• Aucun résultat trouvé

A MODEL :I"ORTHE , T W O DIMENSIONAL INTERACTION BETWEEN NON-LINEAR WAVES AND

N/A
N/A
Protected

Academic year: 2022

Partager "A MODEL :I"ORTHE , T W O DIMENSIONAL INTERACTION BETWEEN NON-LINEAR WAVES AND"

Copied!
138
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

"

A MODEL :I"ORTHE , T W O DIMENSIONAL INTERACTION BETWEEN NON-LINEAR WAVES AND

UNIFORM CURRENTS

( BY

@SH A OWENSONG

Athes is submlete dto'tlleSchoolof GraduateSt ud iesin,partia!

fuIn llmentoftherequ i;;e m ents.fc r the degreeof Mastersof

.Engineering .

" .

FACULTY OFE~GINEERINGAN.nAPPLIEDSO{ENCE MEMORIA l/UNIVERSITYOF NEWFOU NDLA.N D

St . John's

October IUBS

Newfoundland Canada

i._",

(6)

I..

"

~"

Per.1as1on~has~been gr a n t ed L'autorhat i o n"1tltd ae c ord'.

f xe the'lila tiona l Librar y of .A 1. BlbUoth~ql!-e-'naHonale C.,aqad a to .ierofll l1l tlJh' du. Canada',de-". i e rofi l. e r

theds'-and to le n d or se ll eeeee thi••··et.de prater au

c.op1eeof tbe f11ll1. ~~i:~ndred~. eUl\plairee du

'~ . \a~t~~r.~ c~~y:~~.h.t~O:~.er~.

L"eut.,aur

lfi;t.u~a;re

\.d'u

~roft ','

,"

" p u b lica..t ion

"r l9hte ...

:~._nd _=~:~;.e~r~01t:e~'~r::;l~:ti~:~ · ' . '

nei t her -t h e theslll nor I}'i -l~ th~lIe nl. ·4",l o n g ll '.

ez ten d ve eztrac"t•...,..;f roll it ~t:ll:tr a i t . de cel l e-ei he '

-.-lIla y·W.printe d or-ot he rwise ; :ofvlfnt- at re illlprllllh 'au.~

- ·;;f~~~C;~r.i::~~~~ : h .i~/h~r ·

.,

:~~~~~::~i~~~~~~:~

_.s a h ll 80n::.

. t . . ; " . . ' .' . -. •: . ",

·I S BN 0-31'5-50469-2

~ , -

~

\

~

(

..

.

~"

...

-

.. ..,;

. ....

.". "...'

. .

' .--~";

~

..'A..' "

. . .. .. :

-,,:", .c'.,.-.,~

(7)

Acknowled gements

~The aut ho r,wis~estoextend his~incere a~preciationfor the help and guidan« givenbyhi"11Uperv:isor:Dl':R:.~..Blldd5ul',d.uringthe worle.on this4 t h e sis.

The author woulda1IoIikejcthank thetechnicalstaft' ofCPniputer·.

.

Servi~ ~d' ihe Facui~y of E~ginee~~

Center'for'CAE

at.Memorial.u~i,

~er'sity

Eor thelr'

b~lp,

consultation

~d

the

s~'.;.}l

;um- aro'und

tinie.~-

'In'

'clOSi~i.

the

a~t~or

wouldlike'

~a e~r~~ his grati(\l~e ~~

:the

:S~~~l

~f GrBdn~t~ ~'tudie8

&nd'

~he

.Facultr1',f

~~gineep~g '~~rAP~~i~~~cien:ce :

.

Eo~ t~e ~~ci~

.•

in' the,

fo.nn~

oE

fel~OW~hi~ ~d .bUrsu~~(·:

,.

:~:. : /

0 '.

I

.i ·

~~

... ; ••

~:.~'

••' .:

~

I'•••· I.'." :: '•.• , .'. ",;;.,. ,'. <:..~.

(8)

. .

The intl'racti?lI or.•wate rwavetra.in~ ~itha uniform current nor- mal to the wave crests is considered.';l'Jiecombinedwav!'current'mo-

wave-currentproperties throughHo •Lo,do.and UoIs establishedby

. ' .

.

where6d=d -do,

au

=

u -

UOThe pre dictionof the combined tion resulting.rrolp the interactlon is assumedstable andIr~otational.

The'velocity.pote.ntlal,!fispersionrelation,theparticle kineinatics and pressuredistribution.~pto th.~ thi~d ord~laredeve~ped.Th~ conse~­

vati~nofmean mass,'komentumand energy of the current- freewave,

~;ve.free

current

~nd combin~d wa.ve:curr~~t

ftelds

bero~e

and

A

th~ ~nteraction-are used, togetherwiththe.dispersionrelat-iOIi.'~nthe".

~;~'es~rfaceto~,erivea:set of~O};Ir non~ncarequations,thro~g:which the ftationshipbetweenH.,Ltd;Uand

s.,

L", do,

u,

~8eetabllshed, whereH~tLo ,d"arerespe ctively the current-freewave~eight.wave

I~ngth, me~n' w~ter 'depth,

arid

o,

the

Wa.Ve-ff,~

current'speed,

!I'

~"_ _ ._ _·~_~peetively-th~~gt~.,_w_a:t~"~d~.p~th"---'-;--c' current speed of the combined

~ave-currentfi.eld-irffirtMirilei;ac~ron.-r---­

Thisis a new approach to an

. · old.

problem.

.

A numericai method is

.

used to solve

the

system.ofnonUnearequationsto calculateR,"L,d, andUwhen given the values

~f

Ho,\,Lo,",do"a.nd,uo.Numerlealre- eulte forthe changes'of wa'!e~eight,-length,waterdepth, and current speed in,the form offi/Ho•LjL o•l.i.d/do,.and.I.i.U/Uo are presen ted,

(9)

!,

usin",the ,:elocity

poten~i~

ofl'heC:;mbinled

~a\~cu,re~;

fieW.and

. ,' .'

' . '

.

the numericalTault. of!I..L,d,ull U.Aco~p&lilO D.betweee the ex~rimen.talrftu,lt.o,(Thom.u(1981)I;lld'the

,ts,*,.

of thepresent ,JIItheory' ispreeeeted , udJurpri~ing.agreement

i.

observed.

DLKullion.

o~

the

rl~'t1oil'st~essi~d en~rgy

tra n. rerinthecom-

-iuned

w1rVe-"tIl'~rent fi~d',

andbtl

the'n~riae~ca1 ~eth~

IUId prec1510n,I'••'\.

tontrolare

gi~:en

hithe

i1,p~~n~ite~~ , .~

..' \ . :..

/~

..,' . - -: . :

, ."

\

~

" \ i ,

,"

,. .

iii

(10)

Contents

1..Introduction

2,Liter etureRev iew

2.1 ,Two DimensionalWaves and UniformCurrent Inter action. 2.2

~hte:e.~t~on o{'W8.v~

and Uniform'Current

'~t

an

~ngl~· .

,. 10

".?,3•

v.ia~~

endShear'curr ent Intera tion. 12

? .

3 Combined we ve-curreneFi.e!~

3.1 Firs't order approximation

13 16 3.{.1 Potentialfun'ction linddispersio:-releticn 16 3.1.2 Properties of.the first order~ave.currentfie~d. . 3.2 Seeoi"id'order approxi:nation .. .

.

3,2.1 Potential (unction enddiepersion

.

relation

19 22 22 3.2.2 Properties ofthe secondorderwave-currentfield 28 3,3 Third orderapproximat ion

3.3.1.Potentialfunctionand dispersionrelat ion 32 3.3.2 Proper~iesof thethird orderwave-currentfield 36

4)Cha nges in Wave an d~urre llt 40

4.1 C~nseryationequat ions: . ... .... .41

, .

4.2.Meen mass, momentum,energy fluxes

4.2.1 Flu xes in a current-free W8.v.efield

iv

43 43

'

.. -

:

'.,:'.

(11)

4.2.2 Fluxes inII.wave-freecurrentfield ... ,'.... . . 46

I ' , ..

.4.2:3 .F~uxes i~a wave-current field../ ... ...• 47

.4.3 Relationshipt betweenL,H,d,Uand

I(

H••de.U". ... Sl 4.4

eon:aput~tion~

eonsldera tlons

and'-r~ul15

.

