotiationsisthusofagreatpartinthedeterminationoftheresults.The mostobviousapproachistobasetheanalysisonwhatisknowasbargainingtheorywith theRubinsteinalternating-offers model. Rubinstein[49]describestheprocessthrough whichnegotiatingagentscanreachanagreement. Theagentopeningthenegotiations makesanoffer.Theotheragentcaneitheraccepttheoffer,inwhichcasethenegotiation ends,orrejectitandmakeacounter-offer,whichmayalsobeacceptedorrejectedwitha newcounter-offer. Theinterestofthenoncooperativeapproachisthatitfullyspecifies thebargainingsequences.Inourframework,anofferwillcovertwovariablesrelatedto theeffortofsea-floodprotectionanda monetarytransfer. Ourframeworkalsoassumes aRubinsteinbargainingwith3playersandanalysesseveralbargainingprotocols. The chapterdeterminesthelikelyprotocolsonecouldexpecttobeimplementedgiventhenon

(20)

cooperativebehaviorsoftheplayers.

1 .2 .1 L iterature Rev iew

Theseawallbargaininggamecanbe modeledasaparticularcaseofglobalpublicgood in whichallagentsbenefitfromtheactionofthedownstreamplayers, whatevertheir location.Intheliteratureoninternationalenvironmentalagreements,forinstance,results showthatforidenticalagents,onlyaverysmallnumberofplayerswillformacoalition. SeminalpapersusingthisapproachareCarraroandSiniscalco[11]andBarrett[6],anda surveycanbefoundinFinus[19]. Ourframeworkshares,incommonwiththe“sharing river” model,thedownstream/upstreamagentstructurein whichdownstreamagents createexternalitiestoupstreamagents. Thisliteratureisbasedoncooperativegame theoryand, moreprecisely,onthecore(seeAmbecandSprumont[1]andBealetal.[7] forasurvey).Theobjectiveistosetupaburden-sharingruleabletofavorthecooperation ofall. Thesharingruleaimsatpreventinganyindividualagent,butalsoanysub-group ofagents,fromhavingnoincentivetoleavetheagreement.

However,thecoalitionalapproachoftenignoresthenegotiatingprocessintermsof offersandcounter-offersthatcharacterizeallnegotiationsbetweenself-interestedagents. ThenoncooperativesolutionconceptisfirstintroducedbyStaahl(1972)[51]andRubin- stein(1982)[49]foratwoplayersbargaining1. AspointedoutbyCarraroetal.(2007) [10],itiscrucialtothoroughlydescribethebargainingprocessthatdesignsthemostlikely burden-sharingrulesoastoimplementanoncooperativeprotocol.

Thenextsubsectionspresentthecooperativeandnon-cooperativeoutcomes. The nextfollowingsubsectionisdevotedtotheanalysisofsingleanddoublenegotiations. Insubsection1.2.4,aspecificexampleshowsthe mainresultsofthe modelandthelast subsectionpresentstheconcludingremarksontheSeawallbargaininggame.

1Foranadvancedandcomprehensiveoverviewofthealternatingoffersmodelssee Muthoo(1999)[40].

(21)

1 .2 .2 Thebenchmark

Consideringanorderedsetofplayers N = {1,2,...,n}. Everyagentislocatedfrom downstreamtoupstreaminalexicographicordering2. Wenoteei,theeffortofprotection realizedbyagenti.Therespectivepayoffsaredefinedasthedifferencebetweentheconcave benefitfunction(withBi> 0andBi< 0)andtheconvexcostfunction(Ci> 0and Ci>0). Wedenotebyi<jthefactthatagentiisdownstreamofagentj. Following notationofAnsinkand Weikard(2009)[3]Ui={j∈N :j>i}standsforthesetofagents locatedupstreamofagentiandreciprocallyDi={k∈N :i>k}.Thefirstplayeronly benefitsfromhisowneffort,hispayoffisπ1(e1)=B1(e1)−C1(e1). Thesecondagents benefitsfromhisowneffortandfromtheeffortsinprotectionfromthepreviousplayer. Intheend,nbenefitsfromeveryone’sefforts. Thegenericpayofffunctionisthus:

πi({ej}j≤i)=Bi {ej}j≤i −Ci(ei)

Theequationsshowthatcostsareprivatewhiletheagentsbenefitfromtheeffortsofthe previousplayers.

Cooperativeoutcome

Thecooperativesolutionisgivenbytheprogram:

maxei

n i=1

πi(e)

Effortlevelsaresolutionof:

j≥i

∂Bj k≤j

ek =∂Ci(ei)∀i∈N,k≥1,j≤n.

2Theoppositeoftheclassicalorderingisforconvenienceworries.

(22)

Thatisinthe3-playerssetting3:

B1(e1)+B2(e1+e2)+B3(e1+e2+e3)=C1(e1) (1.1) B2(e1+e2)+B3(e1+e2+e3)=C2(e2) (1.2) B3(e1+e2+e3)=C3(e3) (1.3)

Playeritakestheimpactofhislevelofeffortontheplayersupstreaminhismarginal benefit.Itreturnsauniquevectorofeffortsec={eci}i∈N. Anadditionalunitofeffortby agentiexertsanadditionalbenefitforhimandfortheagentsupstreamofhisposition. At theequilibrium,the marginalcostofthatunitequalizesthesumofhis marginalbenefit andthe marginalbenefitoftheupstreamagents. Thevectorofeffortsreturnsaunique vectorofcooperativepayoffs{πic}i∈N.

