• Aucun résultat trouvé

Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems

N/A
N/A
Protected

Academic year: 2021

Partager "Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01681523

https://hal.archives-ouvertes.fr/hal-01681523

Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Diversity of fungal assemblages in roots of Ericaceae in

two Mediterranean contrasting ecosystems

Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed

Ouhammou, Robin Duponnois, Mohamed Hafidi

To cite this version:

Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, et al.. Diversity

of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes

Rendus Biologies, Elsevier Masson, 2017, 340 (4), pp.226-237. �10.1016/j.crvi.2017.02.003�.

�hal-01681523�

(2)

See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/315062117

Diversity of fungal assemblages in roots of

Ericaceae in two Mediterranean contrasting

ecosystems

Article

in

Comptes rendus biologies · March 2017

DOI: 10.1016/j.crvi.2017.02.003 CITATIONS

0

READS

37

7 authors, including:

Some of the authors of this publication are also working on these related projects:

CORUS/IRD_INERA

View project

Modelling of Soil Erosion and Transport Process in Watersheds

View project

Ahmed Douaik

Institut National de Recherche Agronomique …

53

PUBLICATIONS

281

CITATIONS

SEE PROFILE

Rachid Mrabet

Institut National de Recherche Agronomique …

84

PUBLICATIONS

790

CITATIONS

SEE PROFILE

Robin Duponnois

Institute of Research for Development

368

PUBLICATIONS

3,315

CITATIONS

SEE PROFILE

Mohamed Hafidi

Cadi Ayyad University

212

PUBLICATIONS

2,893

CITATIONS

SEE PROFILE

All content following this page was uploaded by Rachid Mrabet on 13 June 2017.

The user has requested enhancement of the downloaded file.

(3)

Microbiology:

bacteriology,

mycology,

parasitology,

virology/Microbiologie

:

bacte´riologie,

mycologie,

parasitologie,

virologie

Diversity

of

fungal

assemblages

in

roots

of

Ericaceae

in

two

Mediterranean

contrasting

ecosystems

Ahlam

Hamim

a,b

,

Lucie

Miche´

c

,

Ahmed

Douaik

b

,

Rachid

Mrabet

b

,

Ahmed

Ouhammou

a

,

Robin

Duponnois

d

,

Mohamed

Hafidi

a,

*

aLaboratoire‘‘E´cologieetEnvironnement’’(unite´ associe´eauCNRST,URAC32),Faculte´ dessciencesSemlalia,Universite´ Cadi-Ayyad,

Marrakech,Morocco

bInstitutnationaldelarechercheagronomique,(INRA),Morocco

cInstitutme´diterrane´endebiodiversite´ etd’e´cologiemarineetcontinentale(IMBE),Aix–MarseilleUniversite´,CNRS,IRD,Avignon

Universite´,France

dInstitutderecherchepourlede´veloppement,UMR113,Laboratoiredessymbiosestropicalesetme´diterrane´ennes,campusCIRADde

Baillarguet,TA-A82/J,34398Montpelliercedex5,France1

C.R.Biologies340(2017)226–237

ARTICLE INFO Articlehistory:

Received19December2016

Acceptedafterrevision14February2017 Availableonline14March2017

Keywords: Ericaceousshrubs Helotiales

Ericoidmycorrhizalfungi Phialocephalafortinii

Multiplecorrespondenceanalysis

Abbreviations:

BLAST,basiclocalalignmentsearchtool DNA,deoxyribonucleicacid

DSE,darkseptateendophytes ErM,ericoidmycorrhizae ITS,internaltranscribedspacer K,potassium

MA,maltagar

MCA,multiplecorrespondenceanalysis MMN,modifiedMelin–Norkransagarmedia MUSCLE,multiplesequencecomparisonby log-expectation

N,nitrogen

NaCIO,sodiumhypochlorite

ABSTRACT

Theplantsbelongingto theEricaceaefamilyare morphologicallydiverse andwidely

distributedgroupsofplants.Theyaretypicallyfoundinsoilwithnaturallypoornutrient

status.Theobjectiveofthecurrentstudywas toidentifycultivablemycobiontsfrom

roots ofninespeciesofEricaceae (Callunavulgaris,Ericaarborea,Ericaaustralis,Erica

umbellate,Ericascoparia,Ericamultiflora,Arbutusunedo,Vacciniummyrtillus,andVaccinium

corymbosum).Thesequencing approachwasusedto amplifytheInternalTranscribed

Spacer(ITS)region.ResultsfromthephylogeneticanalysisofITSsequencesstoredinthe

Genbankconfirmedthatmostofstrains(78)wereascomycetes,16ofthesewereclosely

relatedtoPhialocephalaspp,12werecloselyrelatedtoHelotialessppand6belongedto

various unidentified ericoid mycorrhizal fungal endophytes. Although the isolation

frequenciesdiffersharplyaccordingtoregionsandericaceousspecies,Helotialeswasthe

most frequentlyencountered orderfrom the diverse assemblageof associated fungi

(46.15%),especiallyassociatedwithC.vulgaris(19.23%)andV.myrtillus(6.41%),mostly

presentintheLoge(L)andMellousa region(M).Moreover,multiplecorrespondence

analysis(MCA)showedthreedistinctgroupsconnectingfungalordertoericaceousspecies

indifferentregions.

!C 2017Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

* Correspondingauthorat:Faculte´ desSciencesSemlalia,Universite´ CadiAyyad,LaboratoireEcologieetEnvironnement(L2E)(Unite´ Associe´eauCNRST, URAC32),AvenuePrinceMyAbdellah,BP2390,Marrakech40000,Morocco.

E-mailaddress:hafidi.ucam@gmail.com(M.Hafidi).

ContentslistsavailableatScienceDirect

Comptes

Rendus

Biologies

ww w . sci e nc e di r e ct . com

http://dx.doi.org/10.1016/j.crvi.2017.02.003

(4)

1. Introduction

Ericaceaeare considered theeighthlargestfamilyof floweringplants, withmore than125generaandabout 4100speciesdistributed throughouttheworld[1–3].In Morocco, the Ericaceae family is represented by only three genera and 10 species including Arbutus unedo, Calluna vulgaris, and Erica spp. [4,5]. The Ericaceae are generally distributed on non-calcareous soils in forests, scrubland and desert regions as well as in the high mountains.WiththeexceptionofArbutusunedoL.,which hasawidedistributionacrossMoroccofromthewestern AntiAtlastotheRif,theotherspeciesarequitecommon only in northern Morocco and sub-humid regions of TangierandRif[4,6].Thesehabitatshavesoilswithlow levels of mineral nutrients, acidic pH, poor or free drainage, and are usually climatically diverse [7]. The characteristic harsh edaphic conditions are regarded as the best ecological habitat for most ericaceous shrubs [8].

Ericaceous shrubs canestablish root–fungus associa-tions withseveralfungalpartnersbelongingtodifferent taxa [9–12]. Such multiple symbiotic interactions occur mainlywithEricoidmycorrhizal(ErM)fungi[13–19]and ectomycorrhizal(EcM)fungi.Howevertheseinteractions arestillunderdebate,actuallyverylittleisknownabout thesesymbioticassociations.Someauthorshavereported theabilityofectomycorrhizal(EcM)fungitoformericoid mycorrhizae [18,20–22], while others suggest that EcM basidiomycetesdetected in Ericaceaeroots do notform functionalericoidmycorrhizae[23–26].

InadditiontoErMfungi,ericaceousplantsinboththe northernandsouthernhemispherescanformassociations withthemost studiedgroupof fungalrootendophytes belongingtothegroupofDarkSeptateEndophytes(DSE) [27–29].Commonassociationshavebeenreported espe-ciallywiththegroupofPhialocephalafortiniis.l.–Acephala applanataspeciescomplex(PAC)[30–33].Themycorrhizal statusofthisgroupisstillunderevaluation;somestudies reported that it hasneutral orpositive effects on plant growth [34–38], while others reported negativeresults [33,39].Significantly,someDSEseemtoformstructures resembling ericoid mycorrhizae in ericaceous roots; however,theyhavenegativeeffectsonfunctionalaspects andplantgrowthresponsetocolonization[33]. Further-more,ericaceous plantscanalsobecolonized byfungal pathogens,orsaprophytes[40].

Fungal diversity in plant roots is determined by specificity or preference for plant–fungi associations [41,42].Fungalspecies withhighhostpreferences,such as mycorrhizal fungi and some endophytic fungi, are expectedtobehighlyinfluencedbyhostgenetics[40].This hypothesisis still underevaluation.Studieson thehost preferenceforErMfungiarefewandmostofthemhave suggested the absence of host preference [11,43]; in contrastotherauthorshaveindicatedtheimportanceof thehostinstructuringectomycorrizalcommunities[44], arbuscular mycorrhizal communities [45,46] and ErM communities[20,40,47].

