• Aucun résultat trouvé

Mechanics of snow slab failure from a geotechnical perspective

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanics of snow slab failure from a geotechnical perspective"

Copied!
37
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

IAHS Publication, 162, pp. 475-508, 1987

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Mechanics of snow slab failure from a geotechnical perspective

McClung, D. M.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=f02c324d-4f57-455b-9c40-80dd413259e5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f02c324d-4f57-455b-9c40-80dd413259e5

(2)

S e r

National Research

Conseil national

N21d

11

Council Canada

de

mherchn Canada

no.

1520

Institute for

lnstitut de

BLDG

Research in

recherche en

Construction

construction

Mechanics of Snow Slab Failure

From a Geotechnical

by D.M. McClung

ANALYZED

Reprinted from

Avalanche Formation, Movement and Effects

(Proceedings

of the Davos Symposium, September 1986)

IAHS Publication No. 162, 1987, p. 475-508

(IRC Paper No. 1520)

Price $4.50

NRCC 28774

MAY

30 230

B I B L I O T N ~ Q U E

I

I

R

C

Cafe

-

IC19-f ~ -%.

(3)

-T h i s paper i s being d i s t r i b u t e d i n r e p r i n t form by t h e I n s t i t u t e f o r Research Fn C o n s t r u c t i o n . A

l i s t

of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research C o u n c i l

of

C a n a d a , O t t a w a , O n t a r i o ,

Ce document e s t d i s t r i b u 6 sous forme de

tir6-g-par+ m e - 1 1 7 - - - 3 -

-

.

-

.

-

-

- - cons t ru d e s pu l e s t e d e b l l p u b l i c - -- - - c o n e -- - rechc

KIA

I

(4)

Avalnnch? Fornunion) Movemau andEm(Proceedings of the Davos Symposium,

September 1986). IAHS Publ. no. 162,1987.

Mechanics of snow

slab failure from a geotechnical

perspective

D. M. McCLUNG

National Research Council of Canada, 3650 Wesbrook Mall, Vancouver, BC, Canada V6S 2L.2

ABSTRACT F i e l d o b s e r v a t i o n s and measurements show t h a t a1 1 snow s l a b f a i l u r e s have some common features. The p h y s i c a l mechani sms g o v e r n i ng t h e r e 1 ease can d i f f e r g r e a t l y depending on t h e c h a r a c t e r o f t h e deformation i n t h e weak l a y e r o r i n t e r f a c e beneath t h e s l a b where t h e r e l e a s e process i n i t i a t e s . Here two p r o t o t y p e s f o r s l a b avalanche i n i t i a t i o n a r e

c o n s i d e r e d : I. r e l e a s e o f d r y s l a b avalanches where weak l a y e r shear f a i l u r e beneath t h e s l a b i s r e q u i r e d and, 11. r e l e a s e o f f u l l depth avalanches caused by r a p i d g l i d i n g . For avalanches caused by g l i d e , i t i s proposed t h a t t h e snowpack p a r t i a1 l y separates from t h e g l i d e i n t e r f a c e . T h i s reduces d r a g and i n c r e a s e s g l i d e speed. The d e f o r m a t i o n processes f o r b o t h t y p e s of s l a b f a i l u r e a r e reviewed and suggestions f o r f u t u r e r e s e a r c h a r e given.

MEcanique de l a r u p t u r e des d a l l e s de n e i g e dans une p e r s p e c t i v e ggotechnique

RESUME Les o b s e r v a t i o n s e t mesures s u r l e t e r r a i n rnontrent que t o u t e s l e s r u p t u r e s de d a l l e s de n e i g e o n t des t r a i t s communs. Les m6cani sines physiques r E g i ssant 1 e dEcl enchement peuvent v a r i e r grandement s e l o n 1e c a r a c t g r e de l a d E f o r m a t i o n de l a couche f a i b l e ou de 1 ' i n t e r f a c e se t r o u v a n t sous l a d a l l e , oC s'amorce l e processus de dEclenchement. L ' a u t e u r E t u d i e i c i deux hypothgses expl i quant l e dEcl enchement d ' a v a l anches en d a l l e s : I. l e dgclenchement d'avalanches ssches en d a l l e s n 6 c e s s i t a n t l a r u p t u r e de c i s a i l l e m e n t de l a couche f a i b l e se t r o u v a n t sous l a d a l l e , e t 11. l e dEclenchement d'avalanches p l e i n e hauteur causE p a r l e g l i s s e m e n t r a p i d e . Dans l e cas des avalanches dues au g l i ssement, on avance que 1 'a g g l omEration de n e i g e se s6pare p a r t i e l 1 ement de 1

'

i n t e r f a c e de g l i ssement

.

Cela r 6 d u i t l e f r o t t e m e n t e t a c c r o 7 t l a v i t e s s e de g l i ssement. L ' a u t e u r examine 1 es processus de

d 6 f o r m a t i o n pour l e s deux t y p e s de r u p t u r e de d a l l e s e t il propose des v o i e s de recherche pour 1 'a v e n i r .

(5)

SHEAR STRENGTH PROPERTIES OF ALPINE SNOW

F r a c t u r e l i n e s t r a t i g r a p h y i m p l i e s t h a t t h e f i r s t f a i l u r e w i l l o c c u r i n o r a t t h e b o u n d a r i e s of t h e weak l a y e r . M a t e r i a l i n a t h i n weak l a y e r s h e a r e d between two t h i c k e r zones w i l l be s u b j e c t t o p l a n e - s t r a i n s i m p l e s h e a r deformation. Slow p l a n e - s t r a i n s i m p l e s h e a r t e s t s w i t h homogeneous samples w i l l s i m u l a t e t h e s e

deformation c o n d i t i o n s u n l e s s i m p e r f e c t i o n s a r e p r e s e n t .

Macroscopic i m p e r f e c t i o n s a r e e x p e c t e d i n t h e f i e l d and t h e y w i l l c a u s e s t r e s s c o n c e n t r a t i o n s . T h e r e f o r e , deformation r a t e s c a n be h i g h e r , i n s t a b i l i t y can o c c u r e a r l i e r , and a p p l i e d s t r e s s e s can be lower t h a n i n l a b o r a t o r y experiments.

Slow d i r e c t s i m p l e s h e a r e x p e r i m e n t s a r e emphasized because t h e d e f o r m a t i o n p r o p e r t i e s of a l p i n e snow vary s i g n i f i c a n t l y w i t h s t r e s s and s t r a i n s t a t e ; t e n s i o n o r compression t e s t s would be of very l i m i t e d u s e t o s i m u l a t e t h i n weak l a y e r f a i l u r e s e x c e p t t o confirm t r e n d s s e e n i n s h e a r t e s t i n g d a t a . Slow t e s t s a r e i m p o r t a n t t o d u p l i c a t e c o n d i t i o n s b e f o r e n a t u r a l s l a b r e l e a s e . For s l a b f a i l u r e s t h e d e f o r m a t i o n s h o u l d change from c r e e p t o f a i l u r e t o f r a c t u r e . T h i s i s t h e same sequence s e e n i n t h e t e s t s . Slow c o n s t a n t r a t e s h e a r t e s t s (McClung, 1 9 7 7 ) r e v e a l a l p i n e snow t o be a p r e s s u r e s e n s i t i v e , d i l a t a n t s t r a i n - s o f t e n i n g m a t e r i a l 476

D.

M.

McClung

I. DRY SLAB AVALANCHE RELEASE INTRODUCTION

S t u d i e s a t t h e f r a c t u r e l i n e s of f a l l e n d r y snow s l a b s i n d i c a t e t h a t a r e l a t i v e l y t h i n weak l a y e r o r s t r a t u m i s always sandwiched between two s t i f f e r r e g i o n s : t h e s l a b i t s e l f and t h e m a t e r i a l

underneath. T h i s s i t u a t i o n i m p l i e s c o n c e n t r a t i o n of d e f o r m a t i o n i n t h e weak l a y e r under a p p r o x i m a t e l y p l a n e - s t r a i n s i m p l e s h e a r c o n d i t i o n s p r i o r t o t h e a p p e a r a n c e of i m p e r f e c t i o n s . F i e l d and l a b o r a t o r y measurements i n d i c a t e t h a t c o n c e n t r a t i o n of d e f o r m a t i o n i n t h e weak l a y e r o r f a i l u r e p l a n e i s r e q u i r e d f o r a s e l f - c o n s i s t e n t p i c t u r e of d r y s l a b a v a l a n c h e r e l e a s e . The primary deformation f e a t u r e s of a l p i n e snow from slow p l a n e - s t r a i n , s i m p l e s h e a r experiments a r e : weak s t r a i n - s o f t e n i n g , f r i c t i o n a n g l e s i n e x c e s s of s l o p e f a i l u r e a n g l e s and prominent r a t e e f f e c t s .

A c o u s t i c e m i s s i o n measurements i l l u s t r a t e a c r i t i c a l d e f o r m a t i o n r a t e f o r f r a c t u r e i n i t i a t i o n which i s g r e a t e r t h a n c r e e p r a t e s measured i n t h e f i e l d .