Non-cooperativeoutcome:

Whenevertheplayersactnoncooperatively,theoptimalityconditionsare:

∂Bi k≤i

ek =∂Ci(ei)∀i∈N,k≥1.

Thatisinthe3playerssetting:

B1(e1)=C1(e1) (1.4) B2(e1+e2)=C2(e2) (1.5) B3(e1+e2+e3)=C3(e3) (1.6)

Theprevioussystemreturnsauniquevectorofnon-cooperativeeffortsenc= {enci}i∈N. Eachagentequalizeshis marginalbenefittohis marginalcost. Thevectorofefforts returnsauniquevectorofpayoffs{πnci}i∈N. Thedifferencebetweenthecooperativeand thenoncooperativeeffortincreasesaswegodownstream.Indeed,downstreamplayers takethepositiveimpactoftheiractiononagentslocatedupstreamintoaccount. For

3Consideringathree-agentframeworkisenoughtoputforwardthe mainresultsofthepaper.

(23)

anintermediaryplayer2,twoeffectsareatstake. Theadditionaleffortofagent1in thecooperativecasereducestheincentivesof2todolikewise,butduetothepositive impactthat3exertson3,theagent2tendstoincreasehiseffortinthecooperativecase. Thislattereffectdominatestheformer,sinceenc2 <ec2. However,thisistheoppositefor the mostupstreamagent. Hiseffortisreducedinthecooperativecase,sincehebenefits fromtheeffort madebythepreviousdownstreamagents,andanadditionaleffortdoes notexertadditionalbenefittoanyplayer,thisleadingtoec3<enc3. Theaggregateeffort ishigherinthecooperativecasethaninthenon-cooperativecase.Intermsofpayoffs, agents2and3arebetteroffinthecooperativecase,unlikethe mostupstreamagent, whosepayoffonlydependsonhiseffort.Itturnsthatagent1hastomakeagreatereffort inthenon-cooperativecase,andthissubstantiallyreduceshispayoff.Ityieldsπicinc fori=2,3butπc11nc. Thisisthe mainfeatureoftheestuarinegeography. The dominantstrategyofagent1istoimplementhisnon-cooperativeeffortregardlessofthe actionoftheupstreamagents. Hence,decentralizingthethenon-cooperativecasetothe cooperativecasewillneverbefoundprofitableforthe mostdownstreamagent,evenif theaggregatepayoffinthecooperativecaseishigherthaninthenon-cooperativecase.

1 .2 .3 Negot iat ion Protoco ls

Ifsocietalgainsofcooperationarepositive,thenthenegotiationmayimprovethepayoffs ofsomeagents. Inparticular,the mostdownstreamagentcouldfindit worthitto increasehiseffortiftheotherplayerscanfindamechanismtourgehimindoingso.The negotiationcantakeplacebetweenagentsoveranextraamountofeffortthatanagent willimplementinexchangefora monetarytransferorcompensation. However,several protocols mustbeconsideredgiventhe multiplicityofpairsofagents. Thus,bargaining betweentwoagentsconsistsinalevelofeffortandatransfer.

Anegotiationbetweenagentsiandjhastwoarguments. A monetarytransfersor side-paymentsinexchangefora modificationofthevariablethataffectsbothagents.In theestuarine model,theagentiproposesthe monetarytransferτijtotheagentjin exchangeforhiscommitmenttoincreasehisefforttoaej>encj. Alternatively,theagent

(24)

jcouldproposetheplayeritoincreasehisprotectionleveltoej>encj inexchangeforthe subventionτji. Notethatτij=−τjiandbyconventionthefirstplayerinthesubscript paysthetransfertothesecond(Ifipays−τijthenhereceivesτji). Anofferoraproposal isacoupledenotedbyoij=(e,τij)iftheofferis madebyitojandisaboutavariation ine=eiinexchangeforatransferofvalueτjiifi<jandaboute=ejandthetransfer τijifj<i.Bargainingroundsassumesperfectinformation.

Thefirstandsimplestnegotiationonlyconcernstwoplayers,eitheragent1with2 or3orbetween2and3.Inthisprotocol,oneplayerneversitsatthebargainingtable. Inanycases,regardlessoftheplayerwhodoesn’tbargain,theplayer3 maximizeshis individualpayoffbysettinghisefforte3.ThesetofavailableoffersisthusO1={o12,o13} andO2= {o23}. ThepayoffsaredenotedbyV1(e1) =B1(e1)−C1(e1),V2(e1,e2) = B2(e1+e2)−C2(e2)andV3(e1,e2,e3)=B3(e1+e2+e3)−C3(e3).

Inathree-agentcase,thegeneralbargainingframeworkisgivenbythefollowingnet payofffunction:

π1(O1,t)=πnc1t1(V1(e1)−πnc1 −τ12−τ13) π2(O1,O2;t)=πnc2t2(V2(e1,e2)−πnc212−τ23) π3(O1,O2,e3;t)=πnc3t3(V3(e1,e2,e3)−π3nc1323)

where0<δi<1standsforthediscountfactorofagenti.