The diversity and abundance of some species of EricaceaeinMorocco,especially Ericaspp., thediversity ofthefungithatcolonizetherootsystemsofEricaceaeand theimportanceofthese associationsin thelifecycleof theseshrubs,requireamorecompletecharacterizationof thesefungalcommunities,especiallywherethereislackof similarstudies.

Theprimarygoalofthestudywastocharacterizefungal communities associated with a range of indigenous ericaceousspeciesofMoroccoincludingC.vulgaris,Erica arborea,Ericaaustralis,Ericaumbellata,Ericascoparia,Erica multiflora, and A. unedo. To complete thestudy, results were compared to ericaceous shrubs indigenous to a contrastingecosystem–theMassifCentralinFrance,with VacciniummyrtillusandC.vulgaris.Thesecondarygoalwas to examine whether or not the fungal communities associated with ericaceous roots diverged among hosts from each region and to show thepossible association linkingthehostspeciestofungalcommunities.

2. Materialandmethods 2.1. Studysites

Ericaceousplantswerecollectedfromfourcontrasting sites in Morocco. The selection of different sites was supported bythe presenceof differentspeciesof erica-ceousplants.Themaximumofdifferentericaceousspecies wasfoundinthesiteslocatedintheNorthofMorocco:Bab berred(B),Mellousa(M),Sahel(S).Onesite;Ourika(O) locatedinthesouthofMoroccowasonlyrepresentedbyA. unedo,whereasonesite,Loge(L),intheMassifCentralin France,wasrepresentedbyV.myrtillusandC.vulgaris.The studysiteswerecharacterizedbydistinguishableclimates (Table1).

NJ,neighborjoining P,phosphorus

PAC,Phialocephalafortinii–Acephala applanataspeciescomplex PCR,polymerasechainreaction PDA,potatodextroseagar

rDNA,ribosomaldeoxyribonucleicacid SAS,statisticalanalysissystem STAT,statistics

(5)

Thebotanicalclassificationofdifferentsampledplants wascarriedoutattheNationalHerbariuminRabat.Roots fromthreeplantsofeachspeciesweresampledinallsites andsoilsamplesfromeachplotwererandomlycollected and analyzed for pH, total nitrogen (N) [48], total phosphorus(P)[49](Table1).

2.2. Samplingandisolationoffungalstrains

TherootsofallericaceousspeciesexcepttheA.unedo werecarefullywashedwithdeionizedwaterandsurface sterilizedseparately.The rootswent throughsequential surface sterilization in diluted (70%) absolute ethanol (0.5min),sodiumhypochlorite(1.65%)(0.5min),andwere thenrinsedinsteriledeionizedwater(5min).Therootsof A.unedoweresurface-sterilizedindiluted(70%)absolute ethanol (5min), sodium hypochlorite (1.65%) (NaClO) (0.5min),absoluteethanol(0.5min)andrinsedinsterile deionizedwater(5min).

Threetofivesurface-sterilizedrootpieces(1cm)were then placed onto modified Melin NorkransAgar media (MMN)[50] in a 9-cm-diameter Petri dish (Fig.1)and incubatedat 258C in the dark.Mycelia growing out of the roots were transferred. Cultures were checked for sporulationandslow growing.Sporulating fungimainly belonging to the anamorphic genera determined by vegetativecharacteristicsand non-sporulating represen-tativeisolatesweredividedintosixdifferent morphologi-calgroups.Cultureswereroughlygroupedbasedoncolor, appearance and growth rate on potato dextrose agar (PDA),maltagar(MA),andmodifiedMelin–Norkransagar (MMN).Eighty-four(84)isolatesfromdifferent morpho-logical groups and habitats were used for molecular analyses.

2.3. Moleculardeterminationoffungi(DNAextractionand ITSamplification)

Fungal DNA was extracted from50 to150mg fresh mycelia using wizard Genomic DNA Purification Kit1

(Promega). Amplification of the ITS rDNA regions was performedusingtheprimerpairsITS1andITS4[51]and the GoTaq1 DNA Polymerase kit (Promega) following

themanufacturer’sinstructions.ThePCRcycling param-etersusedwereaninitialdenaturationstepfor3minat 948C,then35cycleswithdenaturationat948Cfor30s, annealingat558Cfor30sandextensionat728Cfor45s, withafinalextensionat728Cfor 10min.PCR products were checked for length, quality and quantity by gel electrophoresis (1.5% agarose in 0.5% TAE) and double directionsequencedbyEurofinsMWGGmbH(Ebersberg, Germany),usingthesameprimerspair.Allsequenceswere correctedandassembledusingChromaslitev2.1.1 (Tech-nelysiumPty).Multiplealignmentswerefirstperformed withMUSCLEonPhylogeny.fr[52]beforeusingMEGA4 [53]forNJanalyseswiththecompositelikelihoodmethod. TheresultantITSsequencesweresubjectedtoBLAST searches(GenBank,NCBI)toretrievethemostsimilarhits. Most ITS sequences had a match above 99% sequence identityandcouldbeassignedtoparticularspecies.The rDNAITS sequencesdeterminedinthis studyhavebeen depositedintheGenBankdatabaseunderaccessionsNo. KU986751–KU986834.

Table1

PropertiesoftheplotssampledforericaceousspeciessitesinMoroccoandFrance.

Site1 Site2 Site3 Site4 Site5

Latitude 35800011.6500N 31823036.5300N 35845056.6600N 35817012.7900N 46800019.5000N

Longitude 4853051.3800W 7845031.9200W 5835039.7900W 6802055.4800W 3847009.0600E

Regions BabBerred Ourika Mellousa Sahel Loge

Ericaceousspecies Arbutusunedo E.arborea

Arbutusunedo E.arborea

E.australis E.multiflora E.umbellata C.vulgaris E.scoparia V.corymbosum C.vulgaris V.myrtillus Elevation(mASL)a 1388 1115 377 188 1082

Climate Humid Semi-arid;sub-humid Sub-humid Humid;sub-humid Mountainclimate

Pluviometry(mm) 850 450–650 700 775 800

Phosphorus(ppm) 0.27 4.19 0.7 3.24 5.83

Totalnitrogen(ppm) 0.071 0.014 0.048 0.075 0.078

pH(H2O) 5.05 7.13 4.96 5 5.3

aAbovesealevel.

Fig.1.Surface-sterilizedrootpiecesinaPetridish. A.Hamimetal./C.R.Biologies340(2017)226–237

(6)

2.4. Statisticaldataanalyses

Five regions were considered in this study and the numberofericaceousspeciesdifferedfromoneregionto another(totalof 12species inallregions).Three plants weresampledforeachericaceousspecies,hencethetotal numberofsamples(plants)was3"12=36.Thepresence/ absence offungi belongingtonine fungal orders (eight knownandoneunknown)wasobservedonthe36 sam-ples.

Thecombinationsofthethreevariables:regions,fungal orders and ericaceous species were used to check the hypothesis of the existence of a possible association betweenanypairofthethreevariablesusingthePearson chi-square test of independence. The magnitude of the association between thethree qualitative variables was measuredbyCramercoefficient,having23categories:five regions, nine ericaceous shrubs, and nine fungal orders were assessed with multiple correspondence analysis (MCA).Allthestatisticalanalyseswerecarriedoutusing theSAS/STAT9.1Package[54].Thefrequencydistribution ofthefungiinthedifferenthostindividualsorregionsis giveninTablesA.2–A.5(supplementarymaterial).

Thecombinationsofthethreevariables:regions,fungal orders and ericaceous species were used to check the hypothesis of the existence of a possible association betweenanypairofthethreevariablesusingthePearson chi-square test of independence. The magnitude of the association between thethree qualitative variables was measuredbyCramercoefficient,having23categories:five regions, nine ericaceous shrubs, and nine fungal orders were assessed with multiple correspondence analysis (MCA).Allthestatisticalanalyseswerecarriedoutusing theSAS/STAT9.1Package[54].Thefrequencydistribution ofthefungiinthedifferenthostindividualsorregionsis giveninTablesA.2–A.5(supplementarymaterial).

3. Results

3.1. Identificationofericaceousspecies

Sixspecies of ericaceous plants havebeen identified in theNationalHerbarium (Rabat, Morocco): C.vulgaris (RAB 78192), E. arborea (RAB 78194), E. australis (RAB 78190),E.umbellata(RAB78193),E.scoparia(RAB78229), andE.multiflora(RAB78228).Thestudysiteswerelocated atdifferentaltitudes;theyhaverelativelythesameclimate and pluviometry,except site 2. The soil characteristics differed significantly among sites as well and showed contrastingsituations.ThepHvalueswerelow,attestingto acidic soils (except site 2 where the pH was neutral), mostsitesdisplayedlownitrogenandphosphoruslevels (Table1).

