• Aucun résultat trouvé

Solutions for slide 6

N/A
N/A
Protected

Academic year: 2022

Partager "Solutions for slide 6"

Copied!
3
0
0

Texte intégral

(1)

University of Toronto – MAT137Y1 – LEC0501

Calculus!

Solutions for slide 6

Jean-Baptiste Campesato April 3

rd

, 2019

Disclaimer: those arequick-and-dirtynotes written just after the class, so it is very likely that they contain some mistakes/typos…

5.

+∞

𝑛=1

𝑛 3𝑛

Notice that

+∞

𝑛=1

𝑛 3𝑛 =

+∞

𝑛=1𝑛 (1 3 )

𝑛

= 𝑆5(1

3 ) where 𝑆5(𝑥) =

+∞

𝑛=1

𝑛𝑥𝑛 has a radius of conver- gence equal to1(check it).

Hence for𝑥 ∈ (−1, 1)we have:

𝑆5(𝑥) =

+∞

𝑛=1

𝑛𝑥𝑛= 𝑥

+∞

𝑛=1

𝑛𝑥𝑛−1= 𝑥

+∞

𝑛=1

𝑑

𝑑𝑥 (𝑥𝑛) = 𝑥 𝑑 𝑑𝑥 (

+∞

𝑛=1

𝑥𝑛

)= 𝑥𝑑 𝑑𝑥 (

𝑥

1 − 𝑥 )= 𝑥 (1 − 𝑥)2

Hence

+∞

𝑛=1

𝑛

3𝑛 = 𝑆5(1 3 )= 3

4

6.

+∞

𝑛=1

𝑛2 3𝑛

For this question, it is interesting to introduce𝑆6(𝑥) =

+∞

𝑛=1

𝑛2𝑥𝑛whose radius of convergence is1(check it).

Hence for𝑥 ∈ (−1, 1)we have:

𝑆6(𝑥) =

+∞

𝑛=1

𝑛2𝑥𝑛= 𝑥

+∞

𝑛=1

𝑛 ⋅ 𝑛𝑥𝑛−1= 𝑥

+∞

𝑛=1

𝑛 𝑑

𝑑𝑥 (𝑥𝑛) = 𝑥 𝑑 𝑑𝑥 (

+∞

𝑛=1

𝑛𝑥𝑛

)= 𝑥𝑑 𝑑𝑥𝑆5(𝑥)

= 𝑥𝑑 𝑑𝑥 (

𝑥

(1 − 𝑥)2)= 𝑥(1 − 𝑥)2+ 2𝑥(1 − 𝑥)

(1 − 𝑥)4 = 𝑥1 − 𝑥 + 2𝑥 (1 − 𝑥)3

= 𝑥(1 + 𝑥) (1 − 𝑥)3 Hence

+∞

𝑛=1

𝑛2

3𝑛 = 𝑆6(1 3 )= 3

2

(2)

2 Solutions for slide 6

7. 𝑆7(𝑥) =

+∞

𝑛=0

𝑥𝑛 (𝑛 + 2)𝑛!

Notice that the radius of convergence of𝑆7is+∞(check it).

Hence, for𝑥 ∈ ℝ ⧵ {0}: (I am going to divide by𝑥so I’ll treat the case𝑥 = 0after).

𝑆7(𝑥) =

+∞

𝑛=0

𝑥𝑛

(𝑛 + 2)𝑛! = 1 𝑥2

+∞

𝑛=0

1 𝑛!

𝑥𝑛+2 𝑛 + 2 = 1

𝑥2

+∞

𝑛=0

1 𝑛! ∫

𝑥 0

𝑡𝑛+1𝑑𝑡 = 1 𝑥2

𝑥 0

𝑡

+∞

𝑛=0

1 𝑛!𝑡𝑛𝑑𝑡

= 1 𝑥2

𝑥 0

𝑡𝑒𝑡𝑑𝑡

= 1

𝑥2([𝑡𝑒𝑡]𝑥0

𝑥 0

𝑒𝑡𝑑𝑡) Integration by parts

= 1

𝑥2(𝑥𝑒𝑥− 𝑒𝑥+ 1)

And𝑆7(0) = 12 (that’s simply the constant term of the series: all the𝑥𝑛vanishes at𝑥 = 0 except𝑥0which is a notation for1).

Hence𝑆7(𝑥) = {

𝑥𝑒𝑥−𝑒𝑥+1

𝑥2 if𝑥 ≠ 0

1

2 otherwise

8.

+∞

𝑛=0

(−1)𝑛 (2𝑛 + 1)3𝑛

Again, notice that

+∞

𝑛=0

(−1)𝑛 (2𝑛 + 1)3𝑛 =

+∞

𝑛=0

(−1)𝑛 2𝑛 + 1 (

1

√3 )

2𝑛

so we introduce𝑆8(𝑥) =

+∞

𝑛=0

(−1)𝑛 2𝑛 + 1𝑥2𝑛 whose radius of convergence is 1 (check it).

