• Aucun résultat trouvé

I Tensori dell'Elasticità nei Nematici

N/A
N/A
Protected

Academic year: 2021

Partager "I Tensori dell'Elasticità nei Nematici"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-01347348

https://hal.archives-ouvertes.fr/hal-01347348

Preprint submitted on 20 Jul 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

I Tensori dell’Elasticità nei Nematici

Amelia Carolina Sparavigna

To cite this version:

(2)

I Tensori dell’Elasticità nei Nematici

Amelia Carolina Sparavigna Politecnico di Torino

L’articolo discute il contributo all’energia libera della deformazione di un cristallo liquido nematico, ottenuto mediante dei tensori rappresentati con le componenti del direttore, che è il vettore unitario che indica la direzione media locale di allineamento delle molecole, e con i simboli di Kronecker e Levi-Civita. In particolare, si discute anche l’elasticità del secondo ordine e il suo contributo in fenomeni di soglia.

The paper is discussing the contribution to the free energy of the elastic distortion of a nematic liquid crystal, given by means of tensors represented by the components of the director, the unit vector indicating the local average alignment of the molecules, and by the Kronecker and Levi-Civita symbols. In particular, it also discussed the elasticity of the second order and its contribution in threshold phenomena.

Introduzione Le formule di Oseen – Frank, che forniscono la densità di energia libera nei cristalli liquidi nematici [1,2], rappresentano la parte di energia che proveniente dalla deformazione elastica del materiale. Nell’espressione di Oseen-Frank, i termini della deformazione di volume sono moltiplicati da tre costanti elastiche, dette di splay K11, twist K22 e bend K33. Successivamente,

Nehring e Saupe considerarono anche due costanti elastiche di superficie, le cosiddette “mixed splay-bend” K13 e la “saddle-splay” K24 [3]. I termini con K13, K24 sono equivalenti ad un contributo di

superficie all’energia del cristallo liquido, essendo detti termini contenti una divergenza. Questi contributi all’energia di superfici, sono dei termini fondamentali nelle celle soggette ad ancoraggio debole [4-6].

Le costanti elastiche di cui abbiamo parlato sono delle costanti che moltiplicano dei termini formati dal direttore, il vettore unitario che indica la direzione media locale di allineamento delle molecole, e dalle sue derivate, in forma di rotori e divergenze. In questo articolo discutiamo come i termini della densità di energia libera nei nematici possano essere descritti da tensori e come questi tensori possano essere costruiti col direttore e coi simboli di Kronecker e Levi-Civita. Nell’articolo saranno discussi anche termini del secondo ordine ed il loro ruolo nei fenomeni di soglia [7,8].

(3)

viene ad essere così caratterizzata da un certo ordine d’orientazione, che nella fase isotropa non esiste. Per descrivere la fase nematica, viene utilizzato un parametro d’ordine tensoriale, dato da:

=

i j ij ij

Q

T

n

n

Q

δ

3

1

)

(

(1)

In (1), i e j indicano le componenti cartesiane. Lo scalare Q dipende dalla temperatura ed è nullo nella fase isotropa. In generale, il tensore Qij varia da punto a punto nel materiale, dove il punto è descritto dal vettore posizione r, che nell’approccio macroscopico del continuo è vettore che non guarda alla struttura della scala molecolare.

Se il parametro d’ordine dipende dalla posizione r, allora dobbiamo assumere una descrizione come segue:       = i j ij ij Q T n n Q

δ

3 1 ) ( ) ( ) ( ) (r r r (2)

Sempre nell’approccio del continuo, la deformazione del mezzo viene descritta da tre tipi fondamentali di deformazioni [9]. Esse sono lo splay, twist e bend. Nello splay si ha che div n ≠ 0,. Nel bend si ha che rot n è perpendicolare a n. Infine nella deformazione di twist rot n è parallelo ad n.

Oseen e Frank hanno dimostrato che la densità di energia libera di distorsione al secondo ordine in n è descrivibile con queste tre deformazioni:

(

)

(

)

(

)

[

]

(

)

(

)

(

)

[

2

]

3 2 2 2 1 2 3 2 2 2 1

2

1

2

1

n

n

n

n

n

n

n

n

n

n

×

×

+

×

+

=

×

+

+

=

K

K

K

rot

K

rot

K

div

K

f

d (3)

dove K1 è la costante elastica di splay, K2 quella di twist e K3 quella di bend. Siccome è possibile

generare deformazioni di puro splay, di puro twist o di puro bend, ciascuna delle costanti elastiche deve essere positiva. Se così non fosse, la configurazione nematica non distorta non corrisponderebbe a quella ad energia minima.

(4)

lunghezza. Quindi [Energia/L] = [K]. Notiamo che n è una grandezza priva di dimensioni. K è dell’ordine di U/a, dove con U si intende l’energia tipica di interazione tra le molecole (U ~ 2 Kcal/mole) ed a la dimensione molecolare (a ~ 14 Ǻ), si ha che [10]:

dyne

cm

erg

K

7 6 13

10

10

4

.

