• Aucun résultat trouvé

1 .3 .3 Negot iat ionprotoco ls

Dans le document The DART-Europe E-theses Portal (Page 37-47)

Werestrictourattentiontogamesforwhichthereisascarcityconstraint,thatisgames forwhich∀j∈{1,n}, i∈N\{j}xi≤ E ≤ i∈Nxi. Weassumethatnegotiationsare bilateral.Tosimplifynotationwewrite:Bi=Bi(xi). Anegotiationbetweenagentsiand jhastwoarguments. Amonetarytransfersorside-paymentsinexchangeforareduction ofwaterconsumption. Theagentjproposesthe monetarytransferτijtotheagentiin exchangeforhiscommitmenttoreduceisconsumptiontoalevelxi<xnci. Alternatively, theagenticouldproposetheplayerjtoreducehisextractiontoalevelxi<xnci in exchangeforthesubventionτji. Notethatτij=−τjiandbyconventionthefirstplayer inthesubscriptpaysthetransfertothesecond(Ifipays−τijthenhereceivesτji). An

offeroraproposalisacoupledenotedbyoij=(x,τ)with

(x,τ)=





(xiji) if −∂(B∂xi+Bij)>0 (xjij) if −∂(B∂xi+Bjj)>0

Iftheofferismadebyitojandisaboutanabatementinxi,thenplayerjincreaseshis consumptioninexchangeforthetransferτji.Bargainingroundsassumesperfectin forma-tion.

Wealsoassumethatthemostupstreamandthemostdownstreamagentsaretheonly agenda-settersinthenegotiationprocess. Dependingontheprinciple,eitherthe most upstreamplayerorthemostdownstreamplayersuffersfromthescarcityconstraint.Ifnot mentionedotherwise,weassumethattheplayerwhosufferfromthescarcityconstraint entersnegotiationsasthefirstproposer. Thatisplayer1andnhavetherightto make offersasproposertoalltheotheragents. Playersinbetweenonlyactsasrecipientsof theproposals. Thus,a3playerssettingissufficienttoputforwardthe mainideaofthis paperwith1or3actingasproposersand2canthusbeseenasrepresentativeofplayers inbetween.

Ifplayer3istheproposer(asinthe ATSprinciple),thenthegeneralnetpayoff function(aftertransfers)forthe3agentsofanagreementreachedatperiodtis:

π1(o31;t) = B1nc1t(B1−Bnc1 −τ13) (1.7) π2(o32;t) = B2nc2t(B2−Bnc2 −τ23) (1.8) π3(o31,o32;t) = B3nc3t(B3−Bnc31323) (1.9)

where0≤δi≤1fori={1,2,3}standsforthediscountrate,andt={0,1,..}arethe periodsatwhichtheoffersandcounter-offersareformulated. Apermutationof3and1 intheequations1.7to1.9returnsthepayoffundertheUTIprinciplewhenplayer1is thefirstproposer. Negotiationscanoccursimultaneouslyorinasequential manner.

Simultaneousnegotiation

Weset N ={i,j,k}withoutordering. Weassumethattheagentwhosuffersfromscarcity initiatesthenegotiationswiththetworemainingplayer. Theproposerisidentifiedby iandxi= E−xj−xk. Thusibilaterallynegotiatesatthesametime withkover oik=(xkik)andwithjoveroij=(xjjk). Weassumethatkisthecentralplayer,thus theabsenceofbargainingbetweenjandk,impliesthatτjk=0.

Leto(i)ij=(x(i)jji(i))betheoffer madebyitoj. TheRubinsteinBargainingSo lu-tion(RBS)thatwearelookingforistheuniqueSPEgivenbythefollowingconditions (Rubinstein,1982; Muthoo,1999):

πi(o(j)ij,oik;0)=πi(o(i)ij,oik;1)andπj(o(i)ij,oij;0)=πj(o(j)ij,oik;1).

andbetweeniandk:

πi(o(k)ik,oij;0)=πi(o(i)ik,oij;1)andπk(o(i)ik,oij;0)=πk(o(k)ik,oij;1).

Thesetwosystemsofindifferenceequationsstatesthateachagentisindifferentbetween acceptingthecurrentofferofhisopponentand makingacounterofferinthenextperiod whichwillbeaccepted.

WecannowstatethefollowingProposition:

Proposition5 Thesolutionofthegames ΓsimATS(j,k,i)andΓsimUTI(i,k,j)returnsthe uniqueoptimalvectorofextractionsxc= xci,xcj,xck ,thehighestlevelofwealthΠ =

i∈N(Bic−Binc)>0andthepayoffsaftertransfersare: πj = BjncjΠ

πk = BknckΠ

πi = Binc+(1−µj−µk

withµj=(1−δjδi(1−δ)(1−δi)(1−δkj

kδi)−δjδk(1−δi)2andsimilarlyfork.

