• Aucun résultat trouvé

Electric freezing potentials in water and soils

N/A
N/A
Protected

Academic year: 2021

Partager "Electric freezing potentials in water and soils"

Copied!
11
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Electric freezing potentials in water and soils

Parameswaran, V. R.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=9f0fcb32-f9ea-4494-a7fd-4f92f7b76d56 https://publications-cnrc.canada.ca/fra/voir/objet/?id=9f0fcb32-f9ea-4494-a7fd-4f92f7b76d56

(2)

QCF I

TH1

I

N21d

I

no.

1216

National Research

Conseil national

c. 2

Council Canada

de recherches Canada

ELECTRIC FREEZING POTENTIALS I N WATER

-

AND SOILS

by V.R. Parameswaran

ANALYZED

Presented at

Third International Symposium on Ground Freezing Hanover, New Hampshire, 21

-

24 June 1982,

7

p.

Printed with permission

DBR Paper No. 1216

Division of Building

Researcll

(3)

Les p o t e n t i e l s g l e c t r i q u e s engendrgs pendant l a c o n g g l a t i o n d e l ' e a u pure e t d e s o l s humides o n t &ti5 mesuri5s en l a b o r a - t o i r e . Le p o t e n t i e l de c o n g g l a t i o n de l ' e a u g t a i t p o s i t i f p a r r a p p o r t 3 c e l u i de l a g l a c e e t de l ' o r d r e de quelques v o l t s ; l e s p o t e n t i e l s dans l e s s o l s B t a i e n t de l ' o r d r e de quelques c e n t a i n e s de m i l l i v o l t s (61

V)

e t l e u r s i g n e c h a n g e a i t e n f o n c t i o n du temps s o u s l ' i n f l u e n c e d e s c h a r g e s d e s u r f a c e d e s p a r t i c u l e s mingrales.

(4)

ELECTRIC FREEZING POTENTIALS I N WATER AND SOILS

V.R. Parameswaran, D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada, Ottawa, O n t a r i o , K I A 0R6, Canada

ABSTRACT

E l e c t r i c a l p o t e n t i a l s g e n e r a t e d d u r i n g t h e f r e e z i n g o f p u r e w a t e r and moist s o i l s have been measured i n t h e l a b o r a t o r y . The f r e e z i n g p o t e n t i a l i n w a t e r w a s i c e - p o s i t i v e and of t h e o r d e r of a few v o l t s ; t h e p o t e n t i a l s i n s o i l s were of t h e o r d e r of a few hundred m i l l i v o l t s ( ( 1 V), and t h e s i g n changed w i t h t i m e under t h e i n f l u e n c e of s u r f a c e c h a r g e s on t h e m i n e r a l p a r t i c l e s . INTRODUCTION E l e c t r i c a l p o t e n t i a l s t h a t occur d u r i n g f r e e z i n g o f aqueous systems c a n r e s u l t from two d i f f e r e n t e f f e c t s : ( 1 ) e l e c t r i c a l c u r r e n t s and p o t e n t i a l s r e l a t e d t o t h e phase change of w a t e r , a n d ( 2 ) p o t e n t i a l s a r i s i n g o u t of c h a r g e s e p a r a t i o n d u r i n g f r e e z i n g and i o n i n c o r p o r a t i o n , commonly known a s t h e Workman-Reynolds e f f e c t . I n f r e e z i n g s o i l s i t i s d i f f i c u l t t o s e p a r a t e t h e two e f f e c t s , and t h e f r e e z i n g p o t e n t i a l s observed c o u l d v e r y w e l l b e a combination o f both. EARLY WORK ( a ) Aqueous s o l u t i o n s