Proposition1 Whenthenegotiationisoverasinglepair (eiij)ofeffortandtransfer betweenagentsi(theproposer)andj(theresponder)fori=1,2,j=2,3,j= iand k=j,theoptimalvectorofeffortsesatisfies:

Bi(e)+Bj(e)=Ci(ei) Bj(e)=Cj(ej) Bk(e)=Ck(ek)

(25)

andtheassociatedpayoffsare:

πi(e)=πinc+ (1−δj) (1−δiδj)Π πj(e)=πjncj(1−δi)

(1−δiδj)Π πk(e)=πknc+(Vk−πknc)

whereΠ=(Vi−πnci)+Vj−πjnc >0standsforthecreatedsurplus. Proof. SeetheproofinSection1.4.1.

Singlenegotiationsrefertothefollowingcases:1bargainswith3over(e113)or1 bargainswith2over(e112)or2bargainswith3over(e223).Ineachcase,theoutsider ofthenegotiationactsnon-cooperatively. When2or3bargainswith1,thenegotiation impliesahighereffortfor1,ec1>e1>enc1 andlowereffortsfor2or3ecj<ej<encj, j=2,3. Whenthenegotiationisbetween2and3,2increaseshiseffortsuchthat e2>ec2>enc2 andec3<e3<enc3,whiletheeffortof1remainsunchangede1=enc1. When agentsbargain,theygetashareofthegeneratedsurpluswhiletheoutsideractsasa free-riderandbenefitsfromthepublicgood.(Thereisnoadditionalbenefitsforthemost downstreamagent,sincehispayoffequalshisnon-cooperativeoutcome). Thisparticular casereferstothemaximizationoftheaggregatepayoffundertheconstraintthatthemost downstreamagentgetshisnon-cooperativepayoff.Inthelimitwhenthetimebetween bargainingroundsvanishesδ=δi→ 1∀i,thecreatedsurplusissharedequallyamong thetwoinvolvedplayers.Inthatcase,the Rubinsteinsolutionconvergestothe Nash solution.Itturnsoutthatagent2isbetteroffwhen3bargainswith1(theadditional effortsof1substitutetotheeffortinprotectionof2),andbysymmetry,3isbetteroff when2bargainswith1(sameeffect,theadditionaleffortsof1and2substitutetothe effortinprotectionof3).

Expectingthatthecreatedsurpluscanbehigherwhenallagentsareatthenegotiation table, weassumethatthethreeagentsnegotiateintwobilateralnegotiations. This structureensurestheuniquenessofthesubgameperfectequilibrium(SPE)4.Twocases

4AsshownbyShakedandreportedbySutton[52],theuseof Rubinstein modelina multilateral

(26)

areconsidered. First,3bargainstwiceover(e113) with1andover(e223) with2 (settingτ12=0).Second,2bargainstwiceover(e112)with1andover(e223)with3 (settingτ13=0).

Thefirstnegotiationyieldsthefollowingproposition.

Proposition2 When 3bargainsasaproposer with1over(e113)and with2over (e223),theRubinsteinbargainingsolutionshowsthat:

1. Theoptimalvectorofeffortsesatisfies:

B1(e1)+B3(e1+e2+e3)=C1(e1) B2(e1+e2)+B3(e1+e2+e3)=C2(e2)

B3(e1+e2+e3)=C3(e3)

2. Equilibriumpayoffsaftertransfersare:

πiinci(1−δj)(1−δ3)

η Π3,i=1,2andj=i π33nc+(1−δ1)(1−δ2)

η Π3

whereΠ3= 3i=1(Vi−πinc)>0standsforthecreatedsurpluswhen3isinvolved intwonegotiationsandη=(1−δ1δ3)(1−δ2δ3)−δ1δ2(1−δ3)2>0.

Proof. SeetheproofinSection1.4.2.

Thesecondnegotiationyieldsthefollowingproposition.

Proposition3 When 2bargainssimultaneouslyasaproposerwith1over(e112)and with3over(e223),theRubinsteinbargainingsolutionshowsthat:

bargainingframework mayyield multipleequilibriaundertheunanimityrule.

(27)

1. Theoptimalvectorofeffortsesatisfies:

B1(e1)+B2(e1+e2)=C1(e1) B2(e1+e2)+B3(e1+e2+e3)=C2(e2)

B3(e1+e2+e3)=C3(e3)

2. Equilibriumpayoffs(aftertransfers)are:

πiinci(1−δ2)(1−δj)

φ Π2,i=1,3andj=i π22nc+(1−δ1)(1−δ3)

φ Π2

Where Π2= 3i=1(Vi−πnci)>0standsforthecreatedsurpluswhen2isinvolved intwonegotiationsandφ=(1−δ1δ2)(1−δ2δ3)−δ1δ3(1−δ2)2>0istheadditional generatedsurplus.

Proof. SeetheproofinSection1.4.3.