When measured s h e a r s t r e n g t h p r o p e r t i e s of a l p i n e snow a r e i n c o r p o r a t e d i n t o c u r r e n t g e o t e c h n i c a l f a i l u r e models, t h e

p r e f e r r e d mechanism f o r s l a b a v a l a n c h e r e l e a s e emerges. A n a l y s i s shows t h a t dynamic p r o p a g a t i o n of s h e a r f a i l u r e s i n t h e weak l a y e r i s t h e most l i k e l y cause. The f a i l u r e models and t h e mechanical p r o p e r t i e s of a l p i n e snow f o r c e t h i s c o n c l u s i o n independent of t h e p r e c i s e d e t a i l s of weak l a y e r deformation. It i s shown t h a t t h e time s c a l e f o r a v a l a n c h e r e l e a s e i s s e n s i t i v e t o t h e d e t a i l s of weak l a y e r d e f o r m a t i o n b u t n o t t h e r e l e a s e mechanism.

(6)

Mechanics of snow slab failure 477 w i t h s i g n i f i c a n t r a t e dependent p r o p e r t i e s . The s h e a r d a t a

p r e s e n t e d i n t h i s paper have been o b t a i n e d by me u s i n g a m o d i f i e d Norwegian G e o t e c h n i c a l I n s t i t u t e (NGI) d i r e c t s i m p l e s h e a r

a p p a r a t u s [Bjerrum and Landva (1966) and McClung (1977)

1.

The t e s t s employ a c y l i n d r i c a l sample 15-20 mm h i g h and 115 mm i n d i a m e t e r s h e a r e d under a c o n s t a n t normal load. These t e s t s have some d e f i c i e n c i e s , a s do a l l l a b o r a t o r y t e s t s . T h e r e f o r e , c a u t i o n i s a d v i s e d i n u s i n g t h e d a t a f o r a n y t h i n g more t h a n g e n e r a l t r e n d s . It was found, f o r example, t h a t p l a n e s t r a i n s i m p l e s h e a r

c o n d i t i o n s a r e n o t m a i n t a i n e d when t h e s h e a r i n g d i s p l a c e m e n t s exceed 5 mm f o r t h e a p p a r a t u s used.

The measurements show c l e a r t r e n d s f o r p r e s s u r e s e n s i t i v i t y i n common w i t h d a t a from s o i l s and sand: i n i t i a l sample modulus ( s t i f f n e s s ) , peak s t r e n g t h and r e s i d u a l s t r e n g t h a l l i n c r e a s e w i t h normal l o a d f o r s i m i l a r samples s h e a r e d a t t h e same r a t e and

temperature. The i n i t i a l t a n g e n t modulus ( s t i f f n e s s ) i n c r e a s e s w i t h normal l o a d i n a n e a r l y l i n e a r manner. It i s d i f f i c u l t t o q u a n t i f y p r e s s u r e s e n s i t i v i t y of peak s t r e s s f o r t h e a v a l a n c h e problem. Due t o d a t a s c a t t e r , v a r i a t i o n s i n s t r e n g t h f o r d i f f e r e n t samples from t h e same l a y e r a r e comparable t o i n c r e a s e s i n s t r e n g t h due t o i n c r e a s e d normal l o a d s ( f o r normal l o a d s i n t h e range of i n t e r e s t ) . Approximate v a l u e s of f r i c t i o n a n g l e s ( p r e s s u r e dependence of peak s t r e s s ) a p p e a r t o be i n t h e range 40'-70°.

These a r e somewhat h i g h e r t h a n t h e range of a v a l a n c h e s l o p e f a i l u r e a n g l e s ( P e r l a , 1976).

The r a t i o of peak s h e a r s t r e s s t o normal s t r e s s f o r i n d i v i d u a l t e s t s i s of g r e a t e r i n t e r e s t h e r e t h a n f o r s o i l s l i d e s because snow s l a b s a r e of c o n s t a n t t h i c k n e s s . The r e s u l t i n g a n g l e s , d e f i n e d from t h e a r c t a n g e n t of t h e r a t i o , a r e i n t h e range 50' t o 80'. These a r e d e f i n i t e l y h i g h e r t h a n s l o p e f a i l u r e a n g l e s . P e r l a (1976) summarizes 194 a v a l a n c h e c a s e s : t h e range i s 25'-55O, and t h e mean i s n e a r 38O. The lower v a l u e s i n t h e f i e l d show a p o t e n t i a l i n f l u e n c e from i m p e r f e c t i o n s p r e s e n t t h e r e .

The t e s t s a l s o show t h a t snow d i s p l a y s q u i t e weak s t r a i n - s o f t e n i n g . T h i s i s probably due t h e h i g h p o r o s i t y of a l p i n e snow. The maximum r a t i o of peak t o r e s i d u a l s t r e n g t h , zp / z

,

i s n e a r 2 b u t t h i s v a l u e would be c h a r a c t e r i s t i c of f i n e g r a i n e z e q u i l i b r i u m forms. Coarse g r a i n e d k i n e t i c forms, which a r e more l i k e l y t o be found i n s l a b f a i l u r e l a y e r s , a p p e a r t o d i s p l a y l e s s s o f t e n i n g . Data from 51 samples s h e a r e d a t a r a t e of 0.15 mm/min (normal s t r e s s range 0.5 t o 5.7 kPa) show t h a t t h e mean v a l u e of z / T ~i s

1.24 w i t h a range 1.01-1.69 and a s t a n d a r d d e v i a t i o n 0.19.' For t h e s e d a t a , d e n s i t i e s a r e from 150-375 kg/m3 and t e s t t e m p e r a t u r e s a r e -5' t o -lO°C.

F i g u r e 1 compares t e s t f a i l u r e v a l u e s (peak s h e a r s t r e s s ) w i t h s l a b a v a l a n c h e f a i l u r e l e v e l s a s a f u n c t i o n of f a i l u r e d e n s i t y . The a v a l a n c h e f a i l u r e v a l u e s a r e d e f i n e d ( P e r l a , 1976) by t h e s h e a r s t r e s s a t t h e bed s u r f a c e (CgH s i n +) where

p

i s d e p t h averaged d e n s i t y , H i s s l a b t h i c k n e s s , g i s a c c e l e r a t i o n due t o g r a v i t y and

+

i s s l o p e a n g l e . The t e s t v a l u e s a r e h i g h e r because t h e y

r e p r e s e n t t h e s t r e n g t h of s m a l l homogeneous samples. The a v a l a n c h e f a i l u r e v a l u e s d e f i n e t h e l o w e s t v a l u e of s t r e n g t h f o r a l a y e r of

(7)

I E - 2 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 D E N S I T Y , k g l m 3 F I G U R E 1 P E A K S H E A R S T R E S S ( F A I L U R E ) L E V E L S F O R S L O W S H E A R T E S T S O N D R Y S N O W ( A ) C O M P A R E D W I T H E S T I M A T E D S H E A R S T R E S S F A I L U R E L E V E L S F R O M A V A L A N C H E F R A C T U R E L I N E D A T A ( o l .

much l a r g e r s i z e . The a v a l a n c h e v a l u e s may i n c l u d e t h e weakening e f f e c t of macroscopic i m p e r f e c t i o n s which a r e l e s s l i k e l y t o be found i n s m a l l t e s t samples.

Rate e f f e c t s found i n t h e t e s t s a r e i m p o r t a n t c l u e s f o r

u n d e r s t a n d i n g t h e s l a b f a i l u r e mechanism. A c o u s t i c e m i s s i o n s were measured d u r i n g s h e a r i n g t e s t s w i t h a B r u e l and K j a e r a c c e l e r o m e t e r (#4375) coupled t o t h e sample w i t h a s i l i c o n e l u b r i c a n t . The

i n s t r u m e n t h a s f l a t r e s p o n s e f o r f r e q u e n c i e s i n t h e r a n g e of s e v e r a l Hz t o s e v e r a l kHz. F i g u r e 2 i l l u s t r a t e s d a t a f o r two d i f f e r e n t samples of c o a r s e g r a i n e d f a c e t e d snow s h e a r e d a t r a t e s of 0.15 mmlmin and 0.012 mmlmin. A t t h e f a s t e r r a t e , t h e number of e m i s s i o n s i n c r e a s e s w i t h s h e a r s t r e s s u n t i l j u s t p r i o r t o r e a c h i n g a peak on t h e s t r e s s - d i s p l a c e m e n t curve. T h e r e a f t e r , t h e r a t e of e m i s s i o n s d e c r e a s e s d u r i n g s t r a i n - s o f t e n i n g and l e v e l s o f f when t h e r e s i d u a l s t r e n g t h i s a t t a i n e d . For t h e s l o w e r t e s t , a c o u s t i c e m i s s i o n s a r e v i r t u a l l y a b s e n t and, even though t h e sample d i l a t e d , a peak s h e a r s t r e s s was n o t observed d u r i n g 4 mm of s h e a r i n g .