1

10

4

.

1

− − −

=

×

×

(4)

Per il cristallo liquido PAA a 120°C, si ha K1 = 0.7 10─6 dyne, K2 = 0.43 10─6 dyne, K3 = 1.7 10─6 dyne [10]. Ponendo K1 = K2 = K3 = K, approssimazione a una costante elastica, si ottiene:

(

) (

)

[

2 2

]

2

1

n

n

rot

div

K

F

d

=

+

(5)

Per determinare il contributo all’energia libera dovuto alla deformazione, Oseen e Frank si sono mossi col seguente approccio [9]. Posizioniamo l’asse z lungo il direttore n, l’asse x sia perpendicolare al direttore e l’asse y perpendicolare a x e z, orientati secondo la regola della mano destra. Si possono distinguere sei tipi di distorsione elementare collegati alla deviazione del direttore. Le deformazioni di splay, bend e twist sono descritte da Frank con le sei seguenti derivate:

4 2 6 3 1 5

/

;

/

/

;

/

/

;

/

a

x

n

a

y

n

a

z

n

a

z

n

a

x

n

a

y

n

y x y x x y

=

=

=

=

=

=

(6)

Per piccole deformazioni, si ha allora:

z

a

y

a

x

a

n

z

a

y

a

x

a

n

n

y x z 6 5 4 3 2 1

1

+

+

+

+

(7)

(5)

6

...,

,

2

,

1

,

;

2

1

=

=

+

=

j

i

K

K

a

a

K

a

K

g

ji ij j i ij i i (8)

Nell’equazione (8) vengono inclusi nell’espressione generale sei parametri di elasticità Ki e 36 parametri Kij. In ogni modo, considerando la simmetria del sistema questi numeri si riducono. Per esempio, la simmetria cilindrica dei cristalli liquidi nematici, comporta la simmetria cilindrica e l’invarianza per la rotazione attorno all’asse z. Così l’energia non deve variare durante tale rotazione. Quindi, con x’= y, y’ = –x, z’ = z si devono avere solo due coefficienti indipendenti Ki (K1, K2) e

cinque coefficienti indipendenti di tipo Kij (K11 ,K22 , K33, K 24, K 12 ).

Si può poi imporre la condizione n = –n, che dice che il verso del direttore non è influente nelle caratteristiche del mezzo. In questo caso occorre che la trasformazione di coordinate z’ = –z, y’ = –y, x’ = –x, non cambino le deformazioni nella struttura tridimensionale. Così K1 e K13 sono nulli. Se poi

valutiamo la simmetria speculare, eseguendo le trasformazioni date da x’ = x, y’ = –y, z’ = z, vediamo che i coefficienti K2 e K12 sono nulli.

In questo modo, nella densità di energia elastica dei cristalli liquidi nematici rimangono quattro coefficienti: K11 , K22 , K33 e K24 . Ma il coefficiente K24 non deve essere incluso nell’energia di

volume perché è dovuto alla superficie del cristallo liquido [4]. Di conseguenza, l’equazione di Frank per la densità dell’energia elastica, espressa tramite le deformazioni elementari, diventa semplicemente [9]:

[

2

]

6 3 33 2 4 2 22 2 5 1 11

(

)

(

)

(

)

2

1

a

a

K

a

a

K

a

a

K

g

=

+

+

+

+

(9)

che possiamo anche scrivere con rotori e divergenze come:

[

2

]

33 2 22 2 11

(

)

(

)

(

)

2

1

n

n

n

n

n

K

rot

K

rot

div

K

g

=

+

+

×

(10)

Si noti che per i cristalli liquidi colesterici K2 ≠0. Un termine proporzionale alla deformazione

n

n rot

K

2

, deve essere aggiunto al secondo termine nell’equazione (10). Così, invece di

2 22

(

n rot

n

)

(6)

[

2

]

33 2 22 2 22 2 11

(

)

(

)

(

)

2

1

n

n

n

n

n

K

rot

K

K

K

rot

div

K

g

=

+

+

+

×

(10’)

Infatti, risolvendo il quadrato, il termine (K2 /K22)2 non gioca un ruolo significativo, visto che non

dipende dalla deformazione. Il rapporto q0 = K2 /K22 è il vettore d’onda dell’elica colesterica con

passo P0 =2π/q0. Quando si ha K2 ≠0, lo stato di equilibrio dei cristalli liquidi colesterici è quello

che mostra spontaneamente una deformazione con twist.

Densità dell’energia elastica in termini di ni,j = ∂ni / ∂xj Seguendo la traccia del discorso di Oseen e Frank, proviamo ad essere più generali. Se il direttore n non dipende dalla posizione, il cristallo liquido non risulta distorto e la sua densità di energia elastica è supposta essere uguale ad certa quantità f0, che è quindi una quantità che resta invariata se il cristallo liquido è soggetto ad una deformazione.