Inbothnegotiations,agents1and2willincreasetheirefforts,suchthat:ec1>e1>enc1 ande2>ec2>enc2,implyingadecreaseintheeffortforthe mostupstreamagentenc3 >

e3>ec3withrespecttohisnon-cooperativeeffort. Agentsgetashareofthegenerated surplusbuttheproposerstillbenefitfromthefirst moveradvantage(capturedthrough theleveloftransfers). However,ininstantaneousnegotiationswithdiscountfactorsset tothelimitδi= δj= δk= δ→ 1,everyplayergetonethirdofthesurplus. Thetwo negotiationsshowthatagentsarebetteroffcomparedtothenon-cooperativeoutcome π1nc1c1andπciiincfori=2,3. However,inbothcases,evenifthedefinition ofthegeneratedsurplusisidentical,Π3differsfromΠ2,sinceequilibriumeffortsdidnot satisfythesameoptimalityconditions.

1 .2 .4 Examp le

Weknowturntoacomparisonbetweenthetwobargainingprotocols.Soastomakethe comparisontractable,weassumethatplayershaveidenticalcostandbenefitfunctions

(28)

regardlessoftheirlocationalongtheestuary:

B(z)=az−b

2z2,a,b>0 C(z)=c

2z2,c>0

Itisalsoassumedthatδ=δi→ 1∀i. Theoutcomeforallbargainingprotocolsunder thepreviousassumptionsaresummarizedinTables1.4.4,1.4.4and1.4.4inSection1.4.4. Thefollowingassertionscanbedrawnfromtheresultsonthebargainingprotocols.

Result1: Thecooperativeoutcome(highestaggregateeffortandpayoff)cannotbe reachedbyaparticularnegotiationprotocol. Thisresultcomesfromthestructureofthe model. Actingnon-cooperativelyisadominantstrategyforthe mostdownstreamagent. Exertinganefforte3>enc3 alwaysdecreasesπ3. Thesetofbilateralbargainingreturns aconstrainedcooperativesolution(anintermediatesolution). Thissolutionconsistsin maximizingtheaggregateoutcomeundertheconstraintthanthemostdownstreamagent alwaysexertsenc3. However,theresultsshowthatagentsarealwaysbetteroffwhenaset ofnegotiationsovereffortsassociatedtoasetoftransfersexist.

Result2:Inthesinglenegotiationsscheme,ifanagreementisreachedbetweenagents 1and2(respectively,1and3)theremainingplayerpreferstofreerideandtostandoff thebargainingtable.Itappearsthatplayers2and3bothprefertheotherplayerto bargainwith1sincethebenefitfromthepublicgood. Thisconflictofinterestbetween agents2and3comesfromthepresenceofthepositiveexternality. Eachagentwould ratherbenefitfromtheeffortsrealizedbytheotheratnocost,asshowninTable1.2.4. Thethree-agentSeawallbargaininggamecanbesummarizedinnormalformwherethe spaceofstrategiesofeachagentconsistsineithertheacceptanceAortherefusal(R)of negotiations.Si={A,R}fori={1,2,3}. Notationi↔ jmeansthat inegotiateswith j.Itfollows:

Ifplayer1refusestobargain(S1=R)thenthebestresponseof2and3istoplayS2= S3=A.however,asseenbefore,thepayoffofplayer1isgreaterwhenhefindapartner tobargainwithcomparedtohisnon-cooperativepayoff,π1{1↔2}nc1 andπ{1↔3}11nc.

(29)

S1=A

2\3 S3=A S3=R

S2=A π1{2↔1,3}2{2↔1,3}3{2↔1,3} π{1↔2}1{1↔2}2F3 S2=R π1{1↔3}F2{1↔3}3 π1nc2ncnc3

S1=R

2\3 S3=A S3=R

S2=A π1nc{2↔3}23{2↔3} π1nc2ncnc3 S2=R π1ncnc23nc π1nc2ncnc3

Table1.1: Theseawallbargaininggame.

ItappearsthatS1= Aisadominantstrategy. TheSeawallbargaininggameexhibits two Nashequilibriainpurestrategies.(S1,S2,S3) =(A,R,A)and(A,A,R).Inboth equilibria,agents2and3arebetteroffwhentheyactasfreeriders,πiFi{i↔1,j}and πi{1↔i}incfori=2,3,j=i.ThestructureoftheSeawallbargaininggameisachicken game,asinCarraroandSiniscalco[11].agent2(respectively,3)prefersthathisopponent bargainswith1andbenefitsfromtheoutcomeofthenegotiationwithoutbearingany cost.

Indoublenegotiation,theconflictisoverthepositionoftheproposer,butthisisa directconsequenceoftheRubinsteinalternatingoffer model. Whenthetimebetween bargainingroundsvanishes,thisfirst moveradvantagedisappears.

Result3:Itissociallyoptimaltoaskagent2to managethetwonegotiationswith the mostdownstreamandthe mostupstreamagents. Thesurplusgeneratedindouble negotiationisgreaterthanthesurplusofsinglenegotiations. Thesizeofthecreated surplusincreases withthenumberofplayersatthebargainingtable. Anegotiation between2and1yieldsagreatereffortofagent1incomparisonwithanegotiationbetween 3and1(Player3wouldacceptalowereffortfrom1inexchangeforalowtransferas heanticipatesapositiveeffortfromplayer2). Thisgreatereffortincreasesthebenefit

(30)

ofplayersupstream. Anegotiationbetween3and2yieldsagreatereffortofagent2 incomparisonwithanegotiationbetween2anda4thplayer(this4thplayeraskingless effortsfrom2sinceheanticipatesapositiveeffortfromplayer3). Thisresultcanbe generalizedtonagents. Asetofgeographicallyrestrictedbilateralnegotiationsimproves individualpayoffs.Inthissetting,eachplayerdirectlybargainwithhispredecessor,n negotiateswithn−1,n−1withn−2,...,uptothenegotiationbetween2with1.