Proof. seeproof1.4.5.

Inbothcases,theplayersiwhosuffersfromthescarcityconstraintsbeg insthene-gotiationswithplayersjandk.Inthelimitcaseδ→ 1,eachagentgetshisimpasse point(permanentdisagreementpayoff)plusaequalshare(1/3)ofthetota lcreatedsur-plus. Thissimultaneousnegotiationaccountsforthebenchmarkcaseforthesequential bargainingprocedures. UndertheATSprinciple,{1,2,3}= {j,k,i}andplayer3pays atransfertoagents1and2inexchangeforareducedwaterextraction. UndertheUTI principle,{1,2,3}={i,k,j}andplayer1paysatransfertoagents2and3inexchange foranabatementinwaterconsumption.

Onceagain,ifBi=Bj,theProposition4stillapplies.Thesolutionissensitivetothe concavityofthebenefitfunctionsotherwise.

Sequentialnegotiation

Basedonthesamesetofpayoffs(1.7)-(1.9),weanalyzedtwobargainingproceduresthat wecalledthe downstreamandtheupstreamprocedure.Inthedownstreamprocedure, themostdownstreamplayerisassumedtobargaintwice(regardlessheistheplayerwho suffersfromscarcity). Inthefirstroundofnegotiation5,ifj <k <i,theniandk bargainover(xkik).Inthesecondround,ibargainswithjover(xjij).Still,thereis nonegotiationbetweenjandk.Intheupstreamprocedure,the mostupstreamplayer bargainswiththetwootherplayersintwodifferentrounds.Ifj<k<i,thenjbargains withkover(xj(xk),τik)inthefirstroundandwithiinthesecondroundover(xjij).

Thesolutionsarefoundusingbackwardinductioninbothcases.Inbothprocedures,the secondroundofnegotiationsrunsknowingthatanagreementhasbeenreachinthefirst stage.Thenegotiationsremainbilateral. Wealsoassumethatthediscountfactorforthe intra-negotiationsisidenticalinthetworounds. Wesettheinter-negotiationsdiscount factortounity. Howeverasweconsiderresultsinthelimitcasewhenthedelaybetween negotiationroundsvanishes,thisassumptionisnotrestrictive.

5Itiscrucialtodistinguishtheintra-negotiationsbetweentwoplayers(sequencesofbilateraloffers andcounteroffer)andtheinter-negotiations(sequencesofnegotiationsinvolvingdifferentplayers).In eachroundofnegotiations,theproposerbargainswithadifferentplayer.

Askingfor water Inthisfirstsequentialprotocol, weassumethattheplayer who suffersfromscarcity(i)bargainstwiceasaproposer.Inroundtwo,ibargainswithj knowingthatanagreementhasbeenreachedinroundonewithkandthisagreement willbeeffectiveeveninthecaseofadisagreementinthiscurrentround.Thisfirstround agreementreferstotheinsideoptionforagenti.Itdetermineshisimpassepoint.

Proposition6 TheRubinsteinbargainingsolutionshowsthatwhenibargainswithkin round1andwithjinround2,

1. Waterextractions(xj,xk)aresolutionof:

Bj(xj) = Bi(xi)

Bk(xk) = Bi(xi)+δj(1−δi)

(1−δjδi)Bixdi −Bi(xi) withxdi=E−xncj −xk

2. Equilibriumpayoffsaftertransfersare:

πj = BjncjΠ −(1−ψk−ψi) Bid−Bnci −(Bknc−Bk) πk = BknckΠ +ψk Bid−Bnci −(Bknc−Bk)

πi = Binc+(1−µj−µk)Π+ψi Bid−Binc −(Bnck −Bk)

withΠ =Bi−Binc+Bj−Bjnc+Bk−Bknc>0,istheadditionalsurplusgenerated thedownstreamprocedure,Bid= Bi(xdi)andthecoefficientsµj=δ(1−δj(1−δjδii))k=

δk(1−δi)(1−δj)

(1−δkδi)(1−δjδi)k=(1−δδjδjkδi(1−δ)(1−δi)2kδi)andψi=(1−δδj(1−δkδij)(1−δ)(1−δjiδ)i). Proof. seeproof1.4.6.