Se n = n(r), il nematico è soggetto a distorsione. Sia f la densità di energia elastica che si viene a creare. Abbiamo che le derivate

n

i,j

=∂n

i

/∂x

j sono diverse da zero. Supponiamo che le derivate prime di n siano sufficienti a descrivere lo stato distorto e quindi:

)

(

n

i, j

f

f =

(11)

Se le derivate di n sono piccole, è possibile espandere f in serie di potenze di

n

i,j, e quindi aver lo sviluppo seguente: l k j i ijkl j i ij o

E

n

K

n

n

f

f

, , ,

2

1

+

+

=

(12)

Le componenti dei tensori E e K sono date dalle derivate

o l k j i ijkl o j i j i n n f K n f E        ∂ ∂ ∂ =         ∂ ∂ = , , 2 , ; . Il

pedice indica che le derivate sono calcolate rispetto allo stato non distorto, che sarebbe anche quello con l’energia minima. Nell’espressione (12) abbiamo usato la convenzione di Einstein che indici

ripetuti sono indici sommati. Ad esempio,

=

(7)

Proviamo a scrivere i tensori

E

e

K,

come delle combinazioni di n, della delta di Kronecker

δ

ij, e del simbolo di Levi-Civita

ε

ijk

.

Siccome per il nematico n e -n sono equivalenti, ogni termine dell’equazione (2) deve essere pari in n. Ricordiamo che per quanto riguarda la delta di Kronecker è

1 =

ij

δ , se i=j. Invece δij =0se i≠j. Mentre per il simbolo di Levi-Civita valeεijk =1 se i,j,k sono in permutazione ciclica. εijk =−1 se i,j,k sono in permutazione anticiclica. Infineεijk =0 negli altri casi. Si ricordi inoltre che il prodotto esterno di due vettori può essere scritto come a×bkijaibjek, dove ek rappresenta un vettore unitario della terna del riferimento cartesiano.

Per quanto riguarda il rotore del direttore, esso si scrive come:

k j i kij

n

rot

n

=

ε

,

e

(13)

Consideriamo il tensore

E.

Come detto in precedenza, tentiamo di rappresentare le sue componenti come: kij k ij j i j i

E

n

n

E

E

n

E

=

1

+

2

δ

+

3

ε

(14)

Però E1 = E2 = 0, dal momento che il nematico non è polare.

Di conseguenza, i termini lineari nelle derivate prime possono essere scritti come:

n

n rot

E

n

n

E

n

E

ij i,j

=

3 k

ε

kij i,j

=

(15) Questo termine è uno pseudoscalare che è l’helicity del nematico [11,12]. Dal momento che l’energia è un vero scalare,

n

rot

n

compare al quadrato oppure se il cristallo liquido è colesterico. Come già detto, il materiale presenta allora una deformazione spontanea anche nello stato di energia minima.

Per il tensore K si ha

K

ijkl

=K

klij, che compare nel contributoKijklni,jnk,l, possiamo scrivere:

(8)

Siccome

n

i

n

i = 1, si può verificare che solo alcuni termini sopravvivono e sono i seguenti:

(

)

2 * 3 , , * 3 , , * 3n n n n K n nn n K n rotn K j l

δ

ik ij kl = j l ij il = × (16*)

(

)

2 5 , , 5 n n K divn K

δ

ij

δ

kl i j kl = (16**) l j j l l k l k l k j i jk il l k j i jl ik n n K n n K n n K n n K6δ δ , , + 7δ δ , , = 6 , , + 7 , , (16***)

Dimostriamo la prima di queste tre relazioni, la (16*). Usando il tensore di Levi-Civita per esprimere il prodotto vettoriale ed il rotore si ha:

(

n

×

rot

n

)

k

=

ε

kij

n

i

ε

jlm

n

l,m

In questa espressione l’indice j è sommato. Vale quindi la seguente relazione:

il km im kl jlm kij

ε

δ

δ

δ

δ

ε

=

. Quindi:

(

rot

)

k

n

i

n

k,i

n

i

n

i,k

n

i

n

k,i k

(

n

i

n

i

)

n

i

n

k,i

2

1

=

=

=

×

n

n

Si è usato il fatto che il direttore ha modulo costante pari a uno e quindi la sua derivata è nulla. Le espressioni (16**) e (16***) contengono il fattore 2nini,j =∂j(nini)=0. Tutti i termini, che ora riscriviamo, sono nulli e quindi la loro somma è nulla:

0

, , * 4 , , 4 , , 3 , , * 2 , , 2 , , 1 , , * 4 , , 4 , , 3 , , * 2 , , 2 , , 1

=

+

+

+

+

+

=

+

+

+

+

+

l k i l k j l j j i l i j k j i k i l k i i l k k k j i j i l k j i l k j i l k j i il k j l k j i jk l i l k j i jl k i l k j i ij l k l k j i kl j i l k j i l k j i