~

.:...", 5;

.- .!

5 Predictio~ ~ftheCombined Wa ve-C urrent Field'Pr oper.

. ' I

< . .

tie~ "'\ '" ~ .,. . ,- .. 03

"

,- . .

" , ...

compariSbn!'Bet~een

P)esent'Theo; y

~nd Ex~erini.e~t

.71'

- ' .

~ , '. ' "

.7 .?O'lelUS,iOl1~l~ndReecrnmendeflcner~r~Fu~her Res~arch.8.0,'

.

\ "

.

Referen ces . , , . . .. 81

.

.'. : '

: 1 .

FurtherReadings 8j

!

Appendic es 93

103 100

110

"

)

94 A A Discu ssi on onth e RadiationStres.and Energy Transfer

in a

wave-cu~r~nt

Fietd. " \

I · .

DNUl~e ri(:allonllider a ti o ns and Precls lonCOlltrol

C CGmp~terprOgram,

o

SomeNumericalResults

i I

l. ...1 I . ... .

:~;~ "',;~~,~:.,;>,~

. ..

.-:.:

(12)

) Norarions

Tirefollowingnotations!Lreused in this thesis:

C wavevelocit y.;' - waveamplitude;

a; - tho~izontalpart,ideacceJ.erati~n;

~'.. -~vert ical par,tideacceler ation; "

.

'

water depth;

wave- free~urrentenergyfiux;

com.binedwav~currentfieldenergy

ftwc;

acceleration dueto'gravity;

waveheight;

T~lativewave velocity;

'Curre nt -freewa ve energyt1ux;

E.

H

[( wavenumber; wavelength ;

vi

(13)

_;M.

wave-free current-m?m~ntun1flux;

M", current-free wave momentum~u,x;

M",c combined wave current field momentumflux;

P ,pres s ure;

.Qc_. wave-free'cur rent~assflux;

Q",

\..t -

~I"rrent-fr~wav: massflux;

Q :"': -

/comb inedwaveeurrentfield massflux;

.- I "

T .

=-;

wave period; •

J:.

,time; " \

/' u ,I

~W"rentspeed;

horizontal wave particle velocitrl verticalwaveparticle-velodty; . horizont~axis;

. /

j

! :'

verticalaxis;

wave ,frequency;

relative wave frequency;

wave profile;

vii

.r: '--,,;

_/ -

(14)

i>, . i>.

wave-freecurrentfield potential ; I

current-freewavefildlpotential;

com binedwave-currentfieldpoten t ial .

Parametersw}th (with out)eubscj-ipt"0" denote"'the val ue before(after) the interactionbetween the waves andth ecur reu!-

/,"

viii

(15)

Fig.4.1

Fig.4.3

ListofFigures

Wave

len~th

ratioL/L,va eurrentspeed ratidVD/Co'for..

plane W8:ve parameter.s 0;= 0.75rn,Lo""100.~ , m,.do=25.0.~~.

Wavehei~tratio H/Ho.vscurIentspeed rat io Vo/Cofor. planewave.~arameteu0 0= 0.75m,Lo",,1oo,0m,do=:,2~0.m:.

Current,,'cb'ang~' ~atio

(U-Vol/Co

~s

currentspeed

~: tio

Vo/Coforplane~ave.pararneter9ao~0.75·m.'Lo0:=100':6 m,

do";'25.0m. ' ~ . .

Fig.4.4 Depthdiani:ra't)o(d -'do)/v ?>

cu tTe~t ~peed

;a tid ('

'f., I ·Uo1.Coforplen ewevep4rame're'rs00= 0.75 m,Lo=:lO(}.bm,, d..=25.0m. .

.'Fig.5:1 Maximum.:articlevelocity4istri!>uti~nalo.ng~a.terdepth

.forVo/C o_-0.15. \. . ~

1\ . ' ,' .

Maximumpar ticlevelocity ·distribu tion alongwater dept h, forVo/Co=:-0.10.

!. •

Fig:5.3 Maximump'article'!VeIO'Citydistributionalon't.wa.terdep th;',

fo~Vo/Co=: -0.05. , •

"

--

Fig 54 Mexim usn.p eet iclevelocitydistri b ut ionalong waterdepth.

,forVolCo

=

0.00 .

F.ig.5.5 Maximumparticlevelocitydistributionalong waterdeptl~

forVo/C o=0.05.. .

(16)

Fig.5.6

Fig.. 5.7

~;g.• .9

,.

Fig .5.10

."..:.';

Maximumparticl~v10citydistributionalong water depth,

forV.I C. ""0.10.' . •

Maximu m particl evelocitydist ri bution alongwa terdepth, forV.le.~0.15 . ..

MflXimumparticl e accelcration -distributi o o along water depth,forV.IC.=-0.15 . .

MaxilUum .particle acceler a tion distri bu tio q alongwater depth,forV.IC.=-0.10.

Maximumparti~leacceler a tion'distri but io n alongw-ater .

depth,for

V .IC..

=-0.05. .

Fig~5.11

t. :

Maximumparticle acceleration dist ribut io n along water

depth ,rorV.IC.=0.00. ' ~.'. _ .

Fig .5.1,2"Max imull\partiCIeacceler ationdistrib utionalongwater de,Ptb,~orV./(:•.=0.05. ' \ '

Fig.5.13 Maxi mum particl eacceleration

distributio~ a1o~g

water

depth, for.U.I C.

=

0.10.

Fig.5.14 Maximumparticl eacceleration distributionalong water depth.r?r

u./e.

=0.15.

fig.

5.15 Tra jectori es of partic'j;atz/ d=-G.2inth~wave-current

~ld.,forU.IC.=~O.02. .

Fig.5.16;I'rajector ies ofparticle atz/d""·0.2in the wave-current field,IcrU. /C..=-0.01.

::.-.l·., '::

(17)

J

Fig.5.17

Fig.5.18

Fig.6.1

Fig.6.1

Fig.6~2

·J i g .6.3

Fig.6.4

Fig.6,5

Fig.6.6

Trajeetories"ofparticle.atz/d=-0.2in the. wave-current field,forUo/Co=0.01.

Trajectoriesof particle at;J.s;(=-0.2in thewave-cu rrent field;forUo/Co=0.02. .

Schematicsection of thewind-wave-current£lumin Hydraul icsLab o ra toryusedin Thomas experiments.

Comparisonbetween thepresenttheore ticalpred ictionsend . Thomas (1981) experimentalresults forwaveleng t hchanges.

Comparisonbetween thepresertt

theoretic~ predicti~ns and

Thom~(198 1)expe riment al results for wave heightchang es.

~~i:::~~~;~e:x~::t~:~~:~:~s:i~t~:~th:~~~~~:

horizon t al parti de velocity distributionalong water• depth,torUO,,;;-59.7 mm/B, , Co~pariJlonbetween'the presenttheoreticalpred ictions and Thomas(1 981)experimen talresultsforthewavelike horizont alparticlevelocity distrib utionalongwater depth.forU,:='-116.2mm/s.

Comparisonbetween the present theoreticalpredictions and Thomas(1981).experim entalr~sult8fox the waveiike horizontal partic levelocity distribu tion along water depth,forUo

=

-159.8mm/ s.

Compariso nbetweenthe presenttheoret ical predictions andTho mas(1981 ) experimental rcsultsforthe wavelike .

~:~~t~.n;::1t:c~e2~;~~c:m~:tri~l!tio.n·al~ng

wa ter

"

(18)

'; "".

Lis t of Tables

.::'

Tab.6.1 Comparisonbetweenthemeasured (T homas1981)and th e predicted.(present theory)wavelengthchllI1ges.

Tab . 6.2 CompwliOI1 betweenthe measured (T homas1981 )and thepredicted (prese ntth eory ) wave heightchanges.

Ta.b.6.3 Predictedchanges in currentspeed and mean waterdepth..

Tab.DJ Numerical resultsof wave lengthratioLIL"

Tab.D.2 Numer'i~al r,es~lt8 ofwa~eheightratio... HIH"

Tab.