Waterextractionsgivenbyproposition6donot maximizesocial welfare(xi= xci

∀i).Itimpliesthatthenetsurplusislowerinthesequentialcasethaninthecooperative case.Theintuitionforthisinefficiencycomesfromthefactthatanalternativebargaining protocoldoesnotonlymodifiesthedistributionofthenetsurplus,butalsothenetsurplus itself.Indeed,agentsarebargainingovertransfersandwaterextractions,thustheseizeof

thenetsurplusisalsodeterminedbythenegotiations.Theoptimalityconditionssuggest thattheplayerjextractsanintermediarylevelofwaterbetweenthecooperativesolution andthenoncooperativesolution:xncj >xj>xcj. Theintermediaryplayerreachedhis lowestlevelforthisprotocol:xk<xck<xnck whilethenegotiationsalloweditogethis highestlevelofextractionsxi>xci>xnci.

Inthefirstround,ibargainedalow waterextractionlevelorequivalentlyahigh reductionwithrespecttohisinitialsituationwiththeplayerk.Theabatement(xnck −xk) issufficientlyhigh,theassociatedtransferishigh. Evencostly,thisoutcomeisworthy fortheplayeri.Indeed,anagreementwiththeintermediaryplayerhelpssecuringhis position whenitcomestoenterabargainingprocess withthe mostupstreamplayer. Astrengthenedposition(alternatively,ahigherimpassepoint), wouldleadto milder consequencesifadisagreementwith1hadtooccur.

Basedonthisagreement,inegotiatesinthesecondroundwithkoveralowerreduction effortandalowertransfer. Thereisnot muchlefttobebargainedsince mostofthe exchangegainshavebeengeneratedinthefirstroundbetweentheplayerskandi.

Eventually,bothkandiarebetteroffattheexpenseofj,whichisonlyinvolvedin thesecondroundofthenegotiation.Intermsofpayoffseachagentgetsashareofthe createdsurplusbutevenifjgetsahighershare(1/2inthelimitδ→ 1and1/4fork andi),hispayoffisreducedbyanamount measuredbythepositivetermintobrackets

Bid−Binc > (Bknc−Bk). Thislossofpayoffforjisagainforkandi. Sincethe problemissymmetric,afirstroundbetweeniandj(insteadofk)wouldimplytheterm Bid−Binc > Bncj −Bj. Therelativeimportanceofthesetermscanbeusedbyito decidewhethertobargainfirstwithjorwithk,showingthattheorderofthepartners inthesequentialprocessbecomesastrategicvariable. Thefirstprotocolexhibitsthat beinginvolvedinthefirstroundofnegotiationisauspicious.

SettingN ={j,k,i},Proposition6referstothedownstream-sequentialprotocolunder ATS.Inthisprotocol;i=3suffersfromscarcityandbargainsw ith2and1overanabate-mentin x1x2inexchangefor monetarytransfers. WereferthisgametoΓdownATS(j,k,i).

SettingN ={i,k,j}Proposition6referstotheupstream-sequentialprotocolunder UTI.Inthisprotocol; i=1suffersfromscarcityandbargains with2and3overan abatementinx2x3inexchangeformonetarytransfers. WereferthisgametoΓupUTI(i,k,j).

Thesetwogamesareidenticalforapermutationofplayersifplayersarehomogeneous whileΠ differsinthesetwogamesotherwise.

Askingforatransfer Alternatively,weproposetheobverseofthepreviousprotocol. Inthesecondprotocol,theplayerwhoownspropertyrightsovertheestate(1underATS and3underUTI)bargainstwiceasaproposer.Inroundtwojbargainswithiknowing thatanagreementhasbeenreachedinthefirstroundwithk.

Proposition7 TheRubinsteinbargainingsolutionshowsthatwhenjbargainswithkin round1andwithiinround2

1. Waterextractions(xi,xj)aresolutionof

Bj(xj) = Bi(xi) xk = xnck

2. Equilibriumpayoffsaftertransfersare

πj = BjncjΠ πk = BknckΠ

πi = Binc+(1−µj−µk

withΠ =Bi−Binc+Bj−Bjnc>0istheadditionalsurp lusfromtheupstreambar-gainingprotocolcomparedtothenoncooperativeoutcome.µi=(1−δ(1−δkδki)(1−δ)(1−δjiδ)j)and µk=(1−δδ2(1−δkδii)(1−δ)(1−δijδ)j)thesharingparameters.

Proof. seeproof1.4.7.

Thesecondprotocolalsoimpliesthatwaterextractionsarenotsocialwelfare max i-mizing. Theplayerkbehavesconsonantlytothenon-cooperativecase,indeed:xk=xnck.

Itturnsoutthatxi<xciandxj<xcj. Analogouslytothecaseofaskingforwater,each agentgetsitsimpassepointandanadditionalshareofthenetsurplus.Incontrasttothe previousprotocol,itturnsoutthatbeinginvolvedinthesecondroundisnowopportune. Thereasonisthattheimpassepointofjinthesecondroundweakenshisrelativepos i-tioninregardstoplayeri.Intheeventofaperpetualdisagreementwithi,agentjwill consumexncj,butwillbearthecostofthetransfertok(τjk>0). Forthatreason,jis urgedtosignanagreementwithioveralowlevelofwaterextraction(xcj>xj)orahigh reduction(xncj −xj),implyingahighvalue Bncj −Bj ,whichincreasesthetransferτij

paidbyjanddecreasesthetransferτjk.