1 .2 .5 Conc lus ionsontheSeawa l l Barga in inggame

Hirshleifer[26]showsthatcooperationoverthebuildingofaseawallcanbeachievedeven iftheseawallisknownasaweakest-linkpublicgood. Theseawallexamplehasbeenre- visitedforanalternativegeographicstructurewhereagentsarelocatedfromdownstream toupstreamandhavetoexertacostlyefforttoprotectthemselvesfromseafloods. This featureimpliesthatthebenefitofthepublicgoodincreasesalonganestuary.Inasim- plifiedthree-agentframework,ourresultsshowthattheredoesnotexistabargaining protocolthatcanbepreferredbyalloftheagents. Agentslocatedafterthe mostdown- streamagentalwaysprefertofreerideratherthanenteringinsinglenegotiationsover anadditionaleffortofthe mostdownstreamagent. Thiscasereferstoachickengame. Whenthenegotiationinvolvesalloftheagents,ourresultsshowthatitismoreprofitable forsocietytogivetherighttotheagentlocatedinthe middleoftheestuarytoconduct negotiationswithboththe mostdownstreamandthe mostupstreamagent.

Thenextsectionintroducesthe modelwithnegativeexternalities.

1 .3 Ther iverbarga in ingprob lem

Gametheoreticanalysisoftheriversharingproblemhasbeenaveryactiveresearcharea overthepasttwodecades(Barret,(1994)[6]; Kilgourand Dinar,(2001)[34]; Ambec andSprumont,(2002)[1]and Bealetal,(2013)[7]forarecentsurvey). The main motivationforthisresearchreliesontheconflictingnatureofwaterusesbetweenvarious agentsorcountriesforresidential,industrialoragriculturalpurposes. Analyzingwater

(31)

allocationrulesamongagentsorcountrieswhoarelocatedalongariveralsoraisessome interestingquestionsintermsofefficiencyandequitywhenpropertyrightsarenotwell defined. Thesharingproblemreferstoasituationinwhichagentshaveunequalaccess totheresourcedependingtheirlocationontheriver. The mostupstreamagenthavea fullaccessbutastheriverflowgoesdowndownstreamagentsgettheremainingwater leftbyupstreamagentswhoarelocatedinfrontofthem. Gametheoretic modelsandin particularbargaining modelsarerelevanttodealwhichsuchaproblem. Theliterature onwaterallocationcanbeclassifiedintotwobroadapproaches.

Thefirstapproachisbasedoncooperativegametheoryand, moreprecisely,onthe core. Theobjectiveistosetupaburden-sharingruleabletofavorthecooperationof all,ensuringthattherulepreventsthatanyindividualagent,butalsoanysub-group ofagents,fromleavingtheagreement. Basedona modeltakingexplicitlyintoaccount directionalflows,AmbecandSprumont(2002)[1]showthattheconvexityofthecooper- ativegameensuresanon-emptycore. Theyanalyzehowacompromisesolutionbetween thetwointernationallawprinciplesofwatersharingintransboundaryriverbasinscanbe reachedinacooperativegamewithutilitytransfers.Thesetwoprinciplesaretheabsolute territorialsovereignty(ATS)thatprescribesthateachagentisfreetouseallthewater hecontrolsonhisterritoryandtheunlimitedterritorialintegrity(UTI)thatstatesthat theamountofavailablewatertoanagentcannotbealteredbyalltheagentswhoare locatedupstreamfromhislocation. Anupstreamagentisonlyallowedtoconsumewater ifhehastheexplicitconsentofallhisdownstreamagents.

1 .3 .1 L iterature Rev iew

Houbaetal.(2014)[28]considerastrictinterpretationoftheUTIrulestatingthatonly themostdownstreamagentmayclaimallthewaterandcanrestrictallhispredecessorsto zeroextractionaslongasnoagreementhasbeenreached. Ansinkand Weikard(2012a)[4] modeledtheriversharingproblemasasequentialbankruptcygameinwhichthesumof theclaimsofalltheagentsexceedtheavailabilityoftheresource(Aumannand Maschler, (1985)[5]andThomson(2013)[54]forarecentsurvey). Theyanalyzeseveralsharing

(32)

rulesspecifiedintermsofamountof watergiventoeachagent. Whenallthe water originatesattheheadoftheriver,thesharingrulestatesthateachagentgetsthesame proportionofhisclaimandthelinearorderoftheagentsdoesnot matter. Otherwise boththedistributionofclaimsandwaterendowmentsneededtobeconsidered. Houba etal.(2014)[28]showthatthemostdownstreamagentalwayspreferstheUTIprinciple butatleastoneoftheotheragentpreferstheATSrule.