·0.3

,Nu merical results ofcurren t velocity chan ge ratio

(U7'"U.)X1O~4 '

Tab.D.4 Numerical resultsof water depthchange ratio (d-d. ) x10-4

- ..

xii

(19)

,---... Chap}er 1

Introduction

. . )

\

Accountin gfo.r thea~tionof environmentalloadsonstructu~e8i,s I\"typical tll{~forc~astalandoceanengineers.TJie theorie s for evaluating the loads.

in:duced"by~1I.~es,wi~dand~un.::nthave~lat.ivelY'b~enweit,developed . Ho~eve~,forthat aTtheecmblued effect

o f

waveand currenthavenot.At present, mos t offshore design ofdrillingplatformsend oilBtor.ag~tanksis dorie on the d csJgn wave concept,tha t~8,the forcespredictedon thestruc- tureareassocia ted with themaximum waveto beexperiencedbythe str uc- ture during'itslifetime .Quiteoften,th e presenceofocean ic or wind-driven clfrr ents isneglected'inthe design,o'rconsidere dsepara tely fromth~waves, while rare ly wouldthis quiescentcondition exist . In (ad ,thepresenceof ( cu r rent. willsignificantly influencethewave

8.ctio~

on

st,rUl:;tu~elJ.

Two

examples~ementionedhere,showingthesign ificant magnitudechanges of thewa~eandwave forceby thepresenceof acurren t .S~hu~ann(1974, 1975)reportsthatin theAgulhl;lAcurr entnearSou thAfrica whenthe fully

(20)

I

.developedscawaves~thheighhH- mm~t~iththis currentthe result~. may begiant wavee'wit hwaveheightof18 m oreven more.R.A.Dalrymple (1~73)~~epo;lIth atif th e' maximumhori~vd ocityduetothe design·

waveis16£ps, thent~·prnen~of a 2fpscurrentwould increase thedrag a forceonthestruct ure by over 26%'.evenwhenthe currentvelocity issmall relat ivetothepa.rt~levelocity inducedby thewave motio n.Itillobvious, then,thatraUan a!oft'~hore'design must include the -effect ofcur~ents.

Evaluatingthe combi ned wave-current

r orce z d

nda on.thewellun-.

\ . \ ',

ders t an din g ort,~ewave-curr entinteraction,n Iy theuuders jan dingQ{

the.chenges of the waveand the~rren~,after thein~eractionan~them~el.

ing of thecombinedwave-cunent"fieldfOr1n~'bythe wave~dthecurr ent interact ion.,~ Th eOries.for. IIm~p~-tude. -... w~vesinter actin,;\ with. a~ur.·

.rentha....:eb~developed. see.forexamp~.Longuet-Hiumsand Stewart

(1960,1,961),Dalrymple(1973).Inthese theories the c.ha.ogell inthe'cur-

rent andthe.mean ,",ter depth inducedbyth~inte~actionare neglected.It isthe objec tiveof'thistbelluto~vestigatehigherorderwavesinteraction withacurrent.to model the bigbetorderweve-curreetfieldt.nd to findthe

" . ....

.changesbothin tbe wa veandin the eurrept,as well as in themean water

depth e:.ftertheinter~tion.

Int~is.thesis.t he interacti.onof twodimenslo.nalfiniteamplit udew~ves

and a uniform cu rrentis studied; i.e.finiteamplitudeperi odicalwav es on still water

p~paga't.ing Tn~~

a

:-va~e-free.

iuotationalcurrent in the sameo"r

'::.

",

. .

,' ...::.' '.j.

(21)

opposite direct.ionof wave prof\agation,isconsid ered.. The processoCthe interactionbetween thewaveandthe currentinthis situ ationisassumedto bedlvidedinto threesfuges.Instege'(1)the waveand thecurren tfieldMe

assumed to existseparately. Instage (2)waveandcurr ent encountereach other and theint eractio n betweenG the .waveandthee~rr~il;takee.plece.

This st ageisan unstab leone, since thewaveand curre ntcharacteristics change

~Hh

time. After the

i~terflC~i~n,

in'stage(3)"a

8i~ble,

uniform;irroo

tational.wave-cu rrentfield is'assumedto be formed.Itis forthiscombined wave-cu rrent-Hel dthat..the potential{unction,d~spersion'relation, particle kinema:tics,andpressure distribu tion uptothethi~.1orderar~developed.' The correspond ingphysicalsit uatio nand' possib leexperiment alset:ttpis

~ . .,' "

.

welldescribedin~home.s(1981)and-cit ed'in Chapter'6~{thi~ the~is.Th~

results of thefirstorder (see~.1of,thisthesis)developedb¥the approach"

ofthis thesis qualitati'velycompare well withthatof previousstudies,.!Iuch

.. "

" " .

&.9Longuet-lti~nslandStewart (1961).Furlhermore,thisapproachcould

also be used to

.

fimi"the atreemiunctionsoltitionofa weveend shearcurrent field(S. Song endR..E.B..eddour 1987,R.E.Beddoran Song1088).

Therelationship

..

bet ween

.

thecurrent-freewa ve"'.lengt L.,."waveheight, H~,'wave-freecurrentspeedU".mean we t erd eptbd.befrethe interactio n andtheirtountez:t;afts,'denoted without. subscrip t". Ii" ofthe com'bined. wave-cu~rentfield'isest ab lished by using the:Iun d e menalcons~rvat~nr~

';lations for therrieen rateofm~s,momentumande,ngytransfer for the ,

(22)

consideredfluidflows. Conservation of wave crestsis also assurrred,which impliesthat the wave.periodT remains~onstant.The energy exchange

I .

betweenthewave and thecurre ntistake ninto account. Numerical results

' j

Jorthe variationinLI Lo,

JIll..,

6U/Uo!,.and6.d/d~arepresented.This is a new method for 80lvjnga welldocumented problem, Using this method

, .

.

.notonlythech angesin the current endinthe water depthcould~eealcu- lated,butmore importantly" thecalculationof Ehee;ho.ng es in wave height and wavelengthis done by consideringthe changes inth-ecurr~ntand.in the depth,I'\hich~ho~ldbe,consideredwh'~consideringfinite.amplitude waves Irrteracjiorrwith'a current ..

Complltlsonbetweenthe experimental results of 'Ibomea(1981) andth e

res~lt~~ ~(th~ ~resent :theo~,.

for the

wa.v~' le~&th ~~i~h.t r~tioJ' L i

£0 .'and.HIH..respecrlvely, andthewave particle velocity dis tributionare also

presente d , goodagreeme ntis generallyobserved.

Thethesisis organized)nto seven'~apters, fourappendice-s, alist ofreferences md

a

list offurthe r readings,'FolloWingthis

i~troduction,

Chapter2isalit erature review on thewaye-eutre~tinteractionproblem, Chap~r3presen t sthe velocitypotenti~(unetio;, disperaioa.relationand

~ I . .' .. '

otherpropertiesofthe combined wave-currentfieldupto,tne third order in wave amplitude.Thesep~oper~iesarewr ittenip.~erFs.ofthe waveheigh~

H,wavele~gth

i;

~aterdepthd,and current speedUofthe combined".., w~~e1Jrre.~tf1.eId.In et;.apter4,th e relationshipsbetweenH,L,{i,V, lUld

: ....-,.' >

(23)

.

,

....

H.,L" . d., Uoareest a blishedoyusing the mean

m~s. m~~entum.

en- ergy conservation relati o ns,.lIS wellas.the dispersionrelation.Anumqikal methodis used tocalcul ateH. L,d,Uwhengiventhe values ofHOIL~,dOl andU", .Chap ter5con tains,the predictionofthecom b ined wave-current fieldpropertiesandtheresults~ftheircomputationfor arange ofval~e8 ofthe current

.

ratioU,,/C•.A negativevalue

.

for

." v.le"

indicates

-

B.curr en t opposin gthe'current-freewavepropagati on."Inchapter6,B.comparison between the expc;rimental;esults'ofTh om es(i9 S-1) an d theresultsof the

"p reeen e theoryis presented. Ch apter,7cOllf ain sconclusionsend eugges-:.

ucnef~rfU~Urework..AppendixAcontainsa discussion

on

the radiation stress

and

theene; gy

t~an~rer

in

ih~

combined

wave-current'fiel~.~Nu~er.

ical~'..~si?eratio~9arediscussedjnApp endixB.Th~cOtl'!pulerpro~ra.m9

develop edfor thenumerical sol uti on of thf;nonli nearsystem ofequatlone , ..