Inthelimitδ→ 1,agentsjandkgetthesameshareofthecreatedsurplusπj−Bjnc= πk−Bknc=14Π ,andiisbetteroffπi=Binc+12Π . Askingforatransferfavorstheagent whosuffersfromscarcityandensuresanequaltreatmentfortheremainingagentssince jandkgetanidenticalshareofthecreatedsurplus.

SettingN ={j,k,i},Proposition7referstotheupstream-sequentialprotocolunder ATS.Inthisprotocol; j=1bargainswith2and3overanabatementin x1andx2in exchangefor monetarytransfers. WereferthisgametoΓupATS(j,k,i).

SettingN ={i,k,j}Proposition7referstothedownstream-sequentialprotocolunder UTI.Inthisprotocol; i=1suffersfromscarcityand j=3bargains with1and2 overanabatementinx2x3inexchangefor monetarytransfers. Wereferthisgameto ΓdownUTI (i,k,j).Onceagain,ifplayersarehomogeneous,Π isidenticalinbothgamesand ΓupATS(j,k,i)=ΓdownUTI (i,k,j).

Inordertocomparetheupstream-sequentialandthedownstream-sequentialprotocol, weprovidedanexamplehereafter.

1 .3 .4 Examp le

Letusillustratetheoutcomesofthedifferentbargainingprotocolsdiscussedabovewith anexample. AssumethefollowingbenefitfunctionasinAmbecandSprumont(2000)

Bi=axi−bi

2x2i

Inthenoncooperativecase,theoptimalityconditionBi=0impliesxnci =a/bi.

Playersarerankedsuchthatx2= λx1andx3= λ2x1with λ >0. Forλ <1, x1>x2>x3andforλ>1,x1<x2<x3.Itimpliesλb2=b1andλ2b3=b1.Playersare homogeneousforλ=1.

Toensurenegotiations weset(1+λ+λ2)x1> E (scarcityconstraint)andE >

(1+λ)x1underATS.Thefirstplayercanextractxnc1 =x1.Theresultsaregiveninthe Table1.2withrespectto: Π=b1((1+λ+λ2)xnc1 −E)2>0and

SIM(sim−ats) Downstream(D−ats) Upstream(U−ats)

x1 1

Table1.2:SolutionsunderATS

ItcanbeshowthatintermsofwaterextractionthatxD−ats1 >xsim−ats1 >xU−ats1 , xU−ats2 >xsim−ats2 >xD−ats2 andxD−ats3 >xsim−ats3 >xU−ats3 andintermsofpayoffs π1sim−ats1U−atsD−ats12D−atssim−ats2U−ats2 andπ3U−ats3D−atssim−ats3 . Thisexampleshowsthatthe mostupstreamagentprefersthesimultaneousnegotiation whilethe mostdownstreamagentpreferstheupstream-sequentialnegotiationandthe

Protocol

SIM(sim−uti) Downstream(D−uti) Upstream(U−uti)

x1 1 Table1.3:SolutionsunderUTI

middleagentthedownstream-sequentialnegotiation.

UnderUTI,weset λ12+λ1+1 x3>E (scarcityconstraint)andE> 1λ+1 x3,the lastplayercanextractxnc3 =x3. TheresultsaregiveninTable1.3.

Wecannotethatthereisarelationbetweentheadditionalgeneratedsurplusunder ATSand UTI,indeed, λ3Ssim−ats= Ssim−utiarerespectivelythegeneratedsurplusin bothcases. Onceagain,theadditionalsurplusisidenticalinthepresenceofhomogeneous players.Ifnegotiationsaresimultaneous,theATSproceduregeneratesagreatersurplus forλ>1.Inotherwords,enforcingtheATSprinciplebringsagreatersurplusifextraction costsincreasesastherivergoesdownstream.ThismakessenseastheATSprincipletends tofavortheplayersupstream. Conversely,ifextractioncostsdecreaseastherivergoes downstream,thenΠsimUTIsimATSsinceλ<1.

Itcanbeshowthatintermsof waterextractionthatxU−uti1 >xD−uti1 >xsim−uti1 , xD−uti2 >xsim−uti2 >xU−uti2 ,xU−uti3 >xD−uti3 >xsim−uti3 .Intermsofpayoffs,thereisan identicalorderingforthethethreeplayersπsim−utiD−utiU−uti.

Dans le document The DART-Europe E-theses Portal (Page 37-47)