Thesecondapproachisbasedonnon-cooperativegametheory,alsowithseveralcat- egories. Ansinketal.(2012b)[2]modeledtheriversharingproblemasatwo-stageopen- membershipcartelgameusingtheconceptofinternalandexternalstability(d’Aspremont etal.,(1983)[15]). Assumingthatariveragreementisagroupofagents(acoalition)who havemergedandmaximizetheirwelfarejointly,theirgoalistodeterminewhichcoalitions arestable,inthesensethatnoagentwantstoleaveitorjoinit. Assumingthatagents haveidenticalbenefitfunctionsandonlydifferintheirlocationalongtheriver,results showthatacoalitionofatleastfouragentsisnotstable. Ansinkand Weikard(2009) [3] modeledtheriversharingproblemasacontestedgameoverthepropertyrightsin whichtwoagentscandecidetobargainornot.Inthelattercaseagentsusetheiroutside optionsbyaskingathirdagenttoimplementanequitablesolution. Resultsshowthat agentscanendupinaninefficientequilibriuminsteadofbargaininganefficientoutcome. Carraroetal.(2007)[10]reviewseveralbargaining modelstowaterissuesinorderto showhowanagreementisreachedamongsectorsorcountries. Theyemphasizecomplex negotiationproblemsdealingwithmultilateralandmulti-issuesfeaturesthatcanonlybe solvedbyuseofcomputersimulations.Inanalternating-offerRubinstein model,Houba (2008)[27]interpretsthemodelofAmbecandSprumontinabargainingperspectivebut onlyinabilateralcasewithoneupstreamagentandonedownstreamagent.

Mostoftheseapproachesand modelsabove mentionedhaveincommontopartly abstractfromthenegotiatingprocess. Thispaperusesasimplified Rubinstein model withthreeagents whocanbargainsequentially withendogenousdisagreementpoints. UndertheATSrule,themostdownstreamagentisconstrainedinhiswaterconsumption whileunderthe UTIrule,the mostupstreamplayercannotextracthisoptimallevel

(33)

ofconsumption. Hencenegotiationcantakeplacebetweenagentsbutisnotlimitedto neighboringagentsasin Wang(2011)[56].In modelingterms,thecontributionofthis paperistoemphasizetheroleofinsideoptionsinaRubinsteinframeworkwithseveral sequentialbargainingprocedures.Insideoptionsrefertothepayoffsthatagentsobtain whentheytemporarilydisagree.Byassumingineachcasethatdelaybetweennegotiation roundsvanishes,thegoalsofthepaperaretoexplainthesourceofpossibleinefficiencies andthedifferentnegotiationoutcomesthatcanresultfromsequentialbargaining. We considerthreedifferentnegotiationprocedures.Thefirstprocedurereferstoasimultane- ousnegotiationinwhichthemostdownstreamagentbargainswitheachupstreamagent overwaterextractionandtransfers(sidepayments).Thesecondprocedureassumesthat thetheconstrainedagentbargainssequentiallywithbothupstreamagents.Thelastpro- cedureconsidersthattheanagentwhodoesn’tsufferfromscarcity(the mostupstream underATS,themostdownstreamunderUTI)bargainssequentiallywiththeotheragents accordingtotheirlocation.Ineachcase,theoutcomeintermsofwaterextractionand transfersisanalyzedandcomparedtothesocialoptimum,showingthatwithbothsequen- tialprocedures,andregardlessofthepropertyrightsdivision,theoutcomeisinefficient fromthepointofviewofsociety. Theintuitionforthisinefficiencycomesfromthefact thatinourgameagentsbargainovertransfersandwaterconsumptionlevels. Thus,not onlythedistributionofthenetsurplusisdifferentunderdifferentprotocols,thewater extractionleveland,hence,thenetsurplusitself,isalsodifferent. Wealsoshowthatthe inefficiencyinthesequentialprocedurescomesfromtheinsideoptions.Finally,weshow that,dependingonthesequenceof movesinthesequentialnegotiation,insideoptions canstrengthenorweakentherelativepositionoftheagentsinvolvedinthenegotiation.

Thefollowingsubsectionspresentthenoncooperativeandthecooperativeoutcomesso asthesimultaneousnegotiation.Subsection1.3.3isdevotedtotheanalysisofsequential negotiationsaccordingtothetwoprotocols.Insection1.3.4aspecificexampleshowsthe mainresultsofthepaper. Thelastsubsectionpresentstheconcludingremarksonthe Riverbargainingproblem.

(34)

1 .3 .2 Thebenchmark

ConsiderasetofN ={1,2,...,i,...n}agentslocatedalongariverinalexicographicor- dering. Agent1isthemostupstreamagentwhileagentnislocatedatthemouthofthe river.Eachagentextractsanamountofwaterxi≥0fromwhichheearnsBi(xi),∀i∈N.

Thebenefitfunctionisassumedtobeincreasinguptoamaximumvalueequaltoxisolu- tionofBi(xi)=0anddecreasingforgreaterextractions,formally:xi=argmaxiBi(xi) isthesatiationpointoftheagenti. Theplayersaresaidtobehomogeneousifevery benefitfunctionsareidentical,thatis∀{i1,i2}∈N,Bi1(xi1)=Bi2(xi2). Theamount of wateravailableisE. Weconsidertheriver merelyflowsatitsownsourceandthe absenceofintermediaryinflows. Wedenotebyi1<i2thefactthatagenti1isupstream ofagenti2. FollowingnotationofAnsinkand Weikard(2009),Ui1= {i2∈N :i2<i1} standsforthesetofagentslocatedupstreamofthelocationofplayeri1andreciprocally Di1={i3∈N :i1<i3}.