~d

wa: e+currentfieldpropertiescalcula timl

tU'~

listed

i~·Ap;endix.C-:-AP:~·---

.:

-.pendix D givessomeofthenumericalresultson theehan geaorwavelength,

.waveheight,current sp eedand thewater depth.

.-

.. ...

(24)

~'itO- '..

Chapter 2 ·

Literature Review

..

The effects

0( .

a followingoropposing uniform currentonthe propagation of surfac'7

gra~ity

Waveswere

fir~t~

discussed by

~n.ra

(1942).andSverdrup

(1D44) andtheir

inve~tigations

w,:re

'basic~lY

on

fi~ding

thechanges in wave length andweveheight kinematic ally.

Johns~n

(1947)found the effectson waves which enteraunifonn current at an

~e

end he

,

sugges te d that

.

..

majoroceancurrent,suchasthe GulfStream,mayhave~app reciableef- feet onthe height,1entth,anddirection of waves approachingthe shoreand undersomecircumst an ces may causealmost completereflection .~Arthur (1950)investigatedtheco~~inedeffectof'nonuniformcurrentandbot t om topographyofshallow waterwavesand made an applicationt~wavesen- - terin.g~.intenseripc~rrent.Sarpkaya (1957) investiga t ed experimentally the height and length changes whenoscillatory gravitywaves propsgated intoflowing water.Ts8.0(1959)studiedthe wave interactionwitheshear current .

I'

...:,'

(25)

Si~ee 1960;tlu~_~p edsofthe in t er ac tio nbe tween gravit ywaves~da currentmotionhave~ceivedincreeai rigattention,fover il:lg awidespectrum ofproblem srM gin g",fro m studieson the co.r:nbinedw~ve- currentfield to

&a.ngCIIin wavea.a:ap~itud~and wave lengt h{ etc..'l'h~wo~ksof D,a1rym p le (19'13,1975),Longue~.Higgin8end SteWart(1960,196 1 ) ,.Whith~(1~62), Peregrine (1976),JOf\8on andSkovgall.l"~(1 9~8),.Bre~_i.kandAu(198 0), 'I'hom es (198 1)ton~e b~tafew,are already.elassic~.':themech anism is intim ately.co lUleete dwitl} theso-calledrad iationstr es s [Lcn gu et- Hlggi ne '..

and

Stew~ I~O, 1 964 1 '""

action

(Breth~rton

and(;;a rret1960,

JO~88on

1978 ,~ra~per1984 )Ill.!wellas meanenergy level(Jon~son1978,and Jon s so n, Br-ink-Kjaeeand Th?m u1978).

Inth\s chap ter-t he beist in gtheOriesarereviewed oyelass ify ing them I

und erthe following three topics:

1.Two~mensionalwave s~dunifbrmcUI'rc~tin te raction;

e.

Interactionofwavesand uniform currentat anangle;

~

,

.

3. Two dimensionalwavesand she ar current interaction.

2.1 Two'DimensionalWavesand Uniform Current Interaction.

..I

Wave inter actionwit h aunifo~current inthe~ameor op posi te directi on , i'.e.twodirnenaional-I'nterac tio n,is atypical probleminthe areaofwav~

andcu rren t interaction.Thepurpose of theexisting theor ies is ms.inly

(26)

-

.

·-" '·'7

':

··'··

,::· ::"":2

··\, ··' ·~·

.

', ' ,'

I ,

,/

/

todevel~me thods,fordetermin!ngthechangesi~w&\.en&thandwave/

heightafterthewaveisaffectedby.th.ecu rrent.Unn.(194 2)el5tabli'hed,~

methodto

determi~e

the changesin

~ve

lengthand'waveheight by

uI~g

. . ~. I

the dispersionrelationandtheenergyconservation equationgiven

b y

the

following two .qoatio", . ' • / .

c=c,+u. (2.1)

.ec; = E(C,;:

Uo) .~)

wherec.o ».eandUare-respectively

th e

wave ee.lerilY:'group velocity,. waveene~~density,andmeancurrent speed;

with

thesubscript"o"'ln di·

eating the parameterbefo rethew~\'etrai nand currentmeetandsub.script

"rWindicating.th~relativevalueoftheparameter.

.Byfurther assumingthatCp==(* tanli 1f~t"&n9.E==lpgH~.:~th

ddenot i ngthe depth and

If

the'wave height.Thechanges in wave-length and wa veheiFht were given&oS

;

..

-

i;

=(

¥;tMh·¥-d+U . ;/(J~tanh'¥;d) ,.

.. .

s. s ,

=l - !Q2C.

(2.3 )

(2.4)

(.

.I'.:

Longuet- HigglneandStewart (1960,1061,HJ64) showed tha tthere WAS 110couplingb~tw.eenthewaves andthe curre nt consideredinUnn~:9

, ·8.

r

."".'

(27)

...method.They foundthechangein,waveheightclynl'ln~allyby consider- - '''-9"""

d in g this coupling.For small amplitudewaveand current in teract ion ,the

B" '\ .:

ch an geinwaveheightwas givenas

f2.5) Some specialsituationshave.also been studiedsucheatheint~raction ofsmallamplitudewaveswithsurface-currents(Thomsonand West 1975), wave andcurrent int\lra.ctionsi.: shallowwater (Yecn end~ilipH186) etc.Brevik and Aas (1980)reviewandstudyexperimental lythe amplitude variation whenperlodic, waves,in it iallyonstillwater,propagatei~to11.,

knowncurrent ted frombelow. They identifya.set downor themean ,Dwatersurfacebecauseof the' current, but the additionalcontribu~ionto the set.down because of thewavesis, asthe~ut it,·completely.negli~ible ...Theproblemof waves propagatingthro~aknownslowly-varyin g , depth independenthorizontalcurrent is also reviewed byCraik(1985).Ba ddour and Song (1988),invest ig a t ed the problembyconsidering thechangesin thecurrent as wellasint~ewater-depth,

Some'experimentsfor specialsit ¥ationsha7ealso been reportedbySerp- kaya (1957), HughesandStewart(1961),Huang, Chen andTung(1072), Br evik and Aee (1980a,198 0b),KempandSimons(1982). G. P.Thomas / (1981) stud ied the problemnumericallyand experimentally,and prcsentecl- results onwave height and wavelength , andthe we...cparticle velocity

J l

(28)

distr ibution in thewave-currentfield,

The obje"ctiveoftheprese ntstudy istoiD* \iga i et~einteractionbe-c..

tweensteeperwaveandaun~cur rent and to develop a metho dof calculatingthechangesboth in,the wave~dcurrentaswellasinthe meamwater depth.

2.2 Int.eraction of Waves and Uniform Cur- rent at an Angle .

Whenwavesmovingthrough stillwaterencounteracurrentatanangle with thewavedirec tion,thewavesarerefracted ,undergoingchangesin length ,steep n ess and

dir~ction ,

Johnso n(1947)

djs~u8sed

thisp; oblem by

usingraytheory. Th edispersionrela.t ionWlI.8eseumecltobe,

S- ~ u. +s...

(2.6)-'

smc sm/3

where ais theinitialangle between the inconiing wa ve and curren tdi', recttcne:fJistheangl e betweentb,e waveand'curren tdirectio ns~terthe interacti on,

Fromtheray theo ryit isknown that "-,

L L.

sin'"=sinO' (2.7)

Thusthe~,8.IlgCllinwavelen g t h,waveheight, andin the anglecouldbe fou,nd , Theyaregivenbythefo llowin g equations

10

"

I

"II

\

(29)

)

,

":

. .

/

(2.8)

(2.9)

-.

~

..J .(2.10)

:,hereM==U-,,/Co.

SiInilady,

'Jom~~

andSkovgeerd(1978)l:lsing"thesamethoo l'; stu die d the,problem

~~

w:Ves

prOPll.~ating

frQIDcurren t'(hto.'

cu~rent U ,

with M,

.

.

angle.Th~re8,!111.1weregivenas

" -- . .

(2.11)

./

where

G,

=

2!( ld .sinh 2K1d . • 2/(Jd

c,

=:sinh2K~d"

-'.

(2.121

.'C2.l4)

...