3.2. Characteristicsoffungalendophytes

Sevenhundredandeighty-seven(787)fungalisolates wereobtained fromrootssegments (100segments per plant)ofericaceae species.Isolateswereclassifiedinto twogroups:onewithsporulatingfungimainlybelonging to the anamorphic genera determined by vegetative characteristics(Fusariumspp.,Penicilliumspp., Cladospo-riumspp.andAlternariaspp.)accordingtoBottonetal. [55], one with non-sporulating isolates which were predominantlydark-colored,rangingfromgraytoblack olive,andfromlighttodarkbrownwithhyphaeshowing simplesepta,andsterilemycelia.TableA.1 (Supplemen-tarymaterial)andFig.2giveexamplesofthe morpholog-ical and cultural features, and the growth rate of six distinctnon-sporulatingfungi.

Morphotype 1 consisted of cultures with smokey graytoblack colonieswithwhite margins;morphotype 2 contained gray to green olive isolates, morphotype

Fig.2.Slow-growingisolatesfromEricaceaemembersgrownonamodifiedMelin–Norkrans(MMN)medium.a:ER2M,b:ER28M,c:ER50M,d:ER37M,e: ER53M,f:ER55M.

(7)

3containedisolateswithsmokeygraycolonies, morpho-type 4 consisted of cultures with light brown to dark brown,whilemorphotype5containedoliveblackisolates andmorphotype6consistedofcultureswithlightcream color.

3.3. Molecularidentificationoffungalcultures

ThebestmatchingsequencesobtainedintheGenBank databaseforthe84representativeisolatesfromericaceous plantswassummarizedinTable2.Phylogeneticanalyses werealsoconductedonthesesequences(Fig.3).

Themostfrequentfungaltaxaisolatedwere ascomy-cetes (78/84 isolates) followed by zygomycetes (5/84 isolates). Ascomycetes were dominated by Helotiales (41/78 isolates) followed by Eurotiales (18/78 isolates), Hypocreales(11/78isolates),Pleosporales(4/78isolates), Capnodiales(2/78isolates),Rhytismatales(1/78),whereas twoascomycetesisolatesremainedunidentified. Zygomy-cetes were represented by Mortierellales (3/5) and Mucorales(2/5).

Putative taxonomicaffinitieswereassignedbased on BLASTsequencesimilarityandtheidentitiesoftheseveral most closely matched sequences obtained by BLAST

Table2

ClosestmatchesfromFASTAsearchesbetweenITSsequencesfromendophytesisolatedfromrootsystemsofdifferentspeciesofEricaceaeandknown taxafromtheGenbankandEMBLnucleotidedatabases.

No. SeqNum Bestblastmatch Coverage Similarity Accession Ericaceoushost Lineage

1 ER1M Penicilliumspinulosum 100% 100% GU566191.1 E.australisL. Eurotiales

2 ER2M Ericoidmycorrhizalsp. 98% 93% AF072296.1 C.vulgarisL. Helotiales

3 ER3M Mortierellasp 100% 99% HQ608143.1 E.umbellataL. Mortierellales

4 ER4M Umbelopsissp 97% 100% JQ912671.1 E.umbellataL. Mucorales

5 ER5M Umbelopsissp. 97% 100% JQ912671.1 E.umbellataL. Mucorales

6 ER6M Penicilliumsp. 100% 99% KF367517.1 E.scopariaL. Eurotiales

7 ER7M Fusariumoxysporum 99% 100% KU984712.1 E.arboreaL. Hypocreales

8 ER8M Fusariumoxysporum 99% 100% KU984712.1 E.arboreaL. Hypocreales

9 ER9M Penicilliumspinulosum 100% 100% GU566191.1 E.multifloraL. Eurotiales

10 ER10M Mortierellasp 100% 99% LC127286.1 E.multifloraL. Mortierellales

11 ER11M Penicilliumsp. 100% 99% JN798529.1 V.corymbosum Eurotiales

12 ER12M Penicilliumsp. 100% 99% JN798529.1 V.corymbosum Eurotiales

13 ER13M Eupenicilliumsp 100% 97% GU166451.1 E.australisL. Eurotiales

14 ER14M Penicilliumnodositatum 100% 99% NR_103703.1 E.umbellataL. Eurotiales

15 ER15M Fusariumoxysporum 99% 100% KU984712.1 A.unedo Hypocreales

16 ER16M Fusariumoxysporum 99% 100% KU984712.1 V.corymbosum Hypocreales

17 ER17M Pleosporalessp. 89% 91% JX535184.1 C.vulgarisL. Pleosporales

18 ER18M Alternariasp 100% 100% KX179491.1 C.vulgarisL. Pleosporales

19 ER19M Fusariumoxysporum 99% 100% KU984712.1 E.arboreaL. Hypocreales

20 ER20M Fusariumoxysporum 99% 100% KU984712.1 E.arboreaL. Hypocreales

21 ER21M Penicilliumnodositatum 80% 99% NR_103703.1 E.multifloraL. Eurotiales

22 ER22M Penicilliumsp. 100% 99% KF367517.1 C.vulgarisL. Eurotiales

23 ER23M Penicilliumnodositatum 100% 99% NR_103703.1 E.multifloraL. Eurotiales

24 ER24M Penicilliumsp 100% 99% KF367517.1 E.multifloraL. Eurotiales

25 ER25M Mortierellasp 100% 99% LC127286.1 E.australisL. Mortierellales

26 ER26M Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

27 ER27M Penicilliumalexiae 100% 99% NR_111869.1 E.australisL. Eurotiales

28 ER28M Ericoidmycorrhizalsp. 98% 93% AF072296.1 E.umbellataL. Helotiales

29 ER29M Clad.sphaerospermum 100% 99% KC311475.1 C.vulgarisL. Capnodiales

30 ER30M Cladosporiumsp. 100% 99% LC133872.1 A.unedo Capnodiales

31 ER31M Cystodendronsp. 90% 96% EU434835.1 C.vulgarisL. Helotiales

32 ER32M Coccomycesdentatus 92% 88% GU138740.1 C.vulgarisL. Rhytismatales

33 ER33M Penicilliumsp. 100% 99% KR812241.1 A.unedo Eurotiales

34 ER34M Penicilliumnodositatum 80% 99% NR_103703.1 E.multifloraL. Eurotiales

35 ER35M Pleosporalessp. 89% 91% JX535184.1 C.vulgarisL. Pleosporales

36 ER36M Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

37 ER37M Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

38 ER38M Penicilliumnodositatum 100% 99% NR_103703.1 E.umbellataL. Eurotiales

39 ER39M Penicilliumsp. 100% 99% KC181935.1 E.australisL. Eurotiales

40 ER40M Penicilliumnodositatum 100% 99% NR_103703.1 E.umbellataL. Eurotiales

41 ER41M Ascomycotasp. 100% 86% KU535786.1 A.unedo Unclassifiedascomycota

42 ER42M Penicilliumnodositatum 100% 99% NR_103703.1 E.umbellataL. Eurotiales

43 ER43M Cystodendronsp. 92% 96% EU434835.1 C.vulgarisL. Helotiales

44 ER44M Fusariumoxysporum 98% 99% KJ127284.1 E.scopariaL. Hypocreales

45 ER45M Fusariumoxysporum 98% 99% KJ127284.1 E.arboreaL. Hypocreales

46 ER46M Fusariumoxysporum 98% 100% KJ127284.1 A.unedo Hypocreales

47 ER47M Helotialessp. 93% 96% KR909148.1 E.umbellataL. Helotiales

48 ER48M Fusariumoxysporum 100% 100% KJ127284.1 V.corymbosum Hypocreales

49 ER49M Fusariumoxysporum 100% 100% KJ127284.1 A.unedo Hypocreales

50 ER50M Ericoidendophytesp. 100% 98% AF252845.1 C.vulgarisL. Helotiales

51 ER51M Ampelomycessp. 100% 100% AY148443.1 A.unedo Pleosporales

52 ER52M Phialocephalafortinii 100% 99% EU888625.1 C.vulgarisL. Helotiales

A.Hamimetal./C.R.Biologies340(2017)226–237 230

(8)

(http://blast.ncbi.nim.nih.gov/Blast.cgi). Sequence analy-sisofculturedfungalITStypehasshowndifferenttypes, the first group comprising significant portions of the isolated strains (ER52M, ER53M, ER14F, ER21F, ER5F, ER27F, ER6F, ER8F, ER28F, ER9F, ER26F, ER10F, ER12F, ER13F,ER15F,ER25F);theseweremostcloselyrelatedto Phialocephalaspp.