Noncooperativeoutcome

UndertheAbsoluteterritorialsovereignty principle,eachagenticontrolstheamountof waterE− j∈Uixjthathasn’tbeenconsumedbytheplayersupstreamofthelocationofi.

Inthenoncooperativecase,themostupstreamagentchooseshowmuchtoextract,under theconstraintthatthisleveldoesnotexceedtheavailableamountE.Then,thefollowing agentchoosesalevelofextractionfromtheremainingwaterE−x1.Thisprocessgoes uptothemostdownstreamagentn.Thesub-gameperfectequilibria(SPE)ofthisgame showsthateachagentiextractsthe maximumbetweenhisnoncooperativelevelxiand theamountofwaterhecontrols:E− j∈Uixj. Thenoncooperativesetofstrategiesfor i∈N undertheATSprincipleisthefollowing:

Si=













xi if xi≤E−

j∈Ui

xj

E−j∈Ui

xj if xi>E−

j∈Ui

xj

0otherwise.

(35)

Fromupstreamtodownstream,theplayersextracttheirbestresponseuptoaplayerwho suffersfromscarcity.Ifxi2≥E−

i1∈Ui2xi1,thesubgameperfectequilibrium(SPE)ofthe gamereturnsauniquevectorofextractions:

XATSnc =













xi1 if i1<i2

E−i1∈Ui2xi1 for i2

0 if i3>i2

ThebenefitsBincforalli∈N canbederivedfromthewaterextractionslevels. UndertheUnlimitedTerritorialIntegrity principle,the mostdownstreamplayercan claimtoconsumeanunalteredwater.Themostdownstreamagentscanclaimtoconsume orextractanylevelofavailablewater. The mostdownstreamagentchooseshislevelof extraction,iexn=argmaxxnB(xn)ifxn< E . Thus,apartoftheresourceisclear ofpropertyrights. Theplayersupstreamcanextractapartoftheresourceprovided thattheUTIprinciplestillapplies,thatis:xnisatleastflowingontheterritoryofthe mostdownstreamagent. Thus,upstreamplayersapplythefollowingrationale: Player n−1playshisbestresponseregardingtheamountofwaterhisallowedtoextract.If xn−1≤ E−xn,thenxncn−1= xn−1isexactlypumpedatleveln−1. Thisextraction behaviorisenforcedbytheplayersallalongtheriveruptothe mostupstreamagent. ThenoncooperativesetofstrategiesundertheUTIprinciplefori∈N isthefollowing:

Si=













xi if xi≤E−

j∈Di

xj

E−j∈Di

xj if xi>E−

j∈Di

xj

0otherwise.

Fromdownstreamtoupstream,theplayersextracttheirbestresponseuptoaplayer whosuffersfromscarcity.Ifxi2≥E−

i3∈Di2xi3,thesubgameperfectequilibrium(SPE)

(36)

ofthegamereturnsauniquevectorofextractions:

XUTInc =













0 if i1<i2

E−i3∈Di2xi3 for ε2

xi3 i3>i2

AnoncooperativegameΓncP undertheprincipleP isa mappingoftheorderingof theplayersontotheindividuallevelsofextraction. Thelevelofextractions(andthus thelevelsofindividualbenefits)dependsontheorderingofplayersandthedefinition ofpropertyrights. LetN bethereversedorderingofN. Thefollowingpropositionis straightforwardandispresentedwithoutproof:

Proposition4 IfB1=BnncATS(N)=ΓncUTI(N)andΓncUTI(N)=ΓncATS(N).

Iftheplayerswhosufferfromscarcityareidentical(player1underUTIandplayer nunderATS),thelevelofnoncooperativeextractionsareidenticalfortheorderingN under ATSandforthereversedorderingunder UTI.Ifplayersareheterogeneous,the solutiondiffersconformingtotheconcavityofthebenefitfunctions.

Cooperativeoutcome

Thecooperativesolutionisgivenbytheprogram:

xmax1,...,xn

i

Bi(xi) sc

n i

xi≤E

Waterextractionlevels Xc={xc1,...,xcn}aresolutionof

B1(x1)=...=Bn(xn)

withxn=E− i∈Uixi. EfficiencyrequirestheestateE tobesharedsoastoequalize the marginalbenefitsamongagents.Itisstraightforwardthatthecooperativeoutcome doesn’tdependontheprincipleandthatΓncATS(.)=ΓncUTI(.)holdsforanyordering. Note

(37)

obverseoccursfortheremainingplayers:xci3≥xnci3 fori3∈Di2∪{i2}underATSandfor i1∈Ui2∪{i2}underUTI.Thishasdirectimplicationsintermsofprofit,wenotethat Binc1 ≥Bic1fori1∈Ui2underATSandfori3∈Di2underUTI.TheCooperativeoutcome hasincreasedthenetbenefitofplayersi3∈Di2∪{i2}undertheATSandi1∈Ui2∪{i2} undertheUTIprinciple.