The p a t t e r n of a c o u s t i c e m i s s i o n s observed d u r i n g s h e a r i n g i s s u g g e s t i v e ( b u t n o t p r o o f ) of s l i p s u r f a c e formation. A l l

g e o t e c h n i c a l and g r a n u l a r m a t e r i a l s which d i l a t e and s t r a i n - s o f t e n a r e known t o form s l i p s u r f a c e s . The e m i s s i o n p a t t e r n ( F i g . 2 ) shows t h a t sample damage b e g i n s p r i o r t o r e a c h i n g peak s t r e s s . The r e l a t i v e l y c o n s t a n t r a t e of e m i s s i o n s a t t h e r e s i d u a l s t r e s s l e v e l may i n d i c a t e d e f o r m a t i o n on a s l i p s u r f a c e . I f s l i p s u r f a c e f o r m a t i o n t a k e s p l a c e , a s e x p e c t e d , i m p o r t a n t consequences a r e

(8)

Mechanics of snow slab failure 479 0 1 2 3 d 5 D I S P L A C E M E N T , m m F I G U R E 2 1 a l S H E A R S T R E S S - D I S P L A C E M E N T C U R V E - F O R A S A M P L E S H E A R E D A T A R A T E O F 0 . 1 5 m m l m i n . A C O U S T I C E M I S S I O N S ( C O U N T S / ~ ~ ~ . 1 A R E D E N O T E D B Y 0-0 D I S P L A C E M E N T . r n m F I G U R E 2 ( b l C U R V E S F O R A S A M P L E S I M I L A R T O T H A T I N 2 ( a ) S H E A R E D A T A R A T E O F 0 . 0 1 2 m m l r n i n . T E S T T E M P E R A T U R E - 8 " G F O R B O T H S A M P L E S A N D D E N S I T Y 3 2 0 k g / m

.

(9)

expected; t h e y w i l l a c t a s s t r e s s c o n c e n t r a t o r s even i f n a t u r a l i m p e r f e c t i o n s a r e a b s e n t .

The r a t e e f f e c t s (Fig. 2) a r e s i m i l a r t o t h o s e shown by S t . Lawrence (1977) f o r samples deformed i n t e n s i o n and

compression. He a t t r i b u t e s t h e l a c k of e m i s s i o n s a t slow r a t e s a s an i n d i c a t i o n t h a t t h e sample i s deforming almost e n t i r e l y by p l a s t i c flow. From Fig. 2 t h e c r i t i c a l r a t e of s h e a r i n g f o r s i g n i f i c a n t numbers of a c o u s t i c e m i s s i o n s i s on t h e o r d e r of 0.1 mmlmin. T h i s i s e q u i v a l e n t t o a s t r a i n - r a t e on t h e o r d e r of 1 0 ~ s e c . St. Lawrence showed t h a t r a t e s n e a r 1 mm/min a r e f a s t enough t o c a u s e f r a c t u r i n g i n t e n s i o n t e s t s f o r 200 mm l o n g samples. Salm (1971) n o t e d s t r a i n - s o f t e n i n g i n t e n s i o n t e s t s a t r a t e s n e a r 0.1 mm/min (150 mm l o n g samples). Salm a l s o n o t e d a

c r i t i c a l r a t e of d e f o r m a t i o n n e a r 1 mm/min a t which b r i t t l e e f f e c t s 1 began t o dominate i n compression t e s t s . K i n o s i t a (1967) found a

c r i t i c a l deformation speed f o r compression t e s t s n e a r 1 mm/min. T h i s d e f i n e d t h e t r a n s i t i o n from p l a s t i c t o b r i t t l e behaviour i n h i s t e s t s . K i n o s i t a a l s o showed t h a t d e f o r m a t i o n speed i s more fundamental t h a n s t r a i n - r a t e i n d e t e r m i n i n g t h e t r a n s i t i o n . I f one u s e s s t r a i n - r a t e i n s t e a d , t h e sample h e i g h t must be s p e c i f i e d .

Here I wish t o a d o p t K i n o s i t a ' s (1967) p r e s c r i p t i o n f o r

d e f o r m a t i o n speed t o compare w i t h f i e l d d a t a . The s h e a r i n g t e s t s show t h a t s i g n i f i c a n t numbers of a c o u s t i c e m i s s i o n s a p p e a r f o r r a t e s n e a r 0.1 mm/min. For a 1 m t h i c k s l a b , d e f o r m a t i o n a t 0.01 mm/min a t t h e t o p of a s l a b i m p l i e s a s h e a r s t r a i n - r a t e of 1 0 ~ / s e c . This i s comparable t o t h e f a s t e s t observed c r e e p r a t e s (McClung, 1975) i n low d e n s i t y snow. C o n c e n t r a t i o n of d e f o r m a t i o n i n t h e weak l a y e r i s r e q u i r e d t o b o o s t r a t e s above t h o s e e x p e c t e d i n t h e s l a b . It seems 1-2 o r d e r s of magnitude h i g h e r r a t e s a r e needed t o a c h i e v e t h e h i g h number of a c o u s t i c e m i s s i o n s and s t r a i n - s o f t e n i n g behaviour which p r e c e d e a f r a c t u r e c o n d i t i o n .

The c r i t i c a l r a t e s f o r f a i l u r e can be a c h i e v e d i n s e v e r a l ways. Yamamoto (1978) s t u d i e d a problem s i m i l a r t o t h e p h y s i c a l s i t u a t i o n h e r e , b u t f o r t e n s i l e s t a t e s of s t r e s s . Assuming a weak l a y e r c o n s i s t i n g of m a t e r i a l w i t h s l i g h t l y l a r g e r v o i d volume f r a c t i o n t h a n t h e remainder of t h e specimen h e showed t h a t t h e r a t e of d e f o r m a t i o n c a n i n c r e a s e c o n t i n u o u s l y w i t h i n t h e band compared t o t h e s l a b . He a l s o found a g r e a t l y reduced s t r a i n a t which

i n s t a b i l i t y o c c u r s i n t h e weak band once d e f o r m a t i o n c o n c e n t r a t e s t h e r e . A second p o s s i b i l i t y f o r i n c r e a s i n g t h e l o c a l r a t e s of deformation under n a t u r a l c o n d i t i o n s i s t h e p r e s e n c e of n a t u r a l i m p e r f e c t i o n s . By analogy t o f r a c t u r e mechanics, t h e d e f o r m a t i o n r a t e i n s i d e o r n e a r t h e boundary of a f l a w may e a s i l y be s e v e r a l o r d e r s of magnitude g r e a t e r t h a n one found i n e x p e r i m e n t s w i t h homogeneous samples. Without f u r t h e r i n f o r m a t i o n , I assume b o t h of t h e s e e f f e c t s can a c t t o g e t h e r t o i n i t i a t e t h e f a i l u r e p r o c e s s f o r n a t u r a l s l a b r e l e a s e .

Another d r a m a t i c r a t e e f f e c t i s s e e n i n t h e t e s t d a t a f o r low d e n s i t y snow. I f a low d e n s i t y snow sample i s s h e a r e d v e r y s l o w l y , i t i s p o s s i b l e t h a t s e t t l e m e n t e f f e c t s (due t o t h e normal l o a d ) can, exceed t h e s h e a r i n g deformation. F i g . 3 shows t e s t d a t a from two s i m i l a r samples s h e a r e d a t d i f f e r e n t r a t e s under t h e same normal

(10)

Mechanics of snow slab failure 1 . 0 I I I I

-.---

/ox--- -0 0.5 -

-

.

/ / do.

-.--/-

-8.1. 0 . 5

-

O-"o\

-

1. 0

-

l

10

o

- 1 . 5 I I H O R I Z O N T A L D I S P L A C E M E N T , m m F I G U R E 3 S H E A R S T R E S S - D I S P L A C E M E N T A N D S E T T L E M E N T - D I L A T I O N V E R S U S H O R I Z O N T A L D I S P L A C E M E N T F O R T W O L O W D E N S I T Y S A M P L E S S H E A R E D A T D I F F E R E N T R A T E S U N D E R T H E S A M E N O R M A L L O A D ( 1 . 8 9 k P a ) . D E N S I T Y 1 8 0 k g l m 2 F O R B O T H S A M P L E S .

load. The sample in the slow test contracts and strain-hardens because settlement dominates over shear deformation. Thus, this test becomes effectively a compression test. The other sample is sheared an order of magnitude faster and it exhibits the usual I dilatant, strain- softening behaviour. These observations

illustrate the rate effects observed by Kinosita (1967) in a dramatic way. Also, the effect may help to explain why slab avalanches do not usually initiate on slopes below 2 5 ' . Fgr low density snow (McClung, 1979) settlement effects should be

1

comparable to shearing effects for such low slope angles. This I should make dilatant, strain-softening behaviour (and instability)

more difficult to achieve.