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

K

n

n

n

n

n

n

K

δ

δ

δ

δ

δ

Gli unici contributi all’energia elastica diversi da zero sono quindi:

(9)

2 2 , , , , n n n (n rotn) (n rotn) nk j k j = k j jk + ⋅ + × (18) ) ( ) ( 2 ,

, n divn div ndivn n rotn

nk j jk = − + × (19)

In definitiva i contributi sono i seguenti:

) ( ) ( ) )( ( ) ( ) )( ( 7 6 2 6 * 3 2 6 2 7 6 5 n n n n n n n n n rot div div K K rot K K rot K div K K K × + + − × + + ⋅ + + + (20)

Se però cambiamo solo il nome ai coefficienti, ci accorgiamo che questa è l’espressione dell’energia libera di Oseen – Frank, col termine di saddle-splay:

) ( ) ( ) ( 2 1 ) ( 2 1 ) ( 2 1 24 22 2 33 2 22 2 11 n n n n n n n n n rot div div K K rot K rot K div K fFrank × + + − × + ⋅ + = (21)

Come abbiamo già detto, K11, K22, K33 e K24 sono conosciute come costanti elastiche rispettivamente

di splay, twist, bend, e saddle-splay. L’ultimo termine nella (21), tenendo presente il teorema di Gauss, è in realtà un contributo di superficie. Quindi la densità di energia elastica del volume dipende solamente da tre costanti elastiche.

In verità, si dovrebbe anche tener presente l’helicity e quindi la densità di energia elastica viene data dalla seguente espressione:

)

(

)

(

)

(

2

1

)

(

2

1

)

(

2

1

24 22 2 33 2 22 2 11

n

n

n

n

n

n

n

n

n

n

n

rot

div

div

K

K

rot

K

rot

K

div

K

rot

E

f

f

o

×

+

+

×

+

+

+

=

(22)

Nel caso in cui non ci sono splay e bend ma solo twist, l’equazione (22) è minimizzata da:

(10)

Questo significa che se c’è helicity (E ≠ 0), lo stato di energia minima è quello distorto. Come abbiamo sottolineato prima, questi cristalli liquidi sono chiamati colesterici. D’ora in avanti, assumeremo il materiale come nematico, e quindi con E = 0.

L’analisi di Nerhing a Saupe Sia n il direttore, e siano

n

i,j

, n

i,jk le sue derivate prime e seconde. La densità di energia libera f = f

(

ni,j,ni,jk

)

si può sviluppare in serie di potenze di

n

i,j e

n

i,jk fino al secondo ordine e ottenere:

m l k j i m l k j i n m l k j i n m l k j i k j i k j i l k j i l k j i

n

n

L

n

M

n

n

N

n

n

K

f

f

=

0

+

, ,

+

,

+

, ,

+

, , (24)

Per via della derivazione ci sono delle simmetrie, per cui, ad esempio:

j k i k j i

L

L

=

(25)

Come fatto in precedenza, potrebbero scomporre i tensori L, M e N, in termini di n,

δ

ij ed

ε

ijk

.

Consideriamo L e troviamo il suo contributo all’energia. Considerando la parità in n, i termini diversi da zero sono i seguenti:

(

j ik k ij

)

k j i k j i k j i

L

n

n

n

L

n

L

n

n

L

=

1

+

2

δ

+

3

δ

+

δ

Quindi: k j j k j k k j j j i i k j i k j i k j i k j i

n

L

n

n

n

n

L

n

n

L

n

n

L

n

n

L

,

=

1 ,

+

2 ,

+

3 ,

+

3 , (26)

Ricordiamo che, sempre perché

n

i

n

i = 1, si ha:

(11)

Se usiamo queste proprietà, il primo termine della (26) diventa

n

i

n

j

n

k

n

i,jk

=

(

n

k

n

i,k

)

2. Il secondo termine diventa

n

i

n

i,jj

=

n

i,j

n

i,j, Infine il terzo termine è equivalente a:

(

)

2 , , , , , ,ji

(

i j j

)

i ii j j

(

j j

)

j i

n

n

n

n

n

div

div

n

n

=

=

n

n

Allora l’equazione (26) si può riscrivere così:

[

L

n

n

L

n

L

n

]

L

div

(

n div

n

)

n

L

ijk i,jk

=

1

(

k i,j

)

2

+

2

(

i,j

)

2

+

2

3

(

j,j

)

2

+

2

3 (28)

I termini nella parentesi tonda li abbiamo già incontrati nella discussione del tensore K, e quindi vanno a rinormalizzare il corrispondenti termini dell’energia. C’è però un nuovo termine, di tipo superficie, come quello che ha costante elastica K24. Questo termine è scritto con la costante elastica K13 detta costante elastica di splay-bend [13,14].