"

...

wit~subscript s,1and2de~oteth e parameter!.rel~te.JtoU1'and[;,resp ee-'

tively. ). »

Longuet-HigginaandStew&lit(1060) also discussedthj~~roblemI\San ext~nsionoftheirtheory.

11

,-.:.

(30)

\

2.3 Waves an d Shear Current Interat io n

Waveinteraction with a shear current is.:more

~pca.ted

problem, be- cause ofthencnpotentiel propertiesoftheshear~nt.Therefore,investi- gation of this probleminvolves considerationofthestre~functioninstead of thepotentialfunction,andonIrtwo dimensionalsituationhllBbeenstud- ied.Th~existingtheorieson thistopicmainlycoricentr~tedonfindi;' gth~. ,solutionofthe combinedwe ve-eheercurrentfield instead of finding the

changesinthewavelengthandwave height.The beh avior ofsurfacewaves on alinear ly~yingcurrent wasfirstworked-out byTllIO(195~).He~a~e

.the stream function~dthe~ispersion·rel.ationof the'wave-lin~1U'current

field. Delrym ple P973)studied theinteract ionofwaves witha bilinear. eurreet,arid.~adean attempt toanalyse numericallywavesand-nonlinear cu~tinte ract ions;~n~andBaddour(1987)~addourand Song(1988b) investigated theproblem of~avesintera ctionwitha linearcurre nttothe second

o"~~.

Some.:ork hasalsobeen done

on:~re&ting

special situations.

Longue t-Higgins(1961)st udi edthe problemofwaves and current which. variesgradu~lyin thedirect ion~fwave prcpegeticn .Freeman andJohn-• son(1970)investig~tedthe~"ituationof8hall~waterwaYell' onshearflo~s.

Dennis (1973)enelreedthep~obl~mofnon-linear grav ity-capillarysurface

waves in a slowly varying current.

·.1

'""

..

.:

i

\.

\ .1 ·

,/": I~.- ~. -

.12

(31)

Chapter 3

Combined Wave-current Field

Aa.d iscussedin theintroduct ion,the processof the interact ion,betweena wavetrain and a current inthe same01'oppositedirectionofwave prope- gati.~~isassumedt~'rol1~wthree8ta~es.·InBt~geone orthe stageb~roreI, theinterac~ionthecurrent-freewavesand wave-free curreqt areassumed toeiist.in s"taget~.waves propagate into thecurrent,~dhence thein- .terectiontakesplace. The waves andthe currentproperties;as well asthe

"

. .

water depthkeepchanginguntil finally a stable"combinedwave-current field isassumed to beformed, whichishere'~alledthl;! thirdstiige.or the 'stage after theinter acti on'It is forthis combinedwnve-cu rrentfieldthat

the:potentialfunct~on.dispe;sionrelation and.o therpropertie~to,thethi~d .?rder in wave a:mplitudeare developedinthisch~pter.

The following assum ptionsare made:

1.The combinedwave-current field is a two dimensional, lrrc retlonal

( ,

13

(32)

2.The fluidis assumedto be invlscid,incompressibleand homogeneous"

3. TheSea bottom is assumed to behorizontaland impermeable.

Since thecombined wave-currentfieldis assumed to be irrotaeional,

a:

po- (10 tential functionexistsand satisfiesLapl ace's equation,that is

(3.1) everywhereinthe fluiddomain where~_denotesthe potential function of

"

the combined wave-currentfield.

'"'Adop tin"g a system

~fcoor~inates,

with a verticaliy upwards,:c

hbr~.

h,~,'andth~origin onthe Undisturbed fr ee surface,·theb~tto~boundary

<liz=0 %-=-d

wheredis thenie~const":ll't water depthof the wave-current -1ield and subscriptsdenote partial differentiation.

The kinematicfreesurfaceboundary coedirionis

%='1(x,t)

( :rw

where'1is theprofile of the surfaceelevat ionof the combine dwave-current

field. ' "/ .. " (>

The'~icfree surfaceboundaryco~di.tiorican be expressedM 14

r

(33)

"

.~.".,I

for some fqnctionF(t)tobe determined.

I:,.:sreasonable to assume thatthe function'1(z,Odeseribln gth~Cree surface elevationoftheco~bined'wave-curr~tfield is periodicandex- pressedintheform

'>( 3

.s)

~somecons~antsli....to~e.evaluated,and wheretc==2trIListhewave number. 8.I!d(J'is the frequency oft~,eperiodi calmoti~n.Tisthe period .hencefixing(J'all211'IT. "

From theperiodi~tyof~.i.tfollowsthat,~(z. z.t)could

b e

assumed of'. the form

<t-Ao{z):r+

~A

..{,;r).in n{K%-qt)

·~(~.6)

forthe horizontal bottom case.where

A.. .

n:0.l.2...•are functionaof

~only. Keepiag one•t...o, three termsof tjl e sene.intheexpansione

i::'

(3.5)and (3:6)areherecalled first,second or thirdorderapproximat iona.

,I

respectively.

I'

(34)

3.1 F ir st order ap p roximatio n

. ' c'

3.1.1 Pot entialfun ct ionanddispersion rel a t ion

FollQ':;rri,t;-'~I8SBica1

approach(see,forexample,

L~b

1915) equations

\

(3.3)and(3.4) areexp~ded.inaTaylor serie~.abotite

=

O. Keeping onlythe first orderterms ,yi~ld8thekinemati c andthe. dynamicsurface con'ditioos

(3.7)

nnd

I" . •

. i.

+~,+ 2[(~')'+(~.)'J-F(t)·~O (3.8) tobe sati sfied onz

=

0

I Tothefirst order ofap proxim a tion,thefreesurfaceelevation(3.5)and the poten tial funct ion (3.6)arewrittenas

~d

r(=acos(l~,r-<7t ) .(3.9)

wherea

=

H/2 is the amplitudeof the wave'on thesu rface oft~e combin~d field,Ao(~)andA~z)are functions ofz only.

'\

16

)

( F>;.

(35)

Bysubst i,tuting'equation(3.10)ineq~ation(3.1)and by satisfyingthe bott omboun dary condition(3,2),Ao(~)andAt (.:).':lUi'be found in the.

form

wh ereBoendB~areconst an ts to be determine d.Equat ion(3:10) hence becomes-

Ao(z)=Bo (3.11)

(3.12).

" .

To determineBl,equations(3.9)-and{3.13)are~ubstitutedinto the free surfacecond it i6n(3.8)and keeping terms upto thenrat orderin0yields

I

BI

!'

si~h I(d!liAl(I(:t-ut)- -ousin(K.:z:"'"vt )+

/ .-

, "

+Boa](sin(I(x-: (Tt)=0

Fromequation(3.14)

1!f

is .foun d

to

be

Ii':' Sin~I(iC -

B o)

17

(3.14)

(3.1')

<.

(36)

whereC=(T/Kis thctab:solutevelocity of thesu rface disturbanceof the wave-currentfield.Thepotentialfunction41ishence offheform

4>

=

u«+a(C-

U)cos~~(;<; d)~sin(K!

-(Tt) (3.16)

.~.., wh-;;reU

:= s,

is

'4F

aperiodiealpartof thecombinedwav~~tmotion.

Th e dispersion rela tionof.f.l;I.esurfacewaveisf~~ndbyassuminglJP/lJz= 0,on z=,'1.Differep.tiat in g par tia.!lywithres~cttoz, equation(3.8) gives

;J hq

'·a'~.

1

a Q~~ ' 8~ ,

• .; 9a; +ar8t + :;ih !(ihJ' +(a;)]=0 (3.17 ) SuBUituting

~ua~ions·('3.~)'~~

(3.16) into(3.17)

~d

kee:tgthe first o~derterms'Yields

)

-gal<sin([(;i-O't)+

r+a~,:,," U)K.~ C'Oth Kd sin(Kr - O'~t)- -Ua(C~ U)K2 coth ~d sin(Kz-O't) =0

...

(3.18)

(3.19)-, Fromequation(3.18)tbe'followi~gquadrat ic,equa.tionCaDI' o~tained

k . , .

.

.(C:" U )2 - f t an bKd =0

- .

Solving.equation(3.19) yieldsthedispersionrelati onof the combined Wave-currentfieldtobe

18

. ...

.:'".'".".."