Comparison of the tests and field data show that weak layer failures are of a different character than those in the tests;

(11)

s l o p e a n g l e s and s t r e n g t h l e v e l s a r e lower i n t h e f i e l d . I f d e f o r m a t i o n c o n c e n t r a t e s i n t h e weak l a y e r due t o s l i p s u r f a c e f o r m a t i o n o r t h e p r e s e n c e of n a t u r a l i m p e r f e c t i o n s , t h e s e

d i s c r e p a n c i e s s h o u l d d i s a p p e a r . Also, t h e s e s t r e s s c o n c e n t r a t o r s s h o u l d i n c r e a s e t h e r a t e s i n t h e weak l a y e r s o t h a t correspondence between t h e t e s t s and t h e f i e l d i s provided. These r e s u l t s show t h e importance of t h e l a b test d a t a . The t e s t s show t h e

c h a r a c t e r i s t i c s of slow s h e a r f a i l u r e and t h e y a s s i s t i n d e f i n i n g t h e c h a r a c t e r of f a i l u r e s i n t h e f i e l d .

The narrow range of r a t e s f o r which s t r a i n - s o f t e n i n g i s o b s e r v e d i s c r u c i a l t o u n d e r s t a n d i n g t h e mechanism f o r d r y s l a b a v a l a n c h e r e l e a s e . For r a t e s much s l o w e r t h a n 0.1 mrnlmin, a c o u s t i c e m i s s i o n s and b r i t t l e e f f e c t s d i s a p p e a r and t h e m a t e r i a l deforms by p l a s t i c flow. For r a t e s an o r d e r of magnitude f a s t e r , l a r g e s c a l e f a i l u r e p l a n e s form and f r a c t u r e o c c u r s . Deformation r a t e s i n a weak l a y e r s h o u l d p a s s through t h i s r a n g e under n a t u r a l c o n d i t i o n s a s

i n s t a b i l i t y i s approached.

MODELS FOR DRY SNOW SLAB FAILURE

Consider t h e l a y e r e d s t r a t i g r a p h y shown by a v a l a n c h e f r a c t u r e l i n e s t u d i e s . The c h a r a c t e r of t h e d e f o r m a t i o n i n t h e weak l a y e r o r a t i t s b o u n d a r i e s i s t h e c r u x of t h e snow s l a b s t a b i l i t y problem. It i s assumed t h a t t h e i n i t i a l f a i l u r e ( a t t a i n m e n t of peak s h e a r s t r e s s ) o c c u r s i n t h e weak l a y e r o r a t i t s b o u n d a r i e s . S i n c e t h e s l a b i s s t i f f e r and s t r o n g e r , i t i s assumed t o deform a s a l i n e a r e l a s t i c m a t e r i a l i n i t i a l l y ; e x t e n s i o n t o t h e more

r e a l i s t i c v i s c o - e l a s t i c c a s e i s d i s c u s s e d a f t e r t h e s i m p l e r e l a s t i c problem i s s o l v e d .

Weak l a y e r d e f o r m a t i o n s have n o t been measured i n t h e f i e l d . T h e r e f o r e , f a i l u r e c h a r a c t e r i s t i c s from l a b o r a t o r y t e s t s and t h e g e n e r a l c o n c e p t s f o r f a i l u r e of g e o t e c h n i c a l m a t e r i a l s c o n s t i t u t e t h e p r e s e n t s o u r c e s of i n f o r m a t i o n . My approach c o n s i d e r s t h e extremes of d e f o r m a t i o n c o n d i t i o n s p r i o r t o c a t a s t r o p h i c f a i l u r e

( f r a c t u r e ) . The amount of d e f o r m a t i o n b e f o r e f r a c t u r e w i l l depend on t h e a p p l i e d l o a d i n g c o n d i t i o n s .

i) Loading Model

F i r s t , c o n s i d e r l o a d s a p p l i e d t o t h e t o p of t h e snowpack a t a c o n s t a n t r a t e t o s i m u l a t e l o a d i n g by new s n o w f a l l (Fig. 4). The weak m a t e r i a l i n a narrow c r a c k - l i k e zone i s assumed t o

s t r a i n - s o f t e n and deform homogeneously; t h i s d e s c r i b e s t h e minimum deformation c o n d i t i o n s p r i o r t o f r a c t u r e . Shear and normal s t r e s s l o a d i n g i n c r e m e n t s a r e denoted by dzs and dos.

Simple i n c r e m e n t a l e l a s t i c - p l a s t i c c o n s t i t u t i v e e q u a t i o n s s u f f i c i e n t l y g e n e r a l t o d e s c r i b e t h e weak l a y e r d e f o r m a t i o n a r e g i v e n by Rudnicki (1977). The e n g i n e e r i n g s h e a r and v e r t i c a l s t r a i n i n c r e m e n t s (Fig. 4) dyi and d ~ ~ c o r r e s p o n d i n g t o s t r e s s i n c r e m e n t s dzi and doi a r e r e l a t e d by

(12)

Mechanics of snow slab failure 483

F I G U R E 4

S C H E M A T I C O F A S L A B U N D E R F A R F I E L D L O A D I N G C O N T A I N I N G A W E A K Z O N E W H I C H D E F O R M S A S A S T R A I N - S O F T E N I N G M A T E R I A L .

I

For these equations po is a friction coefficient reflecting pressure dependence of yielding, i3 is the ratio of plastic shear strain increment to plastic normal strain increment. The

I

parameters Ge and Ke are the elastic shear and compression moduli for the slab and h, is a plastic hardening (or softening) modulus which may take

positive

or negative values.

The deformation in the slab must be related to that in the weak zone. The relationship between the two depends on the geometry of the failure zone. A good choice of failure zone geometry for the slab avalanche problem is a very thin ellipsoidal zone. Assuming deformation is homogeneous in the weak zone, the loading increments applied to the slab can be easily related to the weak layer

deformation. From a theorem by Eshelby (1957), Rudnicki (1977) developed the incremental constitutive equations to describe this situation for far field loading

The parameter

5

= a/Lb(l-ve)J whe

(13)

zone. For l i n e a r e l a s t i c s l a b d e f o r m a t i o n , t h e r a t i o of s h e a r s t r a i n s f o r t h e weakened zone and t h e s l a b may be c a l c u l a t e d . With i n c r e m e n t a l l o a d i n g dzs/dos = t a n J, = c o n s t . [McClung, 1 9 8 1 ( b ) ] , t h e r a t i o i s

doi

where f* =

-

i s a f u n c t i o n of hi and t h e c o n s t a n t s . dzi

The s o f t e n i n g modulus, hi, v a r i e s from p o s i t i v e t o n e g a t i v e v a l u e s w i t h deformation. Thus, a c r i t i c a l v a l u e of hi may be d e f i n e d f o r which t h e s t r a i n increment r a t i o i n q u a t i o n ( 3 )

f

becomes unbounded. The v a l u e i m p l i e s h i + 0 a s

-

+ 0. T h i s l i m i t

5

i s e q u i v a l e n t t o a f l a t zone. The s o l u t i o n i m p l i e s a dynamic p r o p a g a t i n g i n s t a b i l i t y w i l l o c c u r f o r a narrow c r a c k - l i k e zone when a peak i s reached on t h e s t r e s s - s t r a i n curve. F i g u r e 5 g i v e s

t h e s o l u t i o n i n g r a p h i c a l farm [ a f t e r R i c e , 1 9 7 9 ( b ) ] . I n g e n e r a l , i n c r e a s i n g s h e a r s t r a i n r a t e s i n t h e weak zone a r e p r e d i c t e d a s t h e l o a d i n g i n c r e a s e s . I n s t a b i l i t y o c c u r s when t h e l i n e ( s l o p e

-

Ge/F;) S H E A R S T R E S S

1-

-

-

dYi S H E A R S T R A I N F I G U R E 5 S C H E M A T I C O F T H E S O L U T I O N T O T H E L O A D I N G M O D E L [ A F T E R R I C E 1 9 7 9 ( b ) ] . S H E A R S T R A I N - R A T E I N C R E A S E S I N T H E W E A K Z O N E W I T H D E F O R M A T I O N . A N D I N S T A B I L I T Y R E S U L T S W H E N T H E C O N N E C T I N G L I N E O F S L O P E

-GI[

B E C O M E S T A N G E N T T O T H E W E A K Z O N E S T R A I N - S O F T E N I N G C U R V E .

(14)

Mechanics of snow slab failure

485

connecting the slab and weak zone deformation curves is tangent to the weak zone deformation curve.

It is not trivial to extend the inclusion analysis to include time dependent loading and visco-elastic effects in the slab. Rice, Rudnicki and Simons (1978) show that the Eshelby relations

( 2 ) must be replaced by integral equations and they provide a solution for a spherical inclusion. From Fig.

5,

approximate extension to the case of visco-elastic deformation (creep) in the slab may be done if loading stops just prior to instability. The elastic unloading stiffness of the surroundings is G,/E. Near to the instability point (peak stress), time dependent reduction of the effective slab modulus by visco-elastic creep will force instability. Time scales should be typically on the order of the appropriate material relaxation time for the loading process in question.