Se si suppongono M = 0 e N = 0 , l’equazione (24) diventa:

l k j i l k j i k j i k j i

n

K

n

n

L

f

f

=

0

+

,

+

, , (29)

E quindi sarebbe come scrivere (dopo la rinormalizzazione delle costanti):

(

)

(

)

(

)

[

]

(

)

(

n

n

n

n

)

(

n

n

)

n

n

n

n

n

div

div

K

rot

div

div

K

K

rot

K

rot

K

div

K

f

f

NS 13 24 22 2 33 2 22 2 11 0

2

1

+

×

+

+

+

×

+

+

+

=

(30)

Questa è la densità di energia libera di Nehring-Saupe [3].

Ci possiamo però chiedere che cosa succede se si considerano i termini M ed N diversi da zero. Questo richiede un’analisi del secondo ordine.

Analisi del secondo ordine La densità dell’energia libera dei nematici fu scritta da Nerhing e Saupe, con il termine K13 è nata dall’analisi dei tensori K ed L. Però ci sono degli altri termini che non

(12)

(

ni j ni jk

)

f

f = , , ,

E questo in effetti lo abbiamo già cominciato a fare nel precedente paragrafo.

Ora consideriamo una variazione virtuale della densità di energia libera prossima a una configurazione di equilibrio, descritta considerando la dipendenza dalla variazione di f (che indichiamo con δf ), fino alle variazioni virtuali delle derivate di secondo ordine:

ijk ij i j ijk ijk jk i j i j i n n n n f n n f f , , , , , ,

δ

µ

δ

λ

δ

δ

δ

δ

δ

δ

δ

= + = + (31)

Diciamo quindi che la variazione della funzione f dipenda dalla variazione delle derivate prime e delle derivate seconde di n. Con una teoria lineare dell’elasticità, nell’equazione (31) si prendono solo le derivate di primo ordine, trascurando i termini di ordine maggiore. Cerchiamo ora di tenere anche i termini di secondo grado, trascurando quelli di ordine maggiore di due. In questo modo, i tensori λ, µ si devono espandere in funzione dei termini delle sorgenti di deformazione, tenendo conto soltanto delle cause di deformazione reali

n

i,j e

n

i,jk.

Da cui ne derivano gli sviluppi dei coefficienti delle variazioni di f:

+

+

+

=

+

+

+

+

+

+

=

q p m l q p m l k j i p m l p m l k j i m l m l k j i k j i k j i r q p m l k r q p m l k j i q p m l k q p m l k j i p m l k p m l k j i m l k m l k j i l k l k j i j i j i

n

n

O

n

N

n

M

n

n

n

E

n

n

D

n

n

C

n

B

n

A

, , , , 0 , , , , , , , , , 0

µ

µ

λ

λ

(32)

dove λ°, µ° sono tensori dipendenti solo dalle componenti del direttore

n

i e indipendenti da

n

i,j e

n

i,jk

,

così come i tensori A, B, C, D, E, M, N ed O.

Sostituendo l’equazione (32) nella (31), possiamo vedere che solo il termine λ° è di primo ordine nell’espressione della densità di energia libera di distorsione, mentre si ha che A, µ° sono dati da termini di secondo ordine, B, C, M da termini di terzo ordine, e D, E, O da termini di quarto ordine. Ci si potrebbe chiedere perché non considerare nella equazione (32) un termine come

F

ijklmp

n

k,lmp, che è in realtà dello stesso ordine dei termini dipendenti da D e E. Il criterio che si può seguire è che

(13)

Considerando le proprietà generali delle derivate miste di funzioni continue si ha: j i lm k lm k j i

n

n

f

n

n

f

, , 2 , , 2

=

(33)

che portano a una forma differenziale esatta, e quindi [7]:

klmijpq ijklmpq

klmij

ijklm

M

D

O

B

=

;

=

(33’)

Inoltre, dalle operazioni di simmetria si ha che [7]:

=

=

=

=

=

=

=

=

=

mpklijqr qrklmpij ijklqrmp ijmklqr klijmpqr ijklmpqr pqklmij ijklmpq klijmp ijmpkl ijklmp klij ijkl

E

E

E

E

E

E

D

D

C

C

C

A

A

(34)

Sostituendo la (32) nell’equazione (31) secondo le relazioni (33’) e le proprietà di simmetria (34), e in seguito integrando la densità di energia libera di distorsione si ottiene:

mp l jk i ijklmp r q p m l k j i ijklmpqr q p lm k j i ijklmpq p m l k j i ijklmp lm k j i ijklm l k j i ijkl jk i ijk j i ij

n

n

N

n

n

n

n

E

n

n

n

D

n

n

n

C

n

n

B

n

n

A

n

n

f

, , , , , , , , , , , , , , , , , 0 , 0

2

1

4

1

2

1

3

1

2

1

+

+

+

+

+

+

+

=

λ

µ

(35)

I comuni nematici non sono né polari né chirali: così nell’equazione (35) il coefficiente elastico dei tensori concernenti i termini di volume dispari o nel direttore o nella helicity n rotn, diventano nulli. Perciò per i comuni nematici, le ragioni della simmetria determinano l’azzeramento dei seguenti tensori λ°, B e C.