ThesecondHelotialesgroupalsocomprisedsignificant portions of the isolated stains (ER7F, ER20F, ER26M, ER47M, ER36M, ER37M, ER54M, ER3F, ER11F, ER23F, ER4F,ER18F),whichweremostcloselyrelatedtovarious unidentified Helotiales species. Isolates ER2F, ER22F, ER31MandER43Mweredesignatedasprobable Cystoden-dron spp (96% similarity). Neighbor-joining analysis grouped isolates (ER29F, ER50M, ER1F, ER2M, ER28M, ER30F)(99%bootstrap)withdifferentericoidendophytes, Helotialesspecies(93%similarity)toericoidmycorrhizal fungi.

A neighbor-joining analysis employing database sequences grouped these ER16F and ER24F (100% bootstrap) with C. vulgaris root associated fungus. The ER55Misolatesmatched(99%similarity)with Cryptospo-riopsisbrunneaandformedastronglysupported(100%) group with this species. The isolates belonging to Eurotiales, Hypocreales, Capnodiales, Pleosporales, Mucorales,andMortierellalesformedastrongly suppor-tedgroup.

3.4. Relationshipsbetweenericaceousfungalcommunities inthedifferentsamplingsites

3.4.1. Impactofericaceousshrubsandisolationregionon fungaldistribution

Fungalisolatesweregroupedattheorderlevel.Their presenceinplants(frequencyandpercentage)accordingto the regions and the ericaceous species of isolation is displayed in Table 3. Statistical analysis confirmed the inequalityoftheproportionsofthefiveregions(

x

2=86and

P<0.0001).Regardingtheregions,mostofthefungiwere found in Melloussa (M) (42.31%) followed by Loge (L) (23.08%), whereas Sahel (S) (14.10%), Bab Berred (B) (11.54%),andOurika(O)(8.97%)hostedlessisolatedfungi. Besides, the fungi species were significantly found associatedwithC.vulgaris(32.05%),whiletheywereleast frequent on Vaccinium corymbosum (6.41%), E. australis (6.41%), and E. mutiflora (6.41%) (

x

2=114.23 and

P<0.0001).

Themost frequentfungal order wasidentified tobe Helotiales (he) (46.15%) significantly associated with C. vulgaris(19.23%)and V.myrtillus(6.41%); itrepresented 16.67%in theLoge (L) and15.38% in theMellousa (M) regions. The least frequent order is Rhytismatales (rh) (1.28%).Again,theproportionswereunequal,asevidenced by the Pearson chi-square test (

x

2=320.53 and

P<0.0001).

Table2(Continued)

No. SeqNum Bestblastmatch Coverage Similarity Accession Ericaceoushost Lineage

53 ER53M Phialocephalafortinii 100% 99% EU888625.1 C.vulgarisL. Helotiales

54 ER54M Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

55 ER55M Cryptosporiopsisbrunnea 100% 99% AF149074.2 C.vulgarisL. Helotiales

56 ER1F Ericoidendophytesp. 97% 98% AF252848.1 C.vulgarisL. Helotiales

57 ER2F Cystodendronsp. 94% 96% EU434834.1 C.vulgarisL. Helotiales

58 ER3F Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

59 ER4F Helotialessp. 93% 96% KR909148.1 E.umbellataL. Helotiales

60 ER5F Phialocephalasp. 100% 99% AB847049.1 V.myrtillusL. Helotiales

61 ER6F Phialocephalasp. 100% 99% AB847049.1 C.vulgarisL. Helotiales

62 ER7F Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

63 ER8F Phialocephalasp. 100% 99% AB847049.1 C.vulgarisL. Helotiales

64 ER9F Phialocephalafortinii 100% 100% FN678829.1 C.vulgarisL. Helotiales

65 ER10F Phialocephalasp. 100% 99% AB847049.1 V.myrtillusL. Helotiales

66 ER11F Helotialessp. 93% 96% KR909148.1 V.myrtillusL. Helotiales

67 ER12F Phialocephalacf.fortinii 100% 100% FN678829.1 V.myrtillusL. Helotiales

68 ER13F Phialocephalacf.fortinii 100% 100% FN678829.1 V.myrtillusL. Helotiales

69 ER14F Phialocephalasubalpina 100% 99% EF446148.1 V.myrtillusL. Helotiales

70 ER15F Phialocephalafortinii 100% 100% EU888625.1 V.myrtillusL. Helotiales

71 ER16F Rhizodermeaveluwensis. 100% 100% KR859283.1 C.vulgarisL. Helotiales

72 ER17F Ascomycotasp. 93% 96% KC180744.1 C.vulgarisL. Unclassifiedascomycota

73 ER18F Helotialessp. 93% 96% KR909148.1 V.myrtillusL. Helotiales

74 ER20F Helotialessp. 93% 96% KR909148.1 V.myrtillusL. Helotiales

75 ER21F Phialocephalasubalpina 100% 99% EF446148.1 V.myrtillusL. Helotiales

76 ER22F Cystodendronsp. 92% 96% EU434835.1 V.myrtillusL. Helotiales

77 ER23F Helotialessp. 93% 96% KR909148.1 C.vulgarisL. Helotiales

78 ER24F Rhizodermeaveluwensis. 97% 99% KR859283.1 V.myrtillusL. Helotiales

79 ER25F Phialocephalafortinii 100% 99% EU888625.1 V.myrtillusL. Helotiales

80 ER26F Phialocephalafortinii 100% 99% AB671499.2 C.vulgarisL. Helotiales

81 ER27F Phialocephalasp. 100% 99% AB847049.1 V.myrtillusL. Helotiales

82 ER28F Phialocephalasubalpina 100% 99% EF446148.1 C.vulgarisL. Helotiales

83 ER29F Ericoidendophytesp. 96% 98% AF252845.1 C.vulgarisL. Helotiales

84 ER30F Ericoidmycorrhizalsp. 100% 93% AF072296.1 V.myrtillusL. Helotiales

Seqnumindicatesthereferencecollectionforisolates(namesendingbylettersMandFindicateisolatesfromMoroccoandFrance,respectively);accession: GenBankaccessionnumber.Bestblastmatcheswithacompletebinomialwereselectedfortaxonassignment,withcoverageandsequencesimilarity indicated.

(9)

A.Hamimetal./C.R.Biologies340(2017)226–237 232

(10)

Moreover, statistical analysisrevealed anassociation betweenregionsandericaceousspecies,asshownbythe Pearson Chi-square test of association (

x

2=598.92;

P<0.0001).

Toillustratethis,Vacciniummytillusisfullyspecificto theLogeregion(L;100%)andE.scopariaisfoundonlyin theSahelregion(S;100%).Theassociationwasobservedto bestrong,asevidencedbytheCramercoefficientof0.8.

Thesametestshowedassociationbetweenregionsand fungal orders; this was confirmed by the Pearson chi-squaretestofassociation(

x

2=83.65andP

<0.0001);this associationwasnotsignificant(Cramercoefficient:0.3).It wasobservedthatonlyRhytismatales(100%)arefoundin the Melloussa (M) region. Finally, the test showed an associationbetweenfungalordersandericaceousspecies (

x

2=181.53 andP

<0.0001);againthis associationwas notstrongenough,itgaveaCramercoefficientof0.3.This is further supported by the 100% presence of the RhytismatalesorderonlyintherootofC.vulgaris.

Inconclusion,thePearsonchi-squaretestexplainedthe presence and the degree of the association between regions, ericaceous host species, and fungal orders. However,theassociationwasnotenoughstrong, especial-lybetweenregionsandfungalorders,andbetweenfungal ordersandericaceousspecies.

Thefrequencydistributionofthefungiinthedifferent host species or regions is shown in Tables A.2–A.5 (supplementarymaterial).

Thefrequencydistributionofthefungiinthedifferent host species or regions is shown in Tables A.2–A.5 (supplementarymaterial).

3.4.2. Multiplecorrespondenceanalysis

Asseenabove,severalassociationswerefoundbetween regions,ericaceous shrubs,and isolatedfungiindicating that multiple correspondence analysis (MCA) can be performedtoclusterallvariablesindistinctgroups.

Main numerical characteristics of MCA are given in TableA.6 (supplementarymaterial).Thethreefirstaxes explained84.7%ofthevarianceinthedatasetwiththefirst axisexplaining33.8%,thesecondaxisexplaining27.6%and thethirdaxisexplaining23.3%.

Main numerical characteristics of MCA are given in TableA.6 (supplementarymaterial).Thethreefirstaxes explained84.7%ofthevarianceinthedatasetwiththefirst axisexplaining33.8%,thesecondaxisexplaining27.6%and thethirdaxisexplaining23.3%.