. '

(37)

whereC~=[(g/J<) t anhJ(dJl/2=17,./J(isthe celeri ty relativ eto thecurrent streamUand17.is the relat iverfuquency.Equatio n(3.20) is knownas the Doppl errelat ion .

F(t) .in~ernoulli'sequation (3.8)isfound ,by.subst itu.ting:or 11 andt i~equation~3,8),.~

c= u±c,

F(t)~~U'

(3.20)

(3.21)

3.1.2 Pro pert iesofthe firs~orderwav;cur re nt field'

Th e'p~opertiesofthe combined wave-curr ent fieldto thefirs torder

or

ap-

proximationcan bederived from thefirs~orderpot~ntia1functionend-the, dispers ion rela ti on.Theyare listed.below.

1).The velocity potential is given by (3.16)

".

w=Ux + a(C._ V)cos~~~(;(;d) siQ(ICr _ D't)

_(3. 22)

2).Th~.disper sion rela tionwas. found tobe

10

"

._.v"

(38)

where

,ando-isthe relative wavefrequency.

(3.24)

3). Particlevelocity A,

.The x

and

zcomponents~fparticlevelocityV

=

'Vel>i~·thecombined

fieldar~respectivelygiven by

4).Particleacceleration

Thexand z components ofparticle acceleration

DV . a - -

ii=m=(fjt+V.V)V in thecombined field could be obtained inthe form

a"

=

ga](COS~~(;(~d)sin(J( x _

u ;)

20

\

(39)

5).Part iclepath

To find the particletr.ajectoryinthe wave-currentfield,~quations(3.25) and(3.26)at a certain point (Xi,Z;)areintegrated- withrespecttotimet toyiel~

'\sinh f( z;+d) ,

Z=Zi+a sirih I(d COS(I(Xi - Urt ) (3.31) Combining equations (3.30)end(3.3i')thepathoCtheparticlecanalso bewritte nas

where

(Z-Zi)a (:t-%;-Ul)'

~+

- - p- '- -

=1

-i -:

Q_ asinhf((zi+d)

- sinhKd

{j==acoshf((z;

+

d) sin~l(d .

(3.32)

(3.33)

(3.34)

6).Pressuredistri~ution

Thepressure distribution ina.pc tentialflow is givenbyBern oulli's·

eq ua tion in'theCorm

21

(40)

r " ' . " "

P' ;-pg z

_p~._ ~(~)1 + (~)1~ +PF(t) (3.3~)

Substi tut in gF(t)and~from equations(3.21) and(3 .22)in(3.35), the

\ " "

pressu re distri butionin acombined wave-currentfield td' thefirst orderof approximation~uldth en be,obtainedin theform

p

~ -pgz+ psi;~iC ':- ,!)2eosbK(Z

+d}co.s<Kz-O't) (3.36)

3.2 Second order approximaflo"n

3.2.1 Potentialfunction and dispersionrelat ion

Keepingthe secondorde r termsin expressions(3.5)and(3. 6)for

the

surfa ce

elevationandthepoten tial fund.ion,gives thesecond app roximation to the wave-curr entfieldas

and•

of»=.~o{z)%

+

AI(z)~in(Kr-o f)

+

A2(Z)si,e2(Kr-ot) (3.38 )

\.

22

(41)

Substitutin~uB.tion(3.38) into thegoverninge~uation(3.1)the fol- lowingsystem ofordinarydifferentinl equationscouldbeobtained

",.

,

A~(z)

=

0 (3.30) _

(3.40)

(3.41)•

.~

I

Equations(3.39),(3~40)and (3.41)desc~ibeII.system ofo~'dinarydiffer- entialequations, to be solved for Ao(z) ,A1(z )andA~(z) .A prime denotes diffrrentiation with respecttoe,

'The bottombo~ndarycondit ion(3.2) implies that

A;,( , )~O z=-d (3.42)

A;(z )=0 z =- d (3.43)

and

I

A;(z)= O z=-d (3.44)

which on solvingequations(3.39),( 3.40) and(3.41),su~cstthe for?, ofthe function sAo(z ),Adz ):A~(z)for anyconstan t/(,as

23

/.

(42)

(345

1

A,( z )=B,cosh2K(z

+

d)

.(3.46)

.)3.4 7) {orsom~constantsHo, HI. B, tobedetermined. H:ncefor mally~is,to. second order,written intheform

'2'>

=

Box+B.

COSh ; z r +

d)sin(Kx-nt)

+

"-./' .

+B2cosh2K( +d)sin 2(lf x-ut ) (3.4~) Nowexpanding equation(3.3)ina Taylor's series ebout .e

=

0and keepinz;terms uptothe secondorder.yieldsthesecondord er kinematic surfacecon dition

. ,

~ - ~ - ~~ + ~:;~ - :::z~~= O

tobesatis fied onz

= O .

\

(JA9) )

Suhs tit utingequations(3.37)and(3,48)for '1and~,in equ ation(3A9) yields

i

(43)

and

+02B \](2cosh[(d -4\ 8,](2c'?5h2I(d+

+2aIB2I(~ cos~-2'i(

d,-

~a2BIJ(2

poshJ\"d-

-;:~a:BI'1(3'sinh I<'d

:::0

2B2K sinh2I(d-202(1

+

2?2K Bo

+ A-~aIK2~1

cosh Kd'+

~a'IBIJ~2 Ccish I(d

:::0.

(3.50) L:-.:-.

C.

".-:' '.

(3.51)

- ,

. .

On solvingequa tio ns(3.50).and(3.51)thecoefficientsBIand,8 , are determi ne d tob~

B

I=41(C- Bo) sinh KJ

8,

= ( ?-

B('d) [oZ-

.~a:I\

c:oth ; {df

, smh 21 . .2 . ' .(3.53)

.. ...

! '

. .

. For thes~ereasonasfor thefirst ord: r, setting...BQ

·=

Uan,dsubsti- tuting(3.52 ) and(3.53) backin equation{3A 8)the potentialfunction to

. . ,

the secondord er is expres sed as

25

(44)

' -- -

al(C -U) • . .

1'= Uz+ si nh J( d coshl(.t+d).sm(l(z-D't ) +

-cosh 2K (z+d)sin2( Kz -0'1)

..

- .(3.04)

-

\

...

Alsoe~rufdingequation{3.4}in aTaylor 's series~lit.z

=

~.toth8::'"

~econd orde~eldS

the dynamic freesurfaceconditio n inthe form

-,

I

,,+

~

8t+

!I(~)'

2...

ar .

+

(~)'I

8z

-

F(t)+

. .

\ ~'lP40 M.a240 8~a2<1> =0. (3 ) Jj.'tJta:rr+

a;

8z.8z'1

+

£h.a;2'1 .55 to besatisfied on z=.O.

Oifferentiatin g"e<tualion"(3;5S)partiallywith respecttox t;ives.

,

"

. .

:

.26

'; -,

:\.

I' , .

(45)

+?!

o~

8'~ ~ oz' o::r;,

=0 (3:56)

.Onsubstitu ting equation(~.37)and(3.54) intoequation(3.56) thedis- persionrelationand thesecond

~rder

term amplitude

a,

could befo:unV 6 be

'.

I~

\

,- .,'"'..:

-:

,

where

c=

U±C,

\

c.

=

( 7<

tanh[(d)I/2

(M 7)

(3.58)

v

(46)

wher eH

=

2Ulisthe waveheightforthe firstorderv.:ave amplitud e0\.

ltis worth noting that the disper sionrela t ion ofthesecondord erap- proxi mat ionisthe sa meallthefirstorderone .This is in agreementwith theStokes'ssecond,de rwave\heoryf~rthe special case whenthe current

speedUiszero. ./

Bernoulli'sequa tioncons.tantP(t )is foun d to be

(3.60)

3.2.2 Propertie softhe secondorderwave-curr ent field

For conveni enc e thepropertiesofthesecon dorder wav e currentfieldare listedbelow.Inthefollowinga, wit houtesubsc riptI,isused to denote the firs t orderamplit ude.