(14)

mp l jk i ijklmp r q p m l k j i ijklmpqr q p lm k j i ijklmpq l k j i ijkl jk i ijk

n

n

N

n

n

n

n

E

n

n

n

D

n

n

A

n

f

, , , , , , , , , , , , 0

2

1

4

1

2

1

2

1

+

+

+

+

=

µ

(35’)

L’espressione più generale dei tensori nell’equazione (35’), si ottiene con uno sviluppo completa in termini di (

n

i

, δ

ij

, ε

ijk). Dall’espressione tensoriale si ottengono le seguenti relazioni in forma covariante, ossia con divergenza e rotore:

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

n

n

)

(

n

n

n

n

)

n

n

n

n

n

n

n

n

n

n

n

n

n

n

rot

div

div

div

div

rot

rot

div

f

rot

div

div

A

rot

A

rot

A

div

A

f

A

×

+

+

×

+

+

=

×

+

+

×

+

+

=

2 4 2 3 2 2 2 1 4 2 3 2 2 2 1

µ

µ

µ

µ

µ

µ (36)

Se si considerasse solo

n

i,j come fonte di deformazione, l’equazione (35’) si dovrebbe scrivere con il precedente criterio, nel modo seguente:

l k j i ijkl j i ij

n

A

n

n

f

0 , , ,

2

1

+

=

λ

(36’)

In questo caso non ci sarebbe il K13, in accordo con la teoria elastica di Oseen-Frank. In effetti, K13

non nasce nel contesto della teoria elastica del primo ordine come discussa in precedenza.

Quindi, se consideriamo K13, ed anche K24, ci possiamo chiedere quali altri termini dobbiamo

prendere per avere una espressione di f coerente con l’approccio ora descritto. Se consideriamo i termini nella (36), possiamo vedere che gli effetti splay, twist e bend insorgono da entrambi i tensori

µ° e A. Abbiamo però anche i termini derivanti dai tensori N, D ed E. Osserviamo che la maggior

parte di essi è nulla per la parità di n e per la pseudoscalarità di (n · rot n).

Si può anche vedere che alcuni termini sono derivati sia da N che da D, oppure sia da D che da E, o dai tre tensori allo stesso tempo.

(15)

kl m ij m l k j i jl k il k j i jk l il k j i lj l ki k j i ij k ll k j i ij l kl k j i kk i jj i ik j jk i jk i jk i kj k ij i ki k jj i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

, , , , , , , , , , , , , , , , , , , , , ,

)

11

)

10

)

9

)

8

)

7

)

6

)

5

)

4

)

3

)

2

)

1

I contributi alla densità di energia libera di distorsione di un cristallo nematico, dovuti al tensore D sono i seguenti (i termini contrassegnati con * sono comuni a N):

*

)

23

*

)

22

)

21

)

20

)

19

*

)

18

*

)

17

*

)

16

*

)

15

)

14

)

13

)

12

)

11

)

10

)

9

)

8

)

7

)

6

)

5

)

4

)

3

)

2

)

1

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , jk m m l i l k j i mj m k l i l k j i jk m l m i l k j i jl m k m i l k j i jk m i m l l k j i ll k i j k j i il k l j ik j i li l k j k j i ll k k j i j i ij l k l k j i li l k k j j i ij l l k k j i il j l k k j i ik l l k j j i ki j l l k j i li l l k k j i ll k j k i j i lk l j k i j i jk l l k i j i kl j l k i j i jl k l k i j i lj l k k i j i ll j k k i j i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Infine, i contributi alla densità di energia libera di distorsione dovuti al tensore E sono (i termini contrassegnati con * sono comuni a D, mentre quelli contrassegnati con ** sono comuni sia a N che a D):

*

*

)

13

*

*

)

20

*

*

)

19

*

)

18

*

)

17

*

)

16

*

)

15

*

)

14

*

)

13

*

*

)

12

*

*

)

11

*

)

10

*

)

9

*

)

8

*

)

7

*

)

6

)

5

)

4

)

3

)

2

)

1

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , l p k p j m i m l k j i j m i m l k l k j i j l i m m k l k j i l m m l i k j k j i m l m l j k i k j i m m l l i k j k j i m l j k i m l k j i j m i l m l k k j i m k j l m l i k j i l k l k j i j i l k l i j k j i l k l k i j j i l k j l i k j i l i l k k j j i l j l k k j i i l k l k j j i i l k j l k j i i i l l k k j j i l l k k i j j i k l l k i j j i l l k k j j i i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

(16)

Invece, secondo la teoria elastica del secondo ordine si devono prendere in considerazione molte costanti elastiche in più. E questo rende il secondo ordine difficile da utilizzare.