Theloadingsofthe23categoriesonthefirstfactorial plan (axis 1–axis 2) are displayed in Fig. 4, and the 23categorieswereclusteredinthreedistinctgroups.

Interestingly, axis 1 and axis 2 showed correlations withfungalassemblages,suggestingthathostspeciesand regionsareinvolvedinstructuringfungalassemblages: #thefirstgroup(G1)correspondstotheassociationofthe

BabBerredregion(B)andOurika(O)withthegroupof Capnodiales(ca),Hypocreales(hy),andMucorales(mu) fungalorders, pleosporales(pl) and unidentifiedfungi (un)withE.arborea(3)andA.unedo(1);

#thesecondgroup(G2)associated theSahelregion (S) withE.scoparia(5) and V. corymbosum(8) ericaceous shrubs;thisgroupseemednottobeassociatedwithany specificfungalorder;

#thethirdgroup(G3)wasclearlydistinctfromthetwo othergroups. Itassociated theLoge (L) andMelloussa (M)regionswiththeHelotiales(he);andRhytismatales (rh)fungalfamilieswithC.vulgaris(2),V.myrtillus(9),E. australis(4),E.multiflora(6),andE.umbellata(7).

4. Discussion

4.1. DiversityoffungalspeciesassociatedwithEricaceaein Mediterraneancontrastingecosystems

The diversity of fungal endophytes in the roots of Ericaceataxahasbeenreportedpreviously[3,9–12,17,56– 58].However, thediversityof Ericaceaerootendophyte fungiisrelativelylowcomparedtoarbuscularmycorrhizal andectomycorrhizalplants[33].Besides,studies concern-ingthistopicaremissinginsomeregions,especiallyinthe Mediterranean ones. These environments can offer an interestingopportunityforthestudyoffungaldiversityin ericaceousplants[59]astheyarelargelyunexplored.This researchrepresentsthefirstattempttoisolateandstudy thediversityofendophytespresentintherootsystemof nineericaceousspeciesgrowninspecificareasinMorocco andFrance.

Inthisstudy,weusedbothculturalmethodsandDNA analysis of isolated fungi to identify the endophytes

Table3

Frequencyandpercentageofthepresenceoffungalisolatesinericaceous plantasafunctionofregionsandofericaceousshrubsandfungiorders.

Regions Frequency Percentage(%)

BabBerred(B) 27 11.54 Ourika(O) 21 8.97 Melloussa(M) 99 42.31 Sahel(S) 33 14.10 Loge(L) 54 23.08 Ericaceousshrubs Ericaaustralis(4) 15 6.41 Ericaarborea(3) 24 10.26 Ericamultiflora(6) 15 6.41 Ericaumbellata(7) 18 7.69 Vacciniumcorymbosum(8) 15 6.41 Arbutusunedo(1) 33 14.10 Callunavulgaris(2) 75 32.05 Ericascoparia(5) 18 7.69 Vacciniummyrtillus(9) 21 8.97 Fungiorder Eurotiales(eu) 39 16.67 Helotiales(he) 108 46.15 Mortierellales(mo) 15 6.41 Unidentified(un) 15 6.41 Rhytismatales(rh) 3 1.28 Mucorales(mu) 12 5.13 Hypocreales(hy) 18 7.69 Capnodiales(ca) 15 6.41 Pleosporales(pl) 9 3.85

Fig.3.Neighbor-joiningtreeinferredfromrDNAITSsequencesofEricaceaerootendophyticfungiandtheirclosestGenBankmatches(withaccession numbers).Sequencesfromthisstudyareinbold.Bootstrapsupportvalues(1000replicates)areprovidedaspercentageatthecorrespondingnodeswhen >50.PhylogeneticanalysiswasconductedinMEGA4.0[53]withthemaximumcompositelikelihoodmethod.

(11)

obtained. Thisapproachhasbeenadoptedover thelast years to identify sterile endophytic mycelia by many authors [60–63]. The result indeed has shown a large diversity of fungi isolates belonging to Ascomycetes. Helotialesisolateswerethemostdominant;this empha-sizes their importance inside the fungal communities associatedwiththeMediterraneanEricaceae. Interesting-ly,ourfindingsweresimilartothosereportedbyTedersoo et al. [64], who targeted ascomycetous communities associatedwiththeectomycorrhizalrootsofvarioushosts inTasmaniand thoseofWalkeretal.[11]intheArctic tundra.

Thesequencingofthestudiedisolatesrevealedthatthe most common isolates belong to the Phialocephala– Acephalacomplex(PAC),representing50%intotalofthe Helotiales.Thesequenceanalysisconfirmedsomeisolates as P. fortinii (99–100% similarity), suggesting that this taxonor its siblingspeciesmight bethe dominant root entophytesofericaceousspeciesinthesites(M),(S),and(L). However,noPhialocephalasppstrainswereisolatedfrom site(O)andsite(B).Theplantcommunitiesofthesites(S)

and(L)weresomepineandmixedforest;ericaceousshrubs wereinsite(M),whileA.unedowasfoundinsites(O)and (B).Moreover,thesites(M),(S)and(L)arelocatedinthe North, with mostly sub-humid climate, relatively high precipitationandlowerpH,thanthatatsite(O)situatedin thesouthofMorocco,withlessprecipitationinthe semi-aridclimate.Itseemsthattheabundanceofthe Phialoce-phalaspp.mayberelatedtoprevailingplantcommunities andedaphicfactors[57,65,66].

DSEcolonizationischaracterizedbytheformationof microsleclerotiainthehostroot.Nonetheless,afewDSE species were reported to form intra-radical structures resembling those formed in mycorrhizal symbioses [67]. The studies on the functional aspects of these intra-radicalhyphalstructures,i.e.nutrienttransferand/ orplantgrowthresponsetocolonization,arefew[18,36]in our context;further investigations into thesegroups of fungi are needed due to their dominance and possible functionalimportancetoericaceousplants.

BesidesPAC,thescreenedericaceousrootshairshosted relativelydiversespectrumsofmycobionts,forexample,

Fig.4.Multiplecorrespondenceanalysis(MCA)ofthe23categoriesofthethreevariablesonthetwofirstaxes.~,Species;*Fungi-order;^Region.B:Bab berred,O:Ourika,M:Melloussa,S:Sahel,L:Loge.1:Arbutusunedo;2:Callunavulgaris;3:Ericaarborea;4:Ericaaustralis;5:Ericascoparia;6:Ericamultiflora; 7:Ericaembellata;8:Vaciniumcorymbosum;9:Vacciniummytillus.eu:Eurotiales;he:Helotiales;mo:Mortierellales;mu:Mucorales;hy:Hypocreales;pl: Pleosporales;ca:Capnodiales;rh:Rhytismatales;un:unidentified.

A.Hamimetal./C.R.Biologies340(2017)226–237 234

(12)

the ITS sequence analyses have shown the presence ofCryptosporiopsisspeciesatalowfrequency. Cryptospo-riopsis spp are known root-inhabiting fungi, and they colonize Ericaceaerootsas an endophyte [68].Related taxa ofCryptosporiopsis (C.ericae andC. brunnea)were isolatedfrom someEricaceaeplants,suchas Vaccinium ovalifolium, Vaccinium membranaceum, and Gaultheria shallon[69].Moreover,Chambersetal.[70]haveshown thatanisolateofCryptosporiopsisspeciesformeddense ERM-likecoilsinoccasionalcellsinWoollsiapungensroot hairs. However, Zhang et al. [57] isolated C. ericae assemblages from Rhododendrons and haveconfirmed theirericoidmycorrhizalstatus;inthisstudy,additional researchisneededtoelucidatethefunctionalstatusofthis species.

A neighbor-joining analysis employing database sequencesgroupedITStypeswith12isolates;thesewere designated as the Helotiales species. Twoisolates were grouped with different unidentified C. vulgaris root associatedfungus.Surprisingly,sixisolatesweregrouped together with different unidentified ericoid endophyte fungifrom C.vulgaris at contrastingfield sites [57]. ITS sequence analysisshowedthat theisolates have a high affinity for root endophytes from C. vulgaris and are probablyhomologousfungi.

In contrast, the study was not able to obtain any isolatebelongingtotheErMfungus Rhizoscyphusericae, which is prominent in most studies on Ericaceae. This result wasnotsignificantbecausemostofthescreened roothairscontainedericoidmycorrhizae[71].Thismight beexplainedbytheirrelativelyslowergrowthonartificial isolation media, especially when the fast-growing DSE dominate the root-associated fungal communities [11,19]. To prove the presence of intracellular hyphal structures to confirm the putative ericoid mycorrhizal status, especially from areas, which have not yet been investigated, theinvestigation had to be performed on cultivation-basedmethods,followedbyre-synthesisand nutrienttransferexperiments[33].