1).Potentialfunct ionis

<fl

=

Ux

+

a(e_U)cos~~~~(;(;d)sin(I{x _ut)+ +[0.1-~a1J(cothI< d](C ':"" U)·

.cos:~~(~;{; d).,sin 2(I(Z

_O't) (31B)

28

(47)

where

£ -,

a ' = -:rraL2(1+- - , -2$mh3/\ d.-)<othKd (3.62)

1

and a

=

8/2,His thewave height of thecomb inedwe ve-currentji eld . l~ 2)Freesurfacepro~il

'1=dcos(Kz-.(Tt)

+

aJcos2(I(z-at) (3.63 ) (

3).Dispersionrelation~givenby

and

4).Partkle.velocity

c= u±c.

,

c.::::

(k t an h'/l d) I/ J

(3.64)

(3.65).

Thecom po n entsofparticle velocit yMepvenby goKcosbl« :-

+

d) . U

+ -;:-

coshKd cos(I(z~at)+ .+

4~~~~;~d c~h2I((Z

+d)cos2(l\x -at) (3.06)

29-

~l.·

(48)

gaK,sinhK(z

It!) .

(l( )

~~sJn z-ut+

+ ti:1~;~d

'sinh2J(z+d)sin2(/( x- ut) (3.67 )

.

..

.where therelativeIrequencyisdefinedby

.

-'" (3.68)

t,

5).Parti~leacceleration '\ . " .

Thez

and

zcomponentsofparticle accelerationare, tosecondorder.

giveb

oy

,,,... J

Q 6

= g~l~c09~~(;(;~)

sin(l( z-at) +

3Q2J(u2

+(2 sinh4

K d

cosh21((z+

cf1 -

.-

Si~:~dls1n2(l\Z

-at) (3.69)

ga2

K2Ii~i:~~~~

d)_

_

gaKsi~~~i)

cos(Kxrut )-

- ~ ~2~q:d Si~h21«z + d) JOS 2(l(x- ut)

(3.70)

28mhJ(

I .

,

30

(49)

6).Partide path

Thetrajelttory ofa particle,initiallylocatedat(Zi,:",)in'thec:o;nbined

.

,

wave-current field,is des c ribed to secondorderbytheparametric eqcencne

(3.71)

(3.72)

7)..Pr essuredistr ibuti on

;Thepressureclistribu t .ion inthe comb ined wave-currentfieldis, to the secondorder,given by

p= -; gz _

~pgJ(a2

sinh12Kd [c09h2K (z +,d)-11+

+pgacos:~~(;(;

d)cOs(I< :t -ut)

+ +~pgl(a2sinhI2I<d[cos~~~;(;(;

d)

'~I

co s2 (K:r;-0'1) (3.73)

31

(50)

3 .3 T hir d ord e r.ap p rox imation

3.3.1 Pot entialfu nction anddispers ionrelation

\

Inthe same""'y~inseetio~(3.1) arid (3.2),keepingth irdorderterms ~ in express ions(3.5 ) and (3.6),givesthethirdorde rappro xi mationof the sur faceeleva tion

aZd

the potentialfunctionofthe comb'ined

W&ve-,c~mnt

fieldinthe(orin

,,=

lJlcos (K:t-- ut)+atcos2(J(.r -at)+

+o3 c os3(K x':'O't)

t= Ao(z)l'+A.{z)sin(Kl'-QI)+

+A,{l }si n 2(K.:r-utl

+

A3{z)sin3(1\%- trl) (3.74)'

(3.75)

Throug hthe~arneprocedure as'(orthetinteqdsecondorderaproxi.,

-;ma tlons, Ao(:),Al( z),A,( z),~(~)in{3.75 )·ue found,on solvinga cor-

re s ponding system ofordinarydiffe rentialeqceccns,to be

.Ao(z)= Bo

Al(l) :=B1coshK(z+d)

32

<:

(3.76)

(3.77)

" .

(51)

(3.78)

(3.70) forsomeconstan.~sED,~I,82and 83•

Thus4'couldbewrittenintheform

4>= Box+B1CO~hJ((z.+d)sin(Kx-O"t )+ +B, cosh 2K (z

+

d)sin2(ICr":"'"at }+ +83cosh31((z+d)sin 3(Kx-O't) (3.50) Again,expandingthefr eesurfac e kinematicand dynamicconditionsin , Taylor's ex pansion aboutz=

0

upt athethird order termsgiYesrespectively

£! _ £!l. ....

£!.~+,Po1'1/- az, fJt. Ox ax' 8z2

(3.81) and

33

'.';~

(52)

801>8'w- 12 {j3~ lP<'l! 2 +&;,8 : 2 11+'21/[eta :2+(8$ {)z )+

,

+~8~8~2 + (::~12 ~ ~~z~)

=0

"

(3.82 ) ..

tobesat is fie<!on z=O.

Bysa ti sfy in gequ a t io'n s(3.81)and (3.8 2)toaIr con sideredordersthe coeffici ent!a""m=1,2,3;En,n=I,2 ,3;the dispersionrelat ion,andfu nd io n Fet)couldbefo und,in termsof thefirstord eramplitud ea" andun,ifonn .cur r ent- like speedU,to be

a,

=

~J(a2.(2_:i;;;hI:~l.d)cos hJ\"d (3.83 )

(l3

= i4[(2

a

3

1~~~~s;;:\'d

( 3 .8 4)

80=U' ,(3.85)

~ 34

(53)

8t=I<s~:hI<d (3.86)

c=ir±.~ (3.80 )

where

an d

(3.00)

(3 .91) The surfacewa ve heig h tHinthisceae isgive n by

(3 .02) Notethataisusedtodenotethe fir st orderamplitudeal.

35

(54)

3.3.2 Prop er t iesof the thirdorderwave -cu rre ntfield

As in sections (3.1.2) and{3.2.2) thepropert ies of thethird order wave- curren t field arelisted' belowfor com p leteness.Theexpress ionsarejust more complicat ed .

1).Potentialfunction

The potentialis,ecth~'thirdorder,givenby

au ' f

Ux

+

J(sin~J(dcoshK(z

+

d) sin(Kx-,ut)

+

3 ~~ . '

+Ssinh4Kd cosh2K(z+d} sin 2(Kx-ee)

+ +~J("ra3(

11

~i:~~~~~J(d)

c~h 3J{( z

+

d) sin3(I(x -eft)

where"r is given by equation(3.90).

2).Free surface profile

The free surface profileto thirdorder is

(3.93) •

1]

=

acos( J(x-at)

+

a21C,(2 +cosh21(d)coshICd . .

+4 sinh3Kd cos2 (I\,T-O"t)+

+~~(2a3(1 ~i~~~s:;:Cd)

cos3 (K x_O"t) (3.94)

36

, u

r-".. ,

' ."

(55)

3).Dispersio n rela.tion

4).Part iclevelocit y

.Tot~irdorderth~,velocitycompo nents orn pnrt iclearc

u +

si::~dc~sh l«:+d)c os(J(x-l1t)

+

+ ~S~:;~dsinh21{(:

Td) cos2 (!(x-l1t)+

+_~K1~ra3 11~i~~~~J{d

'-

cosh 3-K(z

+

d)c~s3(I { ;r-11/) (3.'3G )

sina: ;( ds in h/«(z

+

d)sin( H x-l1t)+. .

+~ Si~:;~d'sinh 2]«(:

+d)sin2(K.:r -11 t)+

+~J(1I7ra311 ~i~~~~~~J(d

'sinh 3J( 4

+

d)sin3(I ( x- (71) (3. '37)

5).Particle acceleration-

Also the compo nents of aecelerattoncanbe writ ten as

,

37

\ .