This analysis shows how a narrow zone can fail catastrophically near peak stress without significant strain-softening. The result is reinforced by general concepts for failure of granular and geotechnical materials. For these materials, once a peak is reached on the stress-strain curve, slip surfaces form and such is expected for snow. Under the assumed loading conditions, slip surfaces would further enhance the chances of instability near peak stress. The main reason strain-softening can be monitored in a constant rate of deformation test is that the implied incremental rate of horizontal loading on the sample decreases to small values near peak stress. The shear tests on snow reveal that constant rates of 0.15 mm/min sometimes provoke dynamic failure of the sample at or near peak stress. For tests with constant rate of horizontal loading this effect would surely be amplified.

Given the likelihood of slip surface formation once peak stress is achieved or the probability of imperfections occurring

naturally, intense instability is implied when loading causes the applied shear stress to approach peak stress in the layer. This concept fits observations because most snow slabs ( > 90%) occur when snow is falling.

ii) Constant Load Model

Consider the other extreme: the loads on the weak layer are constant and due to gravity forces caused by the overlying slab. The intention is to describe avalanche releases which occur after loading or storm periods are over. Slabs which release without snowfall or externally applied triggering mechanisms are rare. This is expected since the applied loads must be very near

(slightly below) peak shear stress if release is delayed. For constant loads, more deformation may be tolerated in the weak layer prior to a fracture condition than under loading. The assumption is that a slip surface or natural imperfection in the weak layer (or at its boundaries) may extend by shearing. Palmer and Rice (1973) describe when such a slip surface or band of concentrated deformation can become self-propagating. The important concept is the attainment of a critical length for the band using the Griffith

(15)

486

D.

M. McClung / G R A V I T Y B A N D - 1 F I G U R E 6 S C H E M A T I C O F A S L A B U N D E R L A I N B Y A S H E A R B A N D W I T H S T R A I N S O F T E N I N G T A K I N G P L A C E A T T H E T I P OF T H E B A N D .

criterion in fracture mechanics. With the previous example of a homogeneous zone of fixed size and shape under loading, an exploration of the bounds on weak layer deformation conditions prior to fracture is provided. Neither extreme may be realistic in actual field conditions but they provide reasonable deformation bounds. An intermediate condition seems most appropriate in the majority of cases.

Consider a band of material in a weak layer with inhomogeneous deformation and strain-softening (failure) taking place at the tip of the band. The shear stress drops from peak to a residual value over a characteristic distance w downslope from the band tip. By analogy to small scale yielding in fracture mechanics, the

propagation condition for the shear band (Fig. 6) may be expressed as (Palmer and Rice, 1973).

The integral i[r(b)-rr]db = (rp-rr)6 is performed in the region of strain-softening in which shear stress drops from peak to residual and 6 is slip along the band. The parameter

%

is the mode I1 stress intensity factor from fracture mechanics for in-plane shearing deformation. For an elastic slab and constant residual stress along the band, an expression for the stress intensity factor is [McClung, 1981(b)]

where

z

= j z pg sin

+

dZ (Fig. 6). Equation (4) may be solved for L, fhe critical length of the band beyond which propagation is

(16)

Mechanics of snow slab failure 487

a s s u r e d i n terms of measured s t r a i n - s o f t e n i n g parameters. From parameters measured i n t h e l a b o r a t o r y , L i s e x p e c t e d t o be many s l a b t h i c k n e s s e s i n t h e f i e l d [McClung, 1 9 8 l ( b )

1.

T e n s i l e s t r e s s e s i n t h e s l a b and i n t e n s e i n s t a b i l i t y a r e b o t h i m p l i e d when t h e p r o p a g a t i o n c o n d i t i o n i s approached. The t e n s i l e s t r e s s e s were s t u d i e d by McClung [ 1 9 8 1 ( b ) ] . I f s e v e r e s t r a i n - s o f t e n i n g i s assumed t o have t a k e n p l a c e o v e r a r e g i o n of l e n g t h L, s i g n i f i c a n t t e n s i l e s t r e s s e s can be g e n e r a t e d . However, t e s t d a t a show t h a t a l p i n e snow i s a weak s o f t e n i n g m a t e r i a l . More

i m p o r t a n t l y , s t r a i n - s o f t e n i n g i s s e e n o n l y f o r a narrow range of d e f o r m a t i o n r a t e s . T h i s r a n g e would be d i f f i c u l t t o m a i n t a i n f o r a f a i l u r e p r o c e s s s p r e a d i n g o v e r a wide a r e a . Based upon measured mechanical p r o p e r t i e s of a l p i n e snow i t seems u n l i k e l y t h a t s e v e r e s t r a i n - s o f t e n i n g c o u l d t a k e p l a c e o v e r l a r g e a r e a s t o g e n e r a t e a slow primary t e n s i l e f r a c t u r e a s i m p l i e d by t h e model of P e r l a and LaChapelle (1970). A p p l i c a t i o n of t h e p r e s e n t model and t h e p r o p e r t i e s of a l p i n e snow i m p l i e s i n i t i a t i o n of a s h e a r band a t a s t r e s s c o n c e n t r a t i o n w i t h growth of t h e band by s h e a r i n g u n t i l a c r i t i c a l l e n g t h i s achieved. U l t i m a t e l y i n c r e a s i n g d e f o r m a t i o n r a t e s and r a p i d p r o p a g a t i o n are p r e d i c t e d .

The s h e a r band p r o p a g a t i o n c o n d i t i o n may be e a s i l y extended t o i n c l u d e time dependent l i n e a r v i s c o - e l a s t i c d e f o r m a t i o n i n t h e s l a b . T h i s r e q u i r e s replacement of t h e modulus l / E 1 i n e q u a t i o n

( 4 ) by t h e a p p r o p r i a t e c r e e p compliance f u n c t i o n C ( t ) where t i s time. The compliance f u n c t i o n i s chosen a c c o r d i n g t o t h e t i m e s c a l e d e f i n e d a s t h e l e n g t h parameter w d i v i d e d by t h e s h e a r band p r o p a g a t i o n speed ( R i c e , 1973). Thus, C(0) = l / E 1 ( 0 ) r e p r e s e n t s t h e h i g h speed modulus and C(m) =1/E1(m) i s t h e l o n g time modulus f o r v e r y slow p r o p a g a t i o n . The l a t t e r d e f i n e s t h e t h r e s h o l d s t r e s s i n t e n s i t y f a c t o r below which p r o p a g a t i o n i s n o t e x p e c t e d

I n t h e h i g h speed c a s e , t h e upper l i m i t s t r e s s i n t e n s i t y f a c t o r i s

For i n t e r m e d i a t e v a l u e s , K';<K~ <K;~, p r o p a g a t i o n o c c u r s f o r t h e v a l u e of C ( t ) a p p r o p r i a t e t o band speed and t h e growth of t h e band i s q u a s i - s t a t i c . The time when

%

t a k e s i n t e r m e d i a t e v a l u e s i s of i n t e r e s t t o compare w i t h t h e time s c a l e s f o r a v a l a n c h e r e l e a s e . Once s t o r m l o a d i n g s t o p s , a v a l a n c h e s sometimes r e l e a s e a day o r two l a t e r . A f t e r e x p l o s i v e c o n t r o l , r e l e a s e can o c c u r a n hour o r s o l a t e r . These examples imply s t a b l e growth p e r i o d s of 10-100 t i m e s t h e a p p r o p r i a t e r e l a x a t i o n t i m e (Shinojima, 1967). The p e r i o d s of development a r e comparable t o s t a b l e growth c a l c u l a t e d f o r d e l a y of f r a c t u r e by v i s c o - e l a s t i c e f f e c t s (Wnuk, 1971). Under c o n s t a n t l o a d , t h e time i n c r e a s e s s i g n i f i c a n t l y f o r a l i n e a r v i s c o - e l a s t i c m a t e r i a l i f t h e i n i t i a l v a l u e of I$r i s much lower t h a n K;. I have

(17)

488

D.

M.

McClung d i s c u s s e d a p o s s i b l e example of t h i s e f f e c t f o r a v a l a n c h e r e l e a s e a f t e r e x p l o s i v e c o n t r o l [McClung, 1 9 8 1 ( b ) ] . This a n a l y s i s t o g e t h e r w i t h t h a t from t h e i n c l u s i o n model i l l u s t r a t e s t h e i m p l i c a t i o n s f o r t i m i n g of r e l e a s e s . Long d e l a y s f o l l o w i n g l o a d i n g a r e e a s i e r t o e x p l a i n by t h e t i m i n g e f f e c t s p r e d i c t e d f o r t h e s h e a r band model; d e l a y s up t o 100 t i m e s t h e a p p r o p r i a t e r e l a x a t i o n t i m e a r e

p o s s i b l e . Delays s h o u l d a l s o depend on time dependent e f f e c t s i n t h e weak l a y e r and i t i s n o t p o s s i b l e , a t p r e s e n t , t o s e p a r a t e e f f e c t s i n t h e l a y e r from t h o s e i n t h e s l a b .