In effetti, l’elasticità del secondo ordine può essere studiata in maniera semplice quando è coinvolta nei fenomeni di soglia, ossia quando si ha il passaggio da una configurazione del nematico ad un’altra configurazione. Ricordiamo che la condizione sperimentale più comune per studiare i nematici è quella di creare una cella composta da due vetrini piano paralleli, distanziati di pochi micron, in cui viene inserito per capillarità il nematico. Le due superficie interne della cella possono avere trattamenti uguali o diversi in modo da indurre la voluta configurazione del nematico (planare, omeotropica o ibrida). La cella può essere posta in un termostato con opportune finestre ottiche per l’osservazione al microscopio delle fasi e della configurazione del materiale.

Consideriamo per semplicità una deformazione piana del nematico, quella che per esempio si ottiene in una cella con condizioni opposte (omeotropiche a una delle pareti e planare omogenea all’altra), cioè la cosiddetta cella ibrida (in Inglese, Hybrid Aligned Nematic (HAN) cell). Viene introdotto un sistema di riferimento (x,z) con l’origine alla parete con ancoraggio omeotropico, l’asse x parallelo a tale parete, e l’asse z perpendicolare ad essa.

La Figura 1 mostra come si comportano le molecole nella cella HAN. Esse stanno nel piano xz e sono ancorate parallele alla parete superiore e invece perpendicolari alla parete inferiore. Nella parte intermedia, il direttore forma un angolo diverso da 0 e da 90° con l’asse z.

Figura 1: Configurazione della cella HAN mostrata con ancoraggi forti.

Localmente il direttore n è dato da:

n = i sin(Ө) + k cos(Ө) (37)

(17)

Se noi immaginiamo di diminuire lo spessore d della cella, la configurazione deformata diventa instabile e la cella, se supponiamo che l’ancoraggio planare sia più forte di quello omeotropico, assume la configurazione planare. Oppure, se supponiamo più forte l’ancoraggio omeotropici, la cella assume la configurazione omeotropica. Il passaggio che avviene nella cella HAN quando si riduce lo spessore del cristallo liquido è dalla configurazione distorta a quella planare o omeotropica, come in Figura 2.

Figura 2: Passaggio da configurazione distorta a planare o omeotropica con la diminuzione dello spessore della cella. La figura mostra i due casi.

Al fine di descrivere l’insorgere di un possibile limite per l’instabilità meccanica in una cella HAN, dovuta alla diminuzione dello spessore d della cella, si deve esprimere la densità di energia libera in funzione di Ө. Alla soglia di passaggio da una configurazione all’altra, dobbiamo avere Ө che cambia il suo valore. Il valore dell’angolo varia a seconda del punto della cella considerato. Prendiamo allora come parametro per studiare il problema, angolo massimo che assume il direttore rispetto all’asse z e chiamiamolo Өmax. Se l’ancoraggio planare è forte, l’angolo può essere anche di

90°. In effetti, possiamo pensare che l’angolo sia funzione della z e che quindi sia una funzione del tipo: Ө = Өmax g(z/d).

Ora, prendiamo alcuni dei termini dati sopra e scriviamoli nella forma covariante:

×

=

=

=

=

4 , , , , 2 2 , , , , 2 2 , , 2 , ,

)

(

)

(

)

(

)

(

n

n

n

n

n

n

rot

n

n

n

n

n

n

n

n

n

n

n

n

n

n

div

grad

n

n

p l m l k i j i p m k j l k l k j i j i kk i jj i kj k ij i (38)

(18)

(

)

( )

(

)

(

)

                    Θ Θ = ×       Θ = ∇ ⋅       Θ +       Θ = ∇       Θ Θ + Θ       Θ Θ +       Θ Θ = • • • • • • • • • • • 4 4 4 4 2 2 2 4 2 2 2 2 2 4 2 2 cos sin 2 sin cos n n n n n n rot div grad (39) dove Θ=d /dz.

Immaginiamo che la transizione avvenga dalla configurazione HAN alla configurazione omeotropica. Vicino alla transizione, Өmax0, perciò tutti i contributi di ordine minore rispetto a

Өmax sono derivati dal termine

2      Θ••

nella seconda equazione del sistema (39). Notare che

2      Θ•• è

del secondo ordine rispetto a Өmax , mentre gli altri contributi svaniscono più rapidamente, quando

Өmax tende a zero.

In conclusione il termine addizionale nella densità di energia libera si può semplicemente scrivere come: 2 * 2 2 *

)

(

Θ

n

K

••

K

Secondo la presente teoria elastica generalizzata, solo il termine con K*, la nuova costante elastica di volume di secondo ordine, sopravvive vicino alla soglia di distorsione.