(56)

"1>

(l¥= {hl7.co~hJ({:+d)-

-~!lhI((SinhJ((ztd)sinh 2l\"( z+,d)

+

+cosh](l+d),.cosh 2(z,.+d)l}sin{Kr - crt)I

+

+12f,0'~

coeh2I\' (ztd)-

~nJ(ISinr(J(r

-0'1)+

+(3hO'~cosh3[( z +d)+ +~lihl([sinh[( zttl)sinh'lK(ztel)-

-cosh1\(:+d) c osh2l( z+.d)]}sin3(K r-0'1) (3.98 )

a, = I:Ksinb l\ (z +d) roshl\"(z +d)- -{!J17,.sinhli: (: +d)-

-~flf2l\{sinhJ(z+'0co'sh2K(z+d)+ tcosh K(z+d ) sinh21\( ztd)J}cos(K r-at)- -2bl1.. sinh2K{z+d)cos2(Kl'- O"t)-

" ,

where

-(3hO'.sinh3J(ztll)-

- ~h~2J(lcos~J( z

td ) sinh 2K ( zttl)-

~

-sinhI\(z

+

d)cosh2 I«ztd))} cos3(Kx -at)

3S

(3.90)

(57)

(3.100J

6);Pressuredistributi o n Thepressure is givento third orderas

,(3.101)

~3,102 )

o.

p~ -pgz"":'

ipincos .h

2]( :+d):"1]+ +p{hifcosh]{(z +d)+

+~hh(sinhJ(( l:+

d)sinh2J((z+d)+

+~sbJ(z+d)cosh2K(z

+

d)]}cos(f\.:r -".t)+

+p[h~

cosh2/« z

+

d)

-.imcos

2(Kx-u,t)+

+p{!J1Zcosh 3K (z +d)+ +~fd2J sinh l( z+.d)sinh2K(z

+

d)

\

. • -cosh I«z+d)cos h2]{(zj)]}C093(Kx-Qt) (3.103 )

where

s. .

s;hRreexpressed abovebY(3.,lo),(3,:OI ),(3. 102)respectively:

39

.:i:'

(58)

:~

, Chapte r 4 "

Changes in Wave and Current

\ ~

Inthe previous chapter the solution'an dthe propertie!>of the combined .wave-cu rr entfieldhavebeendeveloped'intermsof thesurface.disturbance wave lengthL;.wave heightII,water depthd,and uniformcuuen.tspeed Uof the combinedwave-current field. S;~cethe current-freewaveand weve-free'Surrenr-cndergcchanges after the interaction,L,H,d,Uwill bedifferentfromthe length Lo,he igh tH6"water-dept hdo.and current speed Uo of the current..Ireewave and wave-freecurrent throughwhichthe

~ombin~d wnve-cur~ent

field is

for~ed

(a

s~bscript

"0"isused in this thesis todeno te theperemet ersbefore'

the

wave-cur rent inte ra ctio n ),It is

th e

objectiveofth:.prest:nt sectiont~find,the rela tionbetweenL,B,d, Uand Lo•Ho,do, Uoandto describeamethodto calculateL,B.d,Uknowingthe' valuesofLD,Ho,-do, andUo_,

'

.

. , .

40

v

(59)

, ..

"

4.1 Conservation

eq u a t io ns

:'

..

,

From11general point ofviewinII.fluid,the mess,momentumand energy ecnserva ric nrdl\~ion!loere respeerlve lyI!fven by

J.

P(i' . n)d' + ~ J.

.v• • •. . /

pd, - " .

(4.1)

wherendenotes the~nitvector nor m alto and directed{rom insideto ,'outside ofthe fixed controlsurfa ces inthe fluid domainenclosin gII.volume.

rofflui4. With:axilvertically upwar ds.

V •fandP.denote respectivelythe velocityvector,the fluid body force per unit volume and surfaceforceperunit area. For an incompressible.

<invlscid

flui~

s:tea?y .flow undergravity:theabo ..·e'

~uattons

takethe"ferml

lpFdr -,!.PfidJ-J.p(Vfi)iid.~= o (4.5)

"j.(p+.i pV2 _ P9Z)(V ii)dJ=O (4,0)

41

(60)

J

-, For th.ctwo dimensional wa ve curre ntinter actionconsideredhere and\

neglecting energy~issipation,lh~seequ a tions become simply

M"",+Ma>-M..,c '=O

(4.7)

(4.8)

./ . (4.9)

whereQ.}II,Erespectivelyrepresentthe~~antnRSS,momentum,and energy flux'trans fer acrossvertic alplanesnormaltothe xcoord inate and .of unit widt h..Thesubscri pts"wo" , "co"are usedres pect ively to denote the current-fre ewave andwfl-ve-free£7cntfi~~q~anti~es,and "we"isused todenotea combine dwave-curre nt field quantity."Aliflilxesinequations (4.7),(4.8 )I.UId(4.9)

ha~e

thesamedatum,the horizontalJolidbed.

The three mean flu.xesQ,M,Eare givenbythe

foljow'i~g.eqUation;

(4.10)

(4.11)

42

. \

\

\

\ \

(61)

E ",,-L: (P+

~p(U2

+W2)+pgz)udz (4,12)

whereu,Ware the horizontal and verticalparticle velocityrespect ively,P is the pressure,andthebar overtheintegrationrepresentstakingaverage over time.

4.2 M ean mass,

mo~entum,

energy flux es 4.2.t....,

Flux esirra current-freewave field

For the coordinat esystemwithz vertically upwards fromtheundisturbed fluidsu rface, the second order potential function andsurfac~profile ofn cu rrent-free wave field'are given by

'10"" aocos(I<o%-O'ot )

+.

+~~(oa~(l ,+ 2si~h~ J(o~o )

cothl( od. cos2 (J( 0a:-0'0t ) ,(4.14,)

43

f

(62)

·

.

The press uretotheeec:ond cederi~venas

t "'" =

-'pg:- p

a~",~

_

~p[( O:;")i

-:

(-a;;~ ),l

+

-fI~pgJ(~a~Sinh~J(.d..

(4.15)

. .

Accordingto equat ion s(4.10),(4.11), and(4.12),fortheabovewave Heldthe mean mass,momentum,and enerD' flux couldbeob tai ned.They ll:I"einthefonn

.... I f.'·1~ 00 Qwb

=

2;'I) _II.P0'; d:d8.

E_

= ~ 10

2

L :

{P_

+ ~pl(a:; )2 +

+(0:;')2]+pgz}(0: ; >dzd8.

(4.16)

(4.17)

(4.18)

N~breaking the integra ti on from~d.to'1.intoaninte~ationCram -d.to 0plus anin;egrat!,nCram 0to'1.andtaking the followingepp rox- lmatlon

44

f

(63)

l8

0!(z)d z.~zo!{ O)

+

O(:tI~) whenZoisrelatively smal l,equ at ions(4.16),(4.17),(4.18)become

(4.10)

(4.' 0)

M.,

E. ,

i; L

h

i:{PVJO

+

~pl(8:;),

+

( . D :;o),]

+ +pgz}

8~;

dzd60

+

+~ t"

1]o{PVJO(z, o.t} +

~p[(a;;O(zI O,t))'

+

+(a: ;-(r,o,t))'1l

a:;' (r ,0,t )d8, (4.22)

\

Substitut ingP",o,!P",o.and1]0into the aboveequationsandperf orming the integrations yields,toO(J(a~)

45

(64)

(4.23)

(4.24)

(4.25)

4.2 .2 Fluxesinawav e-freecurren tfield

The potentialfunction ofawave-free uniform irrotationalcurrentfieldis givenby

(4.26)

for someunifo~treamUo.

Thepressuredist rib u tionalongaverti calsectionis

'e

Pc

=

-pgi - (4.27)

. .

.

.

Onusingequations(4.10),(4.11),and(4.12),the meanmess, mcmen - tum,andene rgyfluxesin awave-freecurrentfieldarethen

46

(65)

:,"•.,'~

(4.28)

(4.20)

Performing theintegr ationgives

Qro=pd.U. (4.31) .

~

Mct>

=

pdoU; (4.32)

s;""

~pdo·U:

(4.33)

4.2.3 Fluxesin a wave- c urrentfield I

Forthecombi~edwave-currentfield the three meanfluxesacross an arbi- trar y ver ticalplaneintheflow of unitwidthcanbeexpressedas

Références

Documents relatifs

Further milling time gives rise to a stationary state correspond- ing to a full paramagnetic amorphous phase as evidenced by the broad paramagnetic doublet in the Mössbauer

L’instrumentation déployée (sondes limnimétriques, capteurs de pression, courantomètres) ont permis de mettre en évidence d’une part l’impact de la superposition d’une houle

An analysis of the expression of the different dystrophin gene products revealed that Dp71 was the major DMD gene product expressed in the lens, especially in fiber cells.. The role

The changes in the model - the smaller time step, the strong reduction of the numerical diffusion also entailing higher water vapor mixing ratios within the mesopause region and

[r]

[r]

(2009) [26] investigated the statistical properties of random directional wave fields in the finite depth case using the HOS method [3].. Wave focussing on water of finite depth

We find that metric matter wave in- terferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of