Based on e i t h e r t h e s h e a r band model under c o n s t a n t l o a d o r t h e l o a d i n g model, t h e s p e c t a c u l a r t e n s i l e f r a c t u r e a s s o c i a t e d w i t h t h e d r y s l a b a v a l a n c h e s h o u l d be g e n e r a t e d by a r a p i d p r o p a g a t i n g s h e a r i n s t a b i l i t y . S i n c e t h e s e two p i c t u r e s r e p r e s e n t r e a s o n a b l e

deformation extremes f o r t h e weak l a y e r p r i o r t o p r o p a g a t i o n i t i s l i k e i y t h a t t h e more a p p r o p r i a t e i n t e r m e d i a t e c a s e w i l l r e q u i r e t h e same l o g i c . FRACTURE GEOMETRY A p e r s i s t e n t f i e l d o b s e r v a t i o n i s t h a t t h e t e n s i l e f r a c t u r e l i n e i s n e a r l y p e r p e n d i c u l a r t o t h e s h e a r f a i l u r e p l a n e . For t h e g e o t e c h n i c a l m a t e r i a l s , t e n s i l e f r a c t u r e i s e x p e c t e d p e r p e n d i c u l a r t o t h e maximum p r i n c i p a l t e n s i o n s t r e s s . For a p u r e mode I1 c r a c k , t h e d i r e c t i o n of t h e maximum t e n s i o n s t r e s s i s d e f i n e d by S i h and L i e b o w i t z , 1968 from a s t a t i c a n a l y s i s

I n ( 8 ) , 8 i s t h e a n g l e between t h e bed s u r f a c e p l a n e and t h e l i n e p e r p e n d i c u l a r t o t h e d i r e c t i o n of t h e maximum p r i n c i p a l t e n s i o n n e a r t h e band t i p . The s o l u t i o n of ( 8 ) g i v e s 0 = 70.5'. This a n a l y s i s does n o t i n c l u d e dynamic e f f e c t s and i t i s f o r a n i s o t r o p i c m a t e r i s l .

Once p r o p a g a t i o n b e g i n s e i t h e r from l o a d i n g o r s h e a r band e x t e n s i o n t h e r e w i l l be a r e o r i e n t a t i o n of s t r e s s e s a t t h e t i p of t h e p r o p a g a t i n g band [ R i c e , 1 9 7 9 ( a ) ] . T e n s i l e f r a c t u r e w i l l

i n i t i a t e a t t h e b a s e of t h e s l a b n e a r t h e t i p of t h e p r o p a g a t i n g band. Achenbach and Bazant (1975) and Achenbach e t . a l .

(1976 a , b ) show t h a t l a y e r e d s t r a t i g r a p h y ( r e q u i r e d by f r a c t u r e l i n e s t u d i e s ) and dynamic e f f e c t s t o g e t h e r w i l l f o r c e t h e a n g l e f o r t e n s i o n f r a c t u r e a t t h e b a s e of t h e s l a b i n t o t h e r a n g e , 90'

+

l o 0 , r e p o r t e d f o r snow s l a b s ( P e r l a , 1975). The mechanical p r o p e r t i e s of snow make i t l i k e l y t h a t t h e a n i s o t r o p y and dynamic e f f e c t s a c t t o g e t h e r t o produce a t e n s i l e f r a c t u r e l i n e p e r p e n d i c u l a r t o t h e bed s u r f a c e .

DISCUSSION

I have combined t h e mechanical p r o p e r t i e s of a l p i n e snow from s h e a r t e s t s w i t h s i m p l e d e f o r m a t i o n models and t h e g e n e r a l f a i l u r e

(18)

Mechanics of snow slab failure 489

c h a r a c t e r i s t i c s of g e o t e c h n i c a l m a t e r i a l s . When t h e s e e l e m e n t s a r e a p p l i e d t o t h e l a y e r e d s t r u c t u r e i m p l i e d by a v a l a n c h e f r a c t u r e l i n e s t u d i e s , one i s f o r c e d t o t h e c o n c l u s i o n t h a t t h e primary c a u s e of d r y s l a b a v a l a n c h e s i s t h e p r o p a g a t i o n of s h e a r i n s t a b i l i t i e s i n t h e weak l a y e r . The g e n e r a l model which e v o l v e s h a s t h e c a p a b i l i t y t o e x p l a i n e v e r y major observed f e a t u r e of d r y s l a b a v a l a n c h e r e l e a s e and i t i s c o n s i s t e n t w i t h known snow f a i l u r e p r o p e r t i e s .

A t p r e s e n t , t h e o n l y e x p e r i m e n t a l d a t a on slow s h e a r f a i l u r e s f o r a l p i n e snow a r e from s m a l l , homogeneous samples. Large s c a l e , slow i n - s i t u s h e a r t e s t s have a chance t o e x p l a i n t h e d i s c r e p a n c i e s between r a t e e f f e c t s and s t r e n g t h v a l u e s i n t h e l a b o r a t o r y and t h e f i e l d . Such t e s t i n g s h o u l d i n c l u d e n a t u r a l i m p e r f e c t i o n s and f a i l u r e s w i t h i n and a t t h e b o u n d a r i e s of weak l a y e r s i n o r d e r t o i n v e s t i g a t e s i z e e f f e c t s .

I have n o t d e a l t w i t h t e m p e r a t u r e e f f e c t s h e r e b u t t h e y have been mentioned i n p r e v i o u s work [McClung 1979, 1 9 8 1 ( b ) ] . A p r o p e r a n a l y s i s of t e m p e r a t u r e e f f e c t s , even f o r t h e s i m p l e models

d e s c r i b e d , h a s n o t y e t been provided. I n t h e s h o r t t e r m ,

i n c r e a s i n g s l a b t e m p e r a t u r e s s h o u l d promote i n s t a b i l i t y f o r e i t h e r model by d e c r e a s i n g s l a b s t i f f n e s s . However, prolonged c o l d s p e l l s

( l a r g e t e m p e r a t u r e g r a d i e n t s ) c a n produce weakened f a c e t e d c r y s t a l s i n t h e f a i l u r e l a y e r by metamorphism a l s o promoting e a r l i e r

i n s t a b i l i t y f o r any d e f o r m a t i o n c o n d i t i o n s t h e r e .

S i n c e weak l a y e r d e f o r m a t i o n s would be very d i f f i c u l t t o measure i n t h e f i e l d , measurement of a c o u s t i c e m i s s i o n s (e.g. Sommerfeld and Gubler, 1983) may y e t h o l d promise f o r fundamental s t u d y of t h e snow s l a b s t a b i l i t y problem. U l t i m a t e l y , v e r i f i c a t i o n of a v a l a n c h e r e l e a s e mechanisms must come mainly from f i e l d measurements.

11. FULL DEPTH AVALANCHES CAUSED BY GLIDING

INTRODUCTION

S l a b a v a l a n c h e s caused by g l i d e ( s l i p of t h e e n t i r e snowpack o v e r t h e ground) r e q u i r e d i f f e r e n t methods f o r p r e d i c t i o n and c o n t r o l t h a n d r y snow f a i l u r e s . F u l l d e p t h a v a l a n c h e s a r e

d i f f i c u l t t o t r i g g e r u s i n g e x p l o s i v e s and t h e y a r e r a r e l y caused by new s n o w f a l l ( L a c k i n g e r , 1986). The r e l e a s e i s u s u a l l y a s s o c i a t e d w i t h t h e a d d i t i o n of f r e e w a t e r i n t o t h e snowpack. The

c o n v e n t i o n a l e x p l a n a t i o n i s t h a t somehow f r e e w a t e r l u b r i c a t e s t h e i n t e r f a c e o v e r which t h e snowpack g l i d e s t o produce a n u n s t a b l e c o n d i t i o n .

It i s w e l l known t h a t t e n s i l e c r a c k s ( g l i d e c r a c k s ) p r e c e d e f u l l depth a v a l a n c h e f o r m a t i o n . F i e l d measurements show t h a t r a p i d g l i d i n g r e s u l t s when f r e e w a t e r i s added t o t h e snowpack i n s u f f i c i e n t q u a n t i t y . However, r a p i d g l i d i n g a l o n e cannot produce h i g h t e n s i l e s t r e s s e s i n a snowcover; a d e c r e a s e i n b a s a l f r i c t i o n downslope from t h e s i t e of c r a c k f o r m a t i o n i s r e q u i r e d . A

d e s c r i p t i o n of b a s a l f r i c t i o n c o n d i t i o n s when r a p i d g l i d e o c c u r s i s t h e c r u x of t h e s t a b i l i t y problem.

(19)

490

D.

M.