Thestudyfinallyrevealedthepresenceofcommonsoil saprobic/parasitic fungi known to associate with erica-ceousroots,especiallyinplantsfromMorocco.Thiscould beexpectedasthesamesaprobic/parasiticcommunityhad beenreportedbyBruzoneetal.[19]inassociationwith ericaceousshrubs.

4.2. Impactofregionandplanthostsonericaceousfungal communities’structures

The totaldiversity of Ericaceaemycobionts was rela-tivelyhigh,butthemostabundantonewastheHelotiales order,dominatedbyPhialocephalaspp.,Helotialessppand unidentifiedericoidfungi,whichaccountedfor46.15%of the total mycobionts selected. They showed a strong preference for certain Mediterranean sites, characterized byhot,drysummers,andcool,wetwinters,underhumid bioclimates,suchasMellousa(15.38%),LaLoge(16.67%), whereas they were less abundantin other sitessuch as Ourika (1.28%). The Helotiales showed as well a strong preferenceforC.vulgaris(19.23%)andV.myrtillus(6.46%), ourfindingisinagreementwithpreviousstudies[20,35,72],

whereP.fortiniihavebeen detectedasanassociateofC. vulgarisroots.

Statisticalanalysishasshownanassociationbetween regions,fungalorders,andericaceousspecies.Surprisingly, thisassociationwasnotstrong enoughtoconcludethat there is significant influence of both plant hosts and regionalfactorsonassociatedfungalcommunities.

PreviousstudiescarriedoutbyKjolleretal.[43]and Walkeretal.[11]targetedcommonco-occurringEricaceae insub-ArcticmireandArctictundrahabitat(respectively). Theyprovidednosupportforhostpreferenceandshowed that the host may not be an important driver for the composition of root fungal communities in the Arctic Ericaceae.Onthecontrary,Kernaghan[73]suggestedthat mycorrhizaldiversityiscontrolledbymanyfactors,among them the host plant. Ishida and Nordin [47] observed distinctcommunities inV. myrtillusand V. vitis-idaeain boreal forest stands dominated by Norway spruce; Bougoureetal.[20]alsoreporteddistinctfungal commu-nitiesinV.myrtillusandC.vulgarisinpineforestsitesin Scotland.Bothviewssuggesttheinfluenceofplanthosts, asadriveroffungalcommunitiesstructuresmightthusbe dependentontheregionstudied.

Thesuccessofericaceousplantsinecosystemsisthe result of the ability of the plant/fungal symbiosis to succeedinconditionswithextremelowlevelsofmineralN andPandhighlevelsofrecalcitrantorganicmatter.Inthis context,otherstudieshaveprovedthatplantdiversityis maintainedbytheircapabilitytoacquireNfromdifferent organic forms [74]; the same resultswere reported by Kjolleretal.[43]andWalkeretal.[11].Subsequently,the differencesinNusevariedwithspecies[18]ratherthan betweenspecies[14].

Besides,Sunetal.[40]targetedericoidmycorrhizalfungi andotherfungalassemblagesintherootsofRhododendron decorumintheSouthwestofChina;theyconcludedthatthe ericoid mycorrhizal (ErM) and non-mycorrhizal (NEM) fungi areaffectedbydifferentfactors; the host’s genetic compositionismoreimportantforErMwhilegeographic factorsaremoreimportantforNEMassemblages.

Through these studies, the influence of hosts in controlling the community assembly of root-associated fungi is still under debate and need more research to determinethedifferentmechanismsresponsible forthe maintenanceofthisdiversity;thisemphasizestheneedto study the different factors that could affect fungal communitiesinaMediterraneancontext.

5. Conclusion

Theinvestigationofericaceousendophytescolonizers of a variety of healthy Ericaceae in Mediterranean ecosystemshasrevealedalargediversityoffungi.These weredominatedbyascomycetes,withtaxacloselyrelated to Dark Septate Endophytes (DSE), unidentified ericoid endophytefungi.Theanalysessuggestthatanumberof associationsexist betweentheHelotialesand Ericaceae; however, these associations are not strong enough, suggestingthatotherfactorsmaybeaffectingthediversity offungalcommunitiesofericaceousshrubsandshouldbe explored.

(13)

TheisolationofbeneficialHelotialeanendophytesfrom ericaceousrootsencouragesandpermitstocarryout re-synthesis experimentsand toevaluatenutrient transfer systems to resolve the abilityof someputative ericoid mycorrhizalstrainsobtainedtoformmycorrhizae symbi-osis and improve the growth of other domesticated ericaceousspeciessuchasVacciniumspp.

Acknowledgements

This study was financially supported by the ‘‘Pro-grammede recherche agronomique pour le de´veloppe-ment’’(PHCPRADNo.28044TM).TheauthorsthankDr.Ibn TattouandHamidElKhamerfromtheScientificInstitutein Rabat for their help in the identification of ericaceous speciesindifferentlocationsinMorocco.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10. 1016/j.crvi.2017.02.003.

References

[1]J.L.Luteyn,Diversity,adaptation,andendemisminneotropical Erica-ceae:biogeographicalpatternsintheVaccinieae,Bot.Rev.68(2002) 55–87.

[2]K.A. Kron, J.L. Luteyn, Origins and biogeographic patterns in Ericaceae:newinsightsfromrecentphylogeneticanalyses,Biol.Skr. (2005)479–500.

[3]C.Hazard,P.Gosling,D.T.Mitchell,F.M.Doohan,G.D.Bending,Diversity offungiassociatedwithhairrootsofericaceousplantisaffectedbyland use,FEMSMicrobiol.Ecol.87(2014)586–600.

[4]M.Fennane,M.IbnTattou,FlorevasculaireduMaroc:Inventaireet Chorologie,vol.1, Trav.Inst.Sci.Ser.Bot.,2005,pp.37–483.

[5]A.Dobignard,C.Chatelain,Indexsynonymiquedelaflored’Afrique duNord,vol.2:Dicotyledonae,Acanthaceaea` Ateraceae,E´ditionsdes conservatoireetjardinbotaniquesdelaVilledeGene`ve,2011455p. ISBN978-2-8277-0123-0.

[6]L.Emberger,R.Maire,CataloguedesplantesduMaroc.IV.Minerva, Alger,1941.

[7]J.W.G.Cairney,A.A.Meharg,Ericoidmycorrhiza:apartnershipthat exploitsharshedaphicconditions,Eur.J.SoilSci.54(2003)735–740.

[8]P.F.Stevens,Ericaceae,in:K.Kubitzki(Ed.),TheFamiliesandGeneraof VascularPlants,vol.6, Springer,Berlin,2004,pp.145–194.

[9]D.S.Bougoure,J.W.G.Cairney,Assemblagesofericoidmycorrhizaland otherroot-associatedfungifromEpacrispulchella(Ericaceae)as deter-minedbyculturinganddirectDNAextractionfromroots,Environ. Microbiol.7(2005)819–827.

[10]D.S.Bougoure, J.W.G.Cairney,Fungi associatedwithhairroots of Rhododendronlochiae(Ericaceae)inanAustraliantropicalcloudforest revealedbyculturingandculture-independentmolecularmethods, Environ.Microbiol.7(2005)1743–1754.

[11]J.F.Walker,L.Aldrich-Wolfe,A.Riffel,H.Barbare,N.B.Simpson,J. Trowbridge,A.Jumpponen,DiverseHelotiales associatedwiththe rootsofthreespeciesofArcticEricaceaeprovidenoevidenceforhost specificity,NewPhytol.191(2011)515–527.

[12]M.A.Gorzelak,S.Hambleton,H.B.Massicotte,Communitystructureof ericoidmycorrhizasandroot-associatedfungiofVaccinium membra-naceumacrossanelevationgradientintheCanadianRockyMountains, FungalEcol.5(2012)36–45.

[13]S.Hambleton,K.N.Egger,R.S.Currah,ThegenusOidiodendron:species delimitationandphylogeneticrelationshipbasedonnuclearribosomal DNAanalysis,Mycologia90(1998)854–869.

[14]G.P.Xiao,S.M.Berch,Organicnitrogenusebysalalericoidmycorrhizal fungifromnorthernVancouverIslandandimpactsongrowthinvitroof Gaultheriashallon,Mycorrhiza9(1999)145–149.

[15]C.B.McLean,J.H.Cunnington,A.C.Lawrie,Moleculardiversitywithin andbetweenericoidendophytesfromtheEricaceaeandEpacridaceae, NewPhytol.144(1999)351–358.

[16]M.Johansson,FungalassociationsofDanishCallunavulgarisrootswith specialreferencetoericoidmycorrhiza,PlantSoil231(2001)225–232.