L’equazione della teoria elastica si trasforma, se applicata allo studio dei fenomeni di soglia, in:

{

}

2 2 * 24 22 13 2 33 2 22 2 11

)

(

)

(

)

(

)

(

)

(

)

(

)

(

2

1

n

n

n

n

n

n

n

n

n

n

n

n

+

×

+

+

+

+

×

+

+

=

K

rot

div

div

K

K

div

div

K

rot

K

rot

K

div

K

f

(40)

(19)

[K*] e K* è dell’ordine di U·a. Se U è l’energia tipica di interazione tra le molecole ed a è la dimensione molecolare, si trova:

2 20 20 7 13

10

2

10

2

10

4

.

1

10

4

.

1

*

erg

cm

erg

cm

dyne

cm

K

×

×

×

=

×

Sia la deformazione del tipo Ө = Өmax g(z/d). Sia ς=z/d la variabile adimensionale. Le deformazioni

saranno dell’ordine di:

ςς ς

ς

ς

ς

ς

ς

ς

, max 2 2 2 , max 1 1 1 1 g d d d d d d dz d dz d g d d d d d d dz d dz d Θ ≈       Θ = Θ = Θ Θ ≈ Θ = Θ = Θ = Θ • • • (41)

Definiamo ξ la derivata adimensionale rispetto a ς di g, ossia g,ς, e la curvatura adimensionale κ di questa funzione, curvatura approssimata pari a g,ςς . Si avrà:

κ

ξ

2 max max 1 ; 1 Θ ≈ Θ Θ ≈ Θ• •• d d Quindi: 2 2 max 4 2 2 max 2

*

κ

ξ

+

Θ

Θ

d

K

d

K

f

(42)

Ci possiamo chiedere per quale spessore della cella il termine con K* diventa importante. Questo capita quando i due termini in (42), sono all’incirca uguali:

2 2 2 2 max 4 2 2 max 2 2

*

*

ξ

κ

κ

ξ

K

K

d

d

K

d

K

Θ

Θ

(20)

References

[1] Oseen, C. W. (1933). The theory of liquid crystals. Transactions of the Faraday Society, 29(140), 883-899.

[2] Frank, F. C. (1958). I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday Society, 25, 19-28.

[3] Nehring, J. , & Saupe, A. (1972). J. Chem. Phys. 56, 5527

[4] Sparavigna, A., Lavrentovich, O. D., & Strigazzi, A. (1994). Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals: Threshold analysis. Physical Review E, 49(2), 1344. [5] Sparavigna, A., Komitov, L., Stebler, B., & Strigazzi, A. (1991). Static splay-stripes in a hybrid aligned nematic layer. Molecular Crystals and Liquid Crystals 207(1), 265-280.

[6] Sparavigna, A., Komitov, L., Lavrentovich, O. D., & Strigazzi, A. (1992). Saddle-splay and periodic instability in a hybrid aligned nematic layer subjected to a normal magnetic field. Journal de Physique II, 2(10), 1881-1888.

[7] Barbero, G., Sparavigna, A., & Strigazzi, A. (1990). The structure of the distortion free-energy density in nematics: second-order elasticity and surface terms. Il Nuovo Cimento D, 12(9), 1259-1272.

[8] Sparavigna, A., Komitov, L., & Strigazzi, A. (1991). Hybrid Aligned Nematics and second order elasticity. Physica scripta, 43(2), 210.

[9] Stephen, M. J., & Straley, J. P. (1974). Physics of liquid crystals. Reviews of Modern Physics, 46(4), 617-704.

[10] P. G. de Gennes, J. Prost (1995). The Physics of Liquid Crystals, Clarendon Press.

[11] Sparavigna, A. C. (2012). Distortional Lifshitz vectors and helicity in nematic free energy density. arXiv preprint arXiv:1207.2918.

[12] Sparavigna, A. C. (2013). Distortional Lifshitz Vectors and Helicity in Nematic Free Energy Density, International Journal of Sciences 07(2013):54-59. DOI: 10.18483/ijSci.211

[13] Lavrentovich, O. D., & Pergamenshchik, V. M. (1995). Patterns in thin liquid crystal films and the divergence (“surfacelike”) elasticity. International Journal of Modern Physics B, 9(18n19), 2389-2437.

Références

Documents relatifs

Quando, come tutti gli anni, il principe con tutta la famiglia si reca nella residenza estiva di Donnafugata, trova come nuovo sindaco del paese Calogero Sedara, un borghese

che sono indipendenti e immediatamente risolubili; se ne ot- tiene un fronte d’onda relativo ad onde puramente elastiche (di compressione) e riguardante la

Il comitato di redazione ha ritenuto che il numero totale di spermatozoi per eiaculato fornisca una valutazione più accurata della funzionalità del testicolo rispetto

Fate attenzione a quali sono i lati da considerare, poiché in figure più complesse del rettangolo le cose

pluricellulari  e richiede due genitori , un maschio  e una  femmina.. Entrambi i genitori  producono delle cellule speciali

Il consumo medio può essere ottenuto consumando un bicchiere di acqua a colazione, due bicchieri di acqua a pranzo, due bicchieri di acqua a cena e mezzo litro di acqua

[r]

2) Je relie avec la bonne couleur pour faire la