McClung

Rapid g l i d e caused by f r e e w a t e r must be due t o changes i n f r i c t i o n c o n d i t i o n s a t o r n e a r t h e snow-earth i n t e r f a c e . A

d e s c r i p t i o n of t h e s e changes r e q u i r e s a n e x t e n s i o n of snow g l i d i n g t h e o r y . The c o n v e n t i o n a l model [McClung, 1 9 8 1 ( a ) ] p r e d i c t s a r e l a t i o n s h i p between snowpack d r a g and g l i d e v e l o c i t y which depends only on b a s a l geometry and snow v i s c o s i t y . A p r i n c i p a l assumption i s t h a t b a s a l w a t e r i s a n i n f i n i t e s i m a l t h i n f i l m . I f a d d i t i o n a l w a t e r r e a c h e s t h e i n t e r f a c e , o r l a y e r s n e a r t h e i n t e r f a c e , t h e

b a s a l geometry o r snow v i s c o s i t y c a n change. I n o r d e r f o r w a t e r t o r e a c h t h e i n t e r f a c e i n s i g n i f i c a n t q u a n t i t y , p a r t i a l s e p a r a t i o n of t h e snowpack from t h e i n t e r f a c e must occur. When t h i s happens, p a r t of t h e s u b s t r a t e may be drowned r e s u l t i n g i n p a r t i a l l o s s of b a s a l f r i c t i o n . Water i n t h e l a y e r a d j a c e n t t o t h e i n t e r f a c e c a n a l s o reduce t h e snow v i s c o s i t y t h e r e t o i n c r e a s e t h e g l i d e v e l o c i t y producing a s i m i l a r e f f e c t . Due t o d r a i n a g e , t h e s e e f f e c t s c a n b o t h produce t h e f l u c t u a t i o n s i n g l i d e v e l o c i t y which a r e a b s e n t from t h e s t e a d y g l i d e t h e o r y b u t p r e s e n t i n f i e l d measurements. F i e l d o b s e r v a t i o n s show t h a t g l i d e c r a c k s c a n form w i t h o u t f u l l d e p t h avalanches. T h i s i m p l i e s p a r t i a l l o s s of b a s a l f r i c t i o n . When a r e g i o n of t h e i n t e r f a c e i s p a r t l y covered w i t h w a t e r , t e n s i l e s t r e s s e s w i l l be g e n e r a t e d i n t h e snowpack. An a n a l y s i s which s i m u l a t e s t h e s e c o n d i t i o n s shows t h a t a s u b s t a n t i a l a r e a of

t h e b a s a l s u r f a c e needs t o be covered w i t h w a t e r t o e x p l a i n known g l i d e c r a c k f e a t u r e s . The e f f e c t of reduced snow v i s c o s i t y by p r e s e n c e of f r e e w a t e r i n t h e l o w e s t l a y e r c a n be e q u a l l y e f f e c t i v e f o r d r a g r e d u c t i o n . These e f f e c t s w i l l probably a c t t o g e t h e r i n f i e l d s i t u a t i o n s .

A review of t h e b a s i c p r o p e r t i e s of g l i d i n g shows t h a t t h e extended t h e o r y e x p l a i n s t h e major f e a t u r e s . The u n c e r t a i n t i e s about t h e p r o c e s s e s i n v o l v e d i n d i c a t e t h a t more r e s e a r c h i s r e q u i r e d t o produce a d e f i n i t i v e p i c t u r e of a v a l a n c h e r e l e a s e . Some d i r e c t i o n i s g i v e n toward t h a t g o a l .

DESCRIPTIVE PROPERTIES OF SNOW GLIDING

The p r o p e r t i e s of snow g l i d i n g o v e r n a t u r a l rock o r v e g e t a t i v e s u r f a c e s a r e now f a i r l y w e l l known and most r e s e a r c h e r s a g r e e on t h e g e n e r a l c h a r a c t e r i s t i c s . I n d e r Gand and Zupancic (1966) l i s t some of t h e p r o p e r t i e s and my own work [McClung [1975, 1 9 8 1 ( a ) ] g i v e s some a d d i t i o n s . A summary of p r o p e r t i e s f o l l o w s .

( 1 ) There i s g e n e r a l agreement t h a t f o r g l i d e t o o c c u r o v e r a s u r f a c e w i t h roughness t y p i c a l of mountain t e r r a i n , t h e snow-earth i n t e r f a c e must be a t O°C. I n t e r f a c e t e m p e r a t u r e s a t O°C g u a r a n t e e t h e p r e s e n c e of some w a t e r t h e r e . The d i s t r i b u t i o n of f r e e w a t e r a t t h e i n t e r f a c e i s n o t w e l l known.

( 2 ) G l i d e c o n s i s t s of a s t e a d y and a f l u c t u a t i n g component. F l u c t u a t i o n s i n c r e a s e when w a t e r from m e l t o r r a i n f a l l r e a c h e s t h e i n t e r f a c e o r when summer h e a t s t o r e d i n t h e ground m e l t s snow a t t h e i n t e r f a c e . Rapid g l i d e from s t o r e d summer h e a t and i n c r e a s e s i n g l i d e r a t e s due t o r a i n f a l l a r e d e p i c t e d i n F i g . 7 (McClung, 1975).

(20)

Mechanics of snow slab failure 491 I I I r I I I I I I I

/'

; , /

',

- - -

B R U S H Y

-

\

-

T I M B E R E D \ \

-

\

-

\ \ \ -

-

---

-.

-

\ I I 1 I

'.-#

-

1 I I I I I - -

-

I I 1 I I I I I I I L Z

-

0. 05 a

O,lOo

0 21 I 15 1 15 1 15 1 1 5 1 1 5 1 15 3 0 O C T N O V D E C J A N FE B M A R A PR F I G U R E 7 G L I D I N G M E A S U R E M E N T S [A F T E R M C C L U N G , 19751 S H O W I N G H I G H R A T E S I N E A R L Y S E A S O N D U E T O S U M M E R H E A T S T O R E D I N T H E G R O U N D A N D F L U C T U A T I O N S D U E T O R A I N F A L L . ( 3 ) Steady g l i d e r a t e s seem t o i n c r e a s e a s t h e i n t e r f a c e s h e a r s t r e s s i n c r e a s e s due t o t h e a d d i t i o n of new snow ( i n d e r Gand and Zupancic, 1966). This e f f e c t i s i l l u s t r a t e d i n F i g . 8 (McClung,

1975) f o r g l i d i n g on a timbered s l o p e . ( 4 ) G l i d e does n o t u s u a l l y o c c u r on s l o p e s of l e s s t h a n 15' f o r t e r r a i n w i t h roughness normally e n c o u n t e r e d i n a l p i n e a r e a s . ( 5 ) G l i d e does n o t o c c u r on a l l s l o p e s . It i s thought t h a t a r a t h e r smooth i n t e r f a c e s u r f a c e i s r e q u i r e d f o r g l i d i n g t o occur. The f a s t e s t g l i d i n g o c c u r s on smooth r o c k o r g r a s s y s l o p e s . ( 6 ) G l i d e r a t e s on a s u r f a c e covered by v e g e t a t i o n may be s i g n i f i c a n t l y i n f l u e n c e d when t h e v e g e t a t i o n a c t s a s a n anchor. Endo and Akitaya (1978) and Endo (1983, 1985) p r o v i d e a d r a m a t i c

(21)

- Ln 0 21 1 15 1 15 1 15 1 15 1 15 1 15 3 0 O C T N O V D EC J A N F E B M A R A P R F I G U R E 8 G L I D I N G M E A S U R E M E N T S [ A F T E R M C C L U N G . 1 9 7 5 1 S H O W I N G H I G H E R R A T E S O F T H E S T E A D Y G L I D E C O M P O N E N T W I T H I N C R E A S E D S N O W D E P T H . T H E M E A S U R M E N T S W E R E T A K E N O N A T I M B E R E D S L O P E A T T H E S A M E L O C A T I O N I N T W O S U C C E S S I V E Y E A R S . i l l u s t r a t i o n of t h i s e f f e c t f o r f u l l d e p t h a v a l a n c h e r e l e a s e on a bamboo covered s l o o e . ( 7 ) On smooth, g r a s s y s l o p e s t h e e n t i r e snowpack c a n s e p a r a t e from t h e g l i d e i n t e r f a c e t o form f o l d s a f t e r g l i d e c r a c k s form.

( 8 ) The s t e a d y component of g l i d i n g slows a s t h e s e a s o n

p r o g r e s s e s . T h i s may be due t o i n c r e a s e s i n snow v i s c o s i t y a t t h e

snow-earth i n t e r f a c e [McClung, 1981(a)

1.

( 9 ) Normal r a t e s f o r s t e a d y g l i d e a r e on t h e o r d e r of a few mmlday b u t r a t e s of s e v e r a l mm/min a r e n o t uncommon w i t h r e s p e c t t o t h e f l u c t u a t i n g component under u n u s u a l c o n d i t i o n s ( i n d e r Gand and Zupancic, 1966; David, e t . a l . , 1974).

( 1 0 ) Rapid g l i d i n g can c a u s e d e s t r u c t i o n of s o i l l a y e r s by plowing a c t i o n and i n j u r y t o young p l a n t s o r t r e e s a s w e l l a s damage t o s t r u c t u r e s ( i n d e r Gand and Zupancic, 1966).