[17]F.Usuki,A.P.Junichi,M.Kakishima,Diversityofericoidmucorrhizal fungiisolatedfromhairrootsofRhododendronobtusumvar.kaempferi inaJapaneseredpineforest,Mycoscience44(2003)97–102.

[18]G.A.Grelet,D.Johnson,E.Paterson,I.C.Anderson,I.J.Alexander, Recip-rocalcarbonandnitrogentransferbetweenanericaceousdwarfshrub and fungiisolatedfrom Piceirhizabicolorataectomycorrhizas, New Phytol.182(2009)359–366.

[19]S.Bruzone,B.Fontenla,M.Vohnı´k,Istheprominentericoid mycor-rhizalfungusRhizoscyphusericaeabsentintheSouthernHemisphere’s Ericaceae?Acasestudyonthediversityofrootmycobiontsin Gaul-theriaspp.fromnorthwestPatagonia,Argentina,Mycorrhiza25(2014) 25–40.

[20]D.S.Bougoure,P.I.Parkin,J.W.G.Cairney,I.J.Alexander,I.C.Anderson, DiversityoffungiinhairrootsofEricaceaevariesalongavegetation gradient,Mol.Ecol.16(2007)4624–4636.

[21]G.A.Grelet,D.Johnson,T.Vralstad,I.J.Alexander,I.C.Anderson,New insightsintothemycorrhizalRhizoscyphusericaeaggregate:spatial structureandco-colonizationofectomycorrhizalandericoidroots, NewPhytol.188(2010)210–222.

[22]R.L.Villarreal,C.Neri-Luna,I.C.Anderson,I.J.Alexander,Invitro inter-actionsbetweenectomycorrhizalfungiandericaceousplants, Symbi-osis56(2012)67–75.

[23]J.R.Deslippe,S.W.Simard,Below-groundcarbontransferamong Betu-lananamayincreasewithwarminginArctictundra,NewPhytol.192 (2011)689–698.

[24]P.Kohout,Z.Sy´korova´,M.Bahram,V.Hadincova´,J.Albrechtova´,L. Tedersoo,M.Vohnı´k,Ericaceousdwarfshrubsaffectectomycorrhizal fungal communityof the invasivePinus strobusand native Pinus sylvestrisinapotexperiment,Mycorrhiza21(2011)403–412.

[25]S.J.Robertson,P.M.Rutherford,H.B.Massicotte,Plantandsoil proper-tiesdeterminemicrobialcommunitystructureofshared Pinus–Vacci-nium rhizospheresinpetroleumhydrocarbon contaminated forest soils,PlantSoil346(2011)121–132.

[26]M.Vohnı´k,J.J.Sadowsky,P.Kohout,Z.lhota´kova´,R.Nestby,M.Kolarˇı´k, Novelroot-fungussymbiosisinEricaceae:sheathedericoidmycorrhiza formedbyahithertoundescribedBasidiomycetewith affinitiesto Trechisporales, PLoSONE 7 (6) (2012) e39524, http://dx.doi.org/ 10.1371/journal.pone.0039524.

[27]A.A.Fernando,R.S.Currah,Acomparativestudyoftheeffectsoftheroot endophytesLeptodontidiumorchidicolaandPhialocephalafortinii(Fungi Imperfecti)onthegrowthofsomesubalpineplantsinculture,Can.J. Bot.74(1996)1071–1078.

[28]A.Jumpponen,J.M.Trappe,Darkseptateendophytes:areview of facultativebiotrophicrootcolonizingfungi,NewPhytol.140(1998) 295–310.

[29]A.Jumpponen,DarkseptateendophytesaretheyMycorrhizal? My-corrhiza11(2001)207–211.

[30]A.Menkis,J. Allmer,R.Vasiliauskas,V.Lygis,J.Stenlid,R.Finlay, Ecologyandmolecularcharacterizationofdarkseptatefungifrom roots,livingstems,coarseandfinewoodydebris,Mycol.Res.108 (2004)965–973.

[31]C.R.Gru¨nig,V.Queloz,T.Sieber,O.Holdenrieder,Darkseptate endo-phytes(DSE)ofthePhialocephalafortiniis.l.–Acephalaapplanata spe-ciescomplex intree roots:classification, populationbiology, and ecology,Botany86(2008)1355–1369.

[32]C.R.Gru¨nig,V.Queloz,A.Duo,T.N.Sieber,PhylogenyofPhaeomollisia piceaegen.sp.nov:adark,septate,conifer-needleendophyteandits relationshipstoPhialocephalaandAcephala,Mycol.Res.113(2009) 207–221.

[33]T.Lukesˇova´,P.Kohout, T.Veˇtrovsky´,M. Vohnı´k,Thepotential of darkseptateendophytestoformrootsymbioseswithectomycorrhizal andericoidmycorrhizalmiddleEuropeanforestplants,PLoSONE10(4) (2015)e0124752,http://dx.doi.org/10.1371/journal.pone.0124752. [34]M.Vohnı´k,J.Albrechtova´,M.Vosa´tka,Theinoculationwith

Oidioden-dronmaiusandPhialocephalafortiniialtersphosphorusandnitrogen uptake,foliarC:NratioandrootbiomassdistributioninRhododendron cv.Azurro,Symbiosis40(2005)87–96.

[35]J.D.Zijlstra,P.Van’tHof,J.Baar,G.J.M.Verkley,R.C.Summerbell,I. Paradi, W.G. Braakhekke, F.Berendse,Diversity ofsymbiotic root endophytesoftheHelotialesinericaceousplantsandthegrass, Des-champsiaflexuosa,Stud.Mycol.53(2005)147–162.

[36]F.Usuki,K.Narisawa,Amutualisticsymbiosisbetweenadarkseptate endophyticfungus,Heteroconiumchaetospira,andanonmycorrhizal plant,Chinesecabbage,Mycologia99(2007)175–184.

A.Hamimetal./C.R.Biologies340(2017)226–237 236

(14)

[37]L.Wu,Y.Lv,Z.Meng,J.Chen,S.Guo,Thepromotingroleofanisolateof dark-septatefungusonitshostplantSaussureainvolucrataKar.etKir, Mycorrhiza20(2010)127–135.

[38]K.K.Newsham,Ametaanalysisofplantresponsestodark-septateroot endophytes,NewPhytol.190(2011)783–793.

[39]C.Tellenbach,C.R.Gru¨nig,T.N.Sieber,Negativeeffectsonsurvival and performance of Norway spruce seedlings colonized by dark septate rootendophytes areprimarilyisolate dependent,Environ. Microbiol. 13 (2011) 2508–2517, http://dx.doi.org/10.1111/j.1462-2920.2011.02523.x, PMID:21812887.

[40]L.Sun,K.Pei,F.wang,Q.Ding,Y.Bing,B.Gao,Y.Zheng,Y.Liang,K.Ma, Differentdistributionpatternsbetweenputativeericoidmycorrhizal andotherfungalassemblagesinrootsofRhododendrondecoruminthe SouthwestofChina,PLoSONE7(11)(2012)e49867,http://dx.doi.org/ 10.1371/journal.pone.0049867.

[41]T.R.Horton,T.D.Bruns,Multiple-hostfungiarethemostfrequentand abundantectomycorrhizaltypesinamixedstandofDouglasfir (Pseu-Pseudotsugamenziesii)andbishoppine(Pinusmuricata),NewPhytol. 139(1998)331–339.

[42]T.A.Ishida,K.Nara,T.Hogetsu,Hosteffectsonectomycorrhizalfungal communities:insightfromeighthostspeciesinmixed conifer–broad-leafforests,NewPhytol.174(2007)430–440.

[43]R.Kjøller,M.Olsrud,A.Michelsen,Co-existingericaceousplantspecies inasubarcticmirecommunitysharefungalrootendophytes,Fungal Ecol.3(2010)205–214.

[44]K.G.Peay,T.D.Bruns,P.G.Kennedy,S.E.Bergemann,M.Garbelotto, A strongspecies–arearelationship foreukaryotic soilmicrobes: island size matters for ectomycorrhizal fungi, Ecol. Lett. 10 (2007)470–480.

[45]D.Johnson,P.J.Vandenkoornhuyse,J.R.Leake,L.Gilbert,R.E.Booth, Plantcommunitiesaffectarbuscularmycorrhizalfungaldiversityand communitycompositioningrasslandmicrocosms,NewPhytol.161 (2004)503–515.

[46]T.F.J.VandeVoorde,W.H.vanderPutten,H.A.Gamper,W.GeraHol,T. MartijnBezemer,Comparingarbuscularmycorrhizalcommunitiesof individualplantsinagrasslandbiodiversityexperiment,NewPhytol. 186(2010)746–754.