Soastodecentralizethenoncooperativeoutcometowardthecooperativesolution undertheATSprinciple(respUTIprinciple),aincentive-based mechanism mustbeim- plemented. Amonetarycompensationisnecessarytoencouragethemostupstream(resp downstream)agentstorefrainfromoverconsumingwater. This monetarycompensation canbegeneratedbythehigherlevelofbenefitassociatedtoahigherwaterconsump- tionofthe mostdownstream(respupstream)agents. Thestrictconcavityofthebenefit functionuptothe maximumpointensuresthatthelossincurredbytheupstream(resp downstream)agentwillbelowerthanthegainobtainedbythedownstream(respup- stream)agent. Thus,theremustexistsabargainingschemethatensuresthattheagents willindividuallybenefitfromdecentralizingthenoncooperativeoutcometowardsanal- ternativesolution. Wenowdetailinthenextsectionthreebargainingprotocols.

1 .3 .3 Negot iat ionprotoco ls

Werestrictourattentiontogamesforwhichthereisascarcityconstraint,thatisgames forwhich∀j∈{1,n}, i∈N\{j}xi≤ E ≤ i∈Nxi. Weassumethatnegotiationsare bilateral.Tosimplifynotationwewrite:Bi=Bi(xi). Anegotiationbetweenagentsiand jhastwoarguments. Amonetarytransfersorside-paymentsinexchangeforareduction ofwaterconsumption. Theagentjproposesthe monetarytransferτijtotheagentiin exchangeforhiscommitmenttoreduceisconsumptiontoalevelxi<xnci. Alternatively, theagenticouldproposetheplayerjtoreducehisextractiontoalevelxi<xnci in exchangeforthesubventionτji. Notethatτij=−τjiandbyconventionthefirstplayer inthesubscriptpaysthetransfertothesecond(Ifipays−τijthenhereceivesτji). An

(38)

offeroraproposalisacoupledenotedbyoij=(x,τ)with

(x,τ)=





(xiji) if −∂(B∂xi+Bij)>0 (xjij) if −∂(B∂xi+Bjj)>0

Iftheofferismadebyitojandisaboutanabatementinxi,thenplayerjincreaseshis consumptioninexchangeforthetransferτji.Bargainingroundsassumesperfectinforma- tion.

Wealsoassumethatthemostupstreamandthemostdownstreamagentsaretheonly agenda-settersinthenegotiationprocess. Dependingontheprinciple,eitherthe most upstreamplayerorthemostdownstreamplayersuffersfromthescarcityconstraint.Ifnot mentionedotherwise,weassumethattheplayerwhosufferfromthescarcityconstraint entersnegotiationsasthefirstproposer. Thatisplayer1andnhavetherightto make offersasproposertoalltheotheragents. Playersinbetweenonlyactsasrecipientsof theproposals. Thus,a3playerssettingissufficienttoputforwardthe mainideaofthis paperwith1or3actingasproposersand2canthusbeseenasrepresentativeofplayers inbetween.

Ifplayer3istheproposer(asinthe ATSprinciple),thenthegeneralnetpayoff function(aftertransfers)forthe3agentsofanagreementreachedatperiodtis:

π1(o31;t) = B1nc1t(B1−Bnc1 −τ13) (1.7) π2(o32;t) = B2nc2t(B2−Bnc2 −τ23) (1.8) π3(o31,o32;t) = B3nc3t(B3−Bnc31323) (1.9)

where0≤δi≤1fori={1,2,3}standsforthediscountrate,andt={0,1,..}arethe periodsatwhichtheoffersandcounter-offersareformulated. Apermutationof3and1 intheequations1.7to1.9returnsthepayoffundertheUTIprinciplewhenplayer1is thefirstproposer. Negotiationscanoccursimultaneouslyorinasequential manner.

Références

Documents relatifs

L’iconique se présente aussi comme un commentaire postérieur à l’œuvre, comme sa paraphrase ou son contresens parfois, sous forme d’illustrations, couvertures illustrées

On peut lancer assez de rayons afin d’obtenir une discr´etisation de la surface ´eclair´ee du mˆeme ordre que dans le cadre d’un calcul en m´ethode int´egrale.. Lors de calculs

Pour répondre à cette problématique, la solution proposée dans le cadre de cette thèse consiste à mettre en place un système interactif proposant à l'utilisateur diérents

Figure 5-5 : Comparaison des EISF déduits de l’analyse phénoménologique des spectres à 100µeV moyenné sur les trois températures (croix) à ceux attendus en

A titre d’illustration, nous allons exposer la r´ ` eponse de l’atome unique pour l’harmonique 35 g´ en´ er´ ee dans le n´ eon (calcul´ ee dans le cadre de l’approximation

Dans le cas o` u G est un groupe de Baire ab´ elien et A une alg` ebre de Banach, nous obtenons ` a l’aide du th´ eor` eme du graphe ferm´ e et du th´ eor` eme de Gelfand un r´

Proceedings of the American Mathematical Society, to appear. Linear forms in the logarithms of algebraic numbers I. Linear forms in the logarithms of algebraic numbers II. Linear

On considère à nouveau ici une particule métallique de constante diélectrique ε dans un milieu de constante diélectrique ε m soumise à une onde plane monochromatique