Hence, for𝑥 ∈ (−1, 1) ⧵ {0}(I’m going to divide by𝑥so I avoid the case𝑥 = 0which is not useful to answer this question).

𝑆8(𝑥) =

+∞

𝑛=0

(−1)𝑛

2𝑛 + 1𝑥2𝑛= 1 𝑥

+∞

𝑛=0

(−1)𝑛

2𝑛 + 1𝑥2𝑛+1= 1 𝑥

+∞

𝑛=0

(−1)𝑛

𝑥 0

𝑡2𝑛𝑑𝑡

= 1 𝑥 ∫

𝑥 0

+∞

𝑛=0

(−1)𝑛𝑡2𝑛𝑑𝑡 = 1 𝑥 ∫

𝑥 0

+∞

𝑛=0

(−𝑡2)𝑛𝑑𝑡 = 1 𝑥 ∫

𝑥 0

1

1 + 𝑡2𝑑𝑡 = arctan𝑥 𝑥

And

+∞

𝑛=0

(−1)𝑛

(2𝑛 + 1)3𝑛 = 𝑆8 (

1

√3 )= √3arctan (

1

√3 )= √3𝜋 6 = 𝜋

2√3

(3)

MAT137Y1 – LEC0501 – J.-B. Campesato 3

9.

+∞

𝑛=0

(−1)𝑛𝑛 + 1 (2𝑛)!2𝑛 First notice that

+∞

𝑛=0

(−1)𝑛𝑛 + 1 (2𝑛)!2𝑛=

+∞

𝑛=0

(−1)𝑛𝑛

(2𝑛)! (√2)2𝑛+

+∞

𝑛=0

(−1)𝑛

(2𝑛)! (√2)2𝑛

The second sum is cos(√2).

The first sum is equal to𝑓 (√2)where𝑓 (𝑥) =

+∞

𝑛=0

(−1)𝑛𝑛

(2𝑛)! 𝑥2𝑛 has a radius of convergence equal to+∞(check it).

Then for𝑥 ∈ ℝ,(notice that for𝑛 = 0, the coefficient is zero) 𝑓 (𝑥) =

+∞

𝑛=0

(−1)𝑛𝑛 (2𝑛)! 𝑥2𝑛= 𝑥

2

+∞

𝑛=0

(−1)𝑛

(2𝑛)!2𝑛𝑥2𝑛−1 = 𝑥 2

+∞

𝑛=0

(−1)𝑛 (2𝑛)!

𝑑 𝑑𝑥 (𝑥2𝑛)

= 𝑥 2

𝑑 𝑑𝑥 (

+∞

𝑛=0

(−1)𝑛 (2𝑛)!𝑥2𝑛

)= 𝑥 2

𝑑

𝑑𝑥(cos(𝑥)) = −𝑥sin𝑥 2

Then

+∞

𝑛=0

(−1)𝑛𝑛

(2𝑛)! (√2)2𝑛= 𝑓 (√2) = −√2

2 sin(√2).

And +∞

𝑛=0

(−1)𝑛𝑛 + 1

(2𝑛)!2𝑛=cos(√2) −√2

2 sin(√2)

Notice that if you didn’t think about the√2that’s not a big deal here, indeed:

+∞

𝑛=0

(−1)𝑛𝑛

(2𝑛)! 2𝑛= 𝑔(2) where, if𝑥 > 0,

𝑔(𝑥) =

+∞

𝑛=0

(−1)𝑛𝑛 (2𝑛)! 𝑥𝑛

= 𝑥

+∞

𝑛=0

(−1)𝑛 (2𝑛)!𝑛𝑥𝑛−1

= 𝑥

+∞

𝑛=0

(−1)𝑛 (2𝑛)!

𝑑 𝑑𝑥 (𝑥𝑛)

= 𝑥𝑑 𝑑𝑥 (

+∞

𝑛=0

(−1)𝑛 (2𝑛)!𝑥𝑛

)

= 𝑥𝑑

𝑑𝑥 (cos(√𝑥))

= −

𝑥sin(√𝑥) 2√𝑥

Références

Documents relatifs

Step 2: By the Main Continuity Theorem, we know

Disclaimer: those are quick-and-dirty notes written just after the class, so it is very likely that they contain some mistakes/typos…. Send me an e-mail if you find

If a non-empty subset of ℝ is bounded from below then it admits a greatest lower bound (infimum)..

Une suite de nombres complexes dont la diff´ erence entre deux termes cons´ ecutifs est constante est dite arithm´ etique. Th´

Philippe Langevin (IMATH, universit´ e de Toulon) Mars  1 / 37... repr´ esentation

Philippe Langevin (IMATH, universit´ e de Toulon) Avril  1 / 20...

 Les utilisateurs ou administrateurs de bases de données ne doivent pas utiliser de commandes LMD, telles que INSERT, UPDATE et DELETE, pour mettre à jour les tables de

Catherine Bergeret- Amselek (2002), fait un parallèle entre le corps et le psychisme de la femme enceinte, qui va devoir se dilater pour accueillir l’enfant et le laisser