[47]T.A.Ishida,A.Nordin,Noevidencethatnitrogenenrichmentaffects fungalcommunitiesofVacciniumrootsintwocontrastingborealforest types,SoilBiol.Biochem.42(2010)234–243.

[48]J.Kjeldahl,NeueMethodezurBestimmungdesStickstoffsin organi-schenKo¨rpern,Z.Anal.Chem.22(1883)366–382.

[49]S.R.Olsen,C.V.Cote,F.S.Watanabe,L.A.Dean,Estimationofavailable phosphorusinsoilsbyextractionwith sodiumbicarbonate,USDA Circular939(1954), 8p..

[50]D.H.Marx,W.C.Bryan,Growthandectomycorrhizaldevelopmentof loblolly pineseedlings infumigatedsoil infectedwith thefungal symbiontPisolithustinctorius,ForestSci.21(1975)245–254.

[51]T.J. White, T. Bruns, S. Lee, J. Taylor, Amplification and direct sequencing offungal ribosomal RNA genes for phylogenetics, in: M.A.Innis,D.H.Gelfland,J.J.Sninsky,T.J.White(Eds.),PCRProtocols: AGuidetoMethodsandApplications,AcademicPress,SanDiego,CA, USA,1990,pp.315–322.

[52]A.Dereeper,V.Guignon,G.Blanc,Phylogeny.fr:robustphylogenetic analysisforthenon-specialist,NucleicAcidsRes.36(2008)465–469.

[53]K.Tamura,J.Dudley,M.Nei,S.Kumar,MEGA4.MolecularEvolutionary GeneticsAnalysis(MEGA)softwareversion 4.0,Mol.Biol.Evol.24 (2007)1596–1599.

[54]https://www.sas.com/en_us/software/analytics/stat.html.

[55]B.Botton,A.Breton,M.Fe`vre,S.Gautier,P.-H.Guy,J.-P.Larpent,P. Reymond,J.-J.Sanglier,Y.Vayssier,P.Veau,Moisissuresutileset nuisiblesimportanceindustrielle,Masson,Paris,1985, 364p.

[56]J.M.Sharples,S.M.Chambers,A.A.Meharg,J.W.G.Cairney,Genetic diversityofrootassociatedfungalendophytesfromCallunavulgaris atcontrastingfieldsites,NewPhytol.148(2000)153–162.

[57]C.Zhang,L.Yin,S.Dai,Diversityofroot-associatedfungalendophytes inRhododendronfortuneinsubtropicalforestsofChina,Mycorrhiza19 (2009)417–423.

[58]K.Obase,Y.Matsuda,Culturablefungalendophytesinrootsof Enkian-thuscampanulatus(Ericaceae),Mycorrhiza24(2014)635–644,http:// dx.doi.org/10.1007/s00572-014-0584-5, PMID:24795166. [59]R. Bergero, S. Perotto, M. Girlanda, G. Vidano, A.M. Luppi,

EricoidmycorrhizalfungiarecommonrootassociatesofaMediterranean ectomycorrhizalplant(Quercusilex),Mol.Ecol.9(2000)1639–1649.

[60]Q.Wang,G.M.Garrity,J.M.Tiedje,J.R.Cole,NaiveBayesianclassifierfor rapidassignmentofrRNAsequencesintothenewbacterialtaxonomy, Appl.Environ.Microbiol.73(2007)5261–5267.

[61]I.Promputtha,S.Lumyong,V.Dhanasekaran,E.H.C.McKenzie,K.D. Hyde,R.Jeewon,Aphylogeneticevaluationofwhetherendophytes becomeSaprotrophsathostsenescence,Microbiol.Ecol.53(2007) 579–590.

[62]G.Tao,Z.Y.Liu,K.D.Hyde,X.Z.Liu,Z.N.Yu,WholerDNAanalysisreveals novelandendophyticfungiinBletillaochracea(Orchidaceae),Fungal Divers.33(2008)101–122.

[63]M.V.Tejesvi, A.L.Ruotsalainen, A.M. Markkola,A.M.Pirttila¨, Root endophytesalongaprimarysuccessiongradientinnorthernFinland, FungalDivers.41(2010)125–134.

[64]L.Tedersoo, K. Paertel,T.Jairus,G. Gates,K. Poldmaa,H. Tamm, Ascomycetesassociatedwith ectomycorrhizas:molecular diversity andecologywithparticularreferencetotheHelotiales,Environ. Micro-biol.11(2009)3166–3178.

[65]S.Hambleton,R.S.Currah,Fungalendophytesfromtherootsofalpine andborealEricaceae,Can.J.Bot.75(1997)1570–1581.

[66]H.D.Addy, S. Hambleton, R.S. Currah,Distribution and molecular characterizationoftherootendophytePhialocephalafortiniialongan environmentalgradientintheborealforestofAlberta,Mycol.Res.104 (2000)1213–1221.

[67]M.Vohnı´k,S.Lukancˇicˇ,E.Bahor,M.Regvar,M.Vosa´tka,D.Vodnik, Inoculationof Rhododendron cv.Belle-Heller with two strainsof Phialocephala fortiniiintwo differentsubstrates, Folia Geobot.38 (2003)191–200.,http://dx.doi.org/10.1007/bf02803151.

[68]G.J.M.Verkley,J.D.Zijlstra,R.C.Summerbell,F.Berendse,Phylogeny andtaxonomyofroot-inhabitingCryptosporiopsisspecies,andC. rhi-zophilasp.nov.,afungusinhabitingrootsofseveralEricaceae,Mycol. Res.107(2003)689–698.

[69]L.Sigler,T.Allan,S.R.Lim,S.Berch,M.Berbee,TwonewCryptosporiopsis speciesfromrootsofericaceoushostsinwesternNorthAmerica,Stud. Mycol.53(2005)53–62.

[70]S.M.Chambers,N.J.A.Curlevski,J.W.G.Cairney,Ericoidmycorrhizal fungiarecommonrootinhabitantsofnon-Ericaceaeplantsina south-easternAustraliansclerophyllforest,FEMSMicrobiol.Ecol.65(2008) 263–270.

[71]T.R.Allen,T.Millar,S.M.Berch,M.L.Berbee,CulturinganddirectDNA extractionfinddifferentfungifromthesameericoidmycorrhizalroots, NewPhytol.160(2003)255–272.

[72]K.Ahlich,T.N.Sieber,Theprofusionofdarkseptateendophyticfungiin nonectomycorrhizalfinerootsofforesttreesandshrubs,NewPhytol. 132(1996)259–270.

[73]C.Kernaghan,Mycorrhialdiversity:causeandeffect,Pedobiologia49 (2005)511–520.

[74]R.B.McKane,L.C.Johnson,G.R.Shaver,K.J.Nadelhoffer,E.B.Rastetter,B. Fry,A.E. Giblin,K. Kielland, B.L.Kwiatkowski, J.A.Laundre,etal., Resource-based niches provideabasis for plant speciesdiversity anddominanceinarctictundra,Nature415(2002)68–71.

View publication stats View publication stats

Figure

Fig. 1. Surface-sterilized root pieces in a Petri dish.
Fig. 2. Slow-growing isolates from Ericaceae members grown on a modified Melin–Norkrans (MMN) medium
Fig. 3. Neighbor-joining tree inferred from rDNA ITS sequences of Ericaceae root endophytic fungi and their closest GenBank matches (with accession numbers)

Références

Documents relatifs

Moreover, differences between forests concerning P concentrations in green leaves doubled those found in both plant P use and concentrations in forest floor litter (values

On the other hand, the correlation values between family and genus levels with TSR were high, suggesting that, in general, the higher taxa (both genera and families) could be used

Through an artificial freezing test in excised needles of seedlings of eight wide sense Mediterranean pine species from contrasting thermal habitats, our aim was to (1) determine the

ةيروهمجلا ةيرئازجلا ةيطارقميدلا ةيبعشلا ةرازو ميلعتلا يلاعلا ثحبلاو يملعلا ةعماج يلليج سبايل يديس / سابعلب ةيلك بادالا تاغللاو نونفلاو

In this review, we have found that: (i) most renal biopsies reported from Africa originates from studies in North Africa, (ii) MCD, FSGS and MCGN are the most common patterns

With this belt pinch and a sufficient solenoid force to stop the note underneath it, the correction of the note's skew is purely a geometric problem.. Simply stated:

The direct asymmetric copper hydride (CuH)-catalyzed coupling of α,β-unsaturated carboxylic acids to aryl alkenes is developed to access chiral α-aryl dialkyl ketones.. A variety

Renault (dir.), La colonie de vacances éducative (pp. The Nuts and Bolts of playground construction. West Point, NY : Leisure Press. Le centre de vacances et de loisirs,