(11) G l i d i n g a p p e a r s t o be more r a p i d on convex s l o p e s t h a n f o r s l o p e s w i t h o u t c u r v a t u r e o r concave s l o p e s .

I n a d d i t i o n , some c h a r a c t e r i s t i c s a r e known a b o u t g l i d i n g b e f o r e

and a f t e r g l i d e c r a c k formation. P r i o r t o c r a c k f o r m a t i o n , f i e l d

measurements i n d i c a t e t h a t g l i d e r a t e s a r e h i g h e r downslope from

t h e f u t u r e s i t e of t h e c r a c k (e.g. Endo, 1983). J u s t b e f o r e o r

d u r i n g c r a c k f o r m a t i o n , a c c e l e r a t i n g motion (which may be m i l d o r

v i g o r o u s ) i s n o t e d downslope from t h e s i t e of c r a c k f o r m a t i o n .

D e c e l e r a t i n g motion i s found u p s l o p e from t h e c r a c k a f t e r i t forms

( s e e Fig. 9 and Endo, 1983). G l i d e r a t e s t e n d t o be g r e a t e s t a t

(22)

Mechanics of snow slab failure

493 0 20 3 0 1 0 2 0 3 0 1 0 2 0 28 1 0 2 0 3 0 J A N 1 9 7 4 FE B M A R I I I 1 I I I I I C R A C K

-

-

D--a- F 1 - I I I F I G U R E 9 G L I D I N G M E A S U R E M E N T S [ A F T E R E N D O . 1 9 8 3 1 I L L U S T R A T I N G

s

I Z E E F F E C T S A N D L O N G I T U D I N A L D I S T R I B U T I O N O F G L I D E D I S P L A C E M E N T P R I O R T O A N D A F T E R G L I D E C R A C K F O R M A T I O N . T H E M E A S U R E M E N T S W E R E M A D E O N A B A M B O O C O V E R E D S L O P E .

c r a c k s open f i r s t a t t h e snow-earth i n t e r f a c e (Endo and A k i t a y a ,

1978). Measurements of a c o u s t i c e m i s s i o n s (Gubler, p e r s o n a l

communication) a l s o i n d i c a t e a c c e l e r a t i n g motion p r i o r t o o r d u r i n g c r a c k formation.

G l i d e c r a c k f o r m a t i o n depends upon ground roughness a s w e l l a s

s l o p e angle. I n d e r Gand and Zupancic c i t e 30' a s a n approximate

lower l i m i t on s l o p e a n g l e s f o r g l i d e c r a c k i n i t i a t i o n . T h i s v a l u e

i s f o r g r a s s covered o r smooth rock s u r f a c e s . Rougher s u r f a c e s may

r e q u i r e s l o p e a n g l e s i n e x c e s s of 40'. They a l s o s t a t e t h a t c r a c k s

form more o f t e n on convex and s o u t h f a c i n g s l o p e s i n t h e Swiss Alps.

CONCEPTS FROM SNOW GLIDING THEORY

The fundamental problem of snow g l i d i n g t h e o r y i s t o r e l a t e

snowpack d r a g and t h e g l i d e v e l o c i t y . T h i s complicated problem i s

f a r from s o l v e d , b u t some b a s i c e l e m e n t s have been proposed. F i e l d

measurements show t h a t t h e r a t e of g l i d e depends upon t h e roughness

a t t h e snow-earth i n t e r f a c e and snowpack p r o p e r t i e s . Of c e n t r a l

importance f o r r a p i d g l i d i n g i s t h e o b s e r v a t i o n (e.g. i n d e r Gand

and Zupancic, 1966) t h a t g l i d e can have b o t h a s t e a d y and a

non-steady component. For non-steady g l i d e , v a r i a t i o n s i n g l i d e

v e l o c i t y w i t h o u t new s n o w f a l l on time s c a l e s of a day o r l e s s have

(23)

David, e t . a l . , 1974). For t h i s l e n g t h of t i m e , t h e p h y s i c a l c h a r a c t e r i s t i c s of snow a t t h e bottom of t h e snowpack would n o t change s i g n i f i c a n t l y u n l e s s t h e y a r e a f f e c t e d by f r e e w a t e r . I n a d d i t i o n , d a t a and f i e l d o b s e r v a t i o n s show t h a t i m p o r t a n t s o u r c e s of v e l o c i t y i n c r e a s e s a r e p r o c e s s e s which c a n produce a d d i t i o n a l w a t e r a t o r n e a r t h e snow-earth i n t e r f a c e . Examples i n c l u d e : r a i n f a l l , warming t r e n d s c a u s i n g m e l t , geothermal h o t s p o t s o r r a p i d d i s s i p a t i o n of h e a t s t o r e d i n t h e ground a t t h e b e g i n n i n g of t h e snow season. The observed f l u c t u a t i o n s i n g l i d e v e l o c i t y must r e p r e s e n t changes i n t h e b a s a l boundary c o n d i t i o n .

The s t e a d y p a r t of t h e g l i d e p r o c e s s was t h e f i r s t element of t h e problem d e a l t w i t h [McClung, 1 9 8 1 ( a ) ] . A t a g i v e n l o c a t i o n w i t h f i x e d bed geometry and snowpack p r o p e r t i e s , t h e t h e o r y p r e d i c t s a u n i q u e r e l a t i o n s h i p between g l i d e v e l o c i t y and b a s a l s h e a r s t r e s s . It i s assumed t h a t t h e snowpack i s s e p a r a t e d from t h e bed by an i n f i n i t e s i m a l , c o n t i n u o u s w a t e r f i l m . T h i s t h i n w a t e r f i l m a s s u r e s t h a t l o c a l l y t h e c o n t a c t between t h e snowpack and t h e bed does n o t s u p p o r t a s h e a r s t r e s s . Melt-freeze p r o c e s s e s a r e i g n o r e d s o t h e snowpack v e l o c i t y f i e l d i s t a k e n t a n g e n t i a l t o t h e i n t e r f a c e . G l i d e i s c o n s i d e r e d t o o c c u r by c r e e p o v e r t h e i n t e r f a c e roughness o b s t a c l e s . The e f f e c t i v e b a s a l s h e a r s t r e s s o r d r a g i s c a l c u l a t e d a s t h e downslope component of t h e f l u c t u a t i n g normal s t r e s s e s o v e r t h e o b s t a c l e s and t h i s i s r e l a t e d m a t h e m a t i c a l l y t o t h e s l i p v e l o c i t y a t t h e bed.

The s t e a d y t h e o r y t a k e s t h e snow t o deform a s a l i n e a r

c o m p r e s s i b l e v i s c o u s m a t e r i a l ( e q u i v a l e n t t o a Newtonian v i s c o u s f l u i d w i t h n e g l e c t of t h e s t a t i c f l u i d p r e s s u r e t e r m ) (e.g. Salm, 1967). This r e s u l t s i n a l i n e a r e q u a t i o n r e l a t i n g t h e b a s a l s h e a r s t r e s s , T, and t h e g l i d e v e l o c i t y , U , ( F i g . 1 0 )

;

'I-

I --.-*I I '-1

1

ik' S N O W P A C K

J-

\

A X G L I D E F I G U R E 1 0 S C H E M A T I C S H O W I N G G E O M E T R I C A L C O N S T R U C T I O N O F T H E S T A G N A T I O N D E P T H I N T E R M S O F C R E E P A N D G L I D E V E L O C I T Y C O M P O N E N T S [ A F T E R N Y E . 1 9 6 9 1 . M E A N W A T E R T H I C K N E S S , h, F O R Z O N E S O F S E P A R A T I O N M U S T B E R E L A T E D T O T H E B A S A L A R E A C O V E R E D B Y W A T E R I N O R D E R T O l N T E R P R E T T H E E F F E C T O F T H E W A T E R O N R O U G H N E S S .

Figure

Fig.  11 shows relationships between basal shear stress, and glide  velocity.  The assumed conditions are idealized but they are

Références

Documents relatifs

This response is different depending on a given yeast cell's current stage in the cell cycle, so it is important to be able to determine that piece of

More recent studies (Siewierska 1998; Haspelmath 2005; Bickel 2008; papers in this volume) have also shown the relevance of such hierarchies in explaining the alignment

Monetary income, public funds, and subsistence consumption: the three components of the food supply in French Polynesia - a comparative study of Tahiti and Rapa Iti islands...

Ultimately, the results of the thesis show that traditional seawater desalination rules of thumb do not apply: minimum and actual energy requirements of

Voici un bref résumé pour bien comprendre le système des prédalles, avec le béton de deuxième phase et les aspects divers qui interviennent dans la capacité portante. En

Pour toutes ces raisons, par souci d’équité, le Conseil tient à souligner la nécessité de considérer l’ensemble des circonstances actuelles : celles dans

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.. Access

Thermal gradients, winter and summer conditions, for masonry wall insulated on inside. Thermal gradients, winter and summer conditions, for masonry wall insulated