Workman and Reynolds ( 1 950) were t h e f i r s t t o s t u d y t h e l a r g e p o t e n t i a l s ( u p t o 230 V) developed d u r i n g f r e e z i n g of d i l u t e aqueous s o l u t i o n s c o n t a i n i n g v e r y s m a l l amounts ( 1 0 ' ~ t o m o l l l ) of i o n i c i m p u r i t i e s . T h e i r measurements i n d o u b l e - d i s t i l l e d w a t e r from which ammonia and c a r b o n d i o x i d e had been removed i n d i c a t e d p o t e n t i a l s of a few v o l t s . G i l l and A l f r e y (1952) o f t h e Clarendon L a b o r a t o r y , Oxford, England, immersed a c y l i n d r i c a l b l o c k o f copper c o o l e d by l i q u i d a i r (-193OC) i n d i s t i l l e d w a t e r and measured a t r a n s i e n t e l e c t r i c a l p o t e n t i a l of up t o 50 V between t h e c o p p e r b l o c k a n d a wire k e p t i n t h e w a t e r a s i c e f r o z e on t h e b l o c k , which t h u s a c q u i r e d a p o s i t i v e c h a r g e w i t h r e s p e c t t o water. Following t h e s e i n i t i a l o b s e r v a t i o n s , s e v e r a l i n v e s t i g a t o r s measured e l e c t r i c a l f r e e z i n g p o t e n t i a l s i n p u r e w a t e r (Bayadina 1960, Murphy 1970 and Korkina 1975) a n d i n d i l u t e aqueous s o l u t i o n s c o n t a i n i n g d i f f e r e n t k i n d s o f

c a t i o n s a n d a n i o n s (Pruppacher e t a l . 1968, Cobb and Gross 1969, Murphy 1970 and Korkina 1975). The r e s u l t s o f t h e s e e a r l y o b s e r v a t i o n s showed t h a t t h e

magnitude and s i g n o f t h e f r e e z i n g

p o t e n t i a l s depended upon v a r i o u s f a c t o r s s u c h a s t y p e of i o n s i n s o l u t i o n , t y p e o f e l e c t r o d e s and t h e d i s t a n c e between them,

c o n c e n t r a t i o n of e l e c t r o l y t e s o l u t i o n , r a t e of c o o l i n g , e t c . These p o t e n t i a l s were a t t r i b u t e d t o primary s t r u c t u r a l changes i n w a t e r on f r e e z i n g a n d , i n s o l u t i o n s , t o t h e r a t e o f c a p t u r e and b u i l d - u p of a f r o z e n - i n s p a c e c h a r g e i n t h e i c e , a s w e l l a s t o t h e d i s t r i b u t e d s u r f a c e c h a r g e a l o n g t h e i c e s o l u t i o n i n t e r f a c e . The t y p e o f c h a r g e accumulated depended on t h e c h a r a c t e r i s t i c s of t h e s o l u t e . ( b ) S o i l s a n d r o c k R e p o r t s on f r e e z i n g p o t e n t i a l s i n

(5)

s o i l s and r o c k s a r e few and i n c o n c l u s i v e . J u m i k i s (1958) measured p o t e n t i a l s of 40 t o 120 MV d u r i n g f r e e z i n g o f a s i l t y s o i l , and s u g g e s t e d t h a t s u c h p o t e n t i a l s c o u l d enhance m o i s t u r e t r a n s p o r t i n t h e m a t e r i a l . Korkina (1975) s t u d i e d t h e f r e e z i n g p o t e n t i a l s i n s u s p e n s i o n s c o n t a i n i n g p a r t i c l e s less t h a n o n e micron i n s i z e and s a t u r a t e d w i t h d i f f e r e n t k i n d s of c a t i o n s . A t low d e n s i t i e s o f s u s p e n s i o n t h e b e h a v i o u r was s i m i l a r t o t h a t observed i n w a t e r ; t h a t i s , t h e i c e showed a p o s i t i v e c h a r g e . A t h i g h e r d e n s i t i e s t h e i c e w a s c h a r g e d n e g a t i v e l y . S i n c e t h e n a few o t h e r s ( B o r o v i t s k i i 1976, Yarkin 1974, 1978, Hanley and Ramachandra Rao 1980) h a v e measured f r e e z i n g p o t e n t i a l s i n v a r i o u s s o i l s . T h e i r r e s u l t s show t h a t , i n a d d i t i o n t o t h e p o l a r i z a t i o n of w a t e r m o l e c u l e s and t h e a l i g n m e n t of d i p o l e s a c r o s s t h e p o t e n t i a l b a r r i e r a t t h e f r e e z i n g boundary, t h e e x c e s s c h a r g e p r e s e n t a t t h e s u r f a c e s of t h e m i n e r a l p a r t i c l e s a l s o c o n t r i b u t e s t o t h e development of f r e e z i n g p o t e n t i a l s i n s o i l s . The s t u d y of t h e development of c o n t a c t e l e c t r i c a l p o t e n t i a l s i s of c o n s i d e r a b l e i m p o r t a n c e i n many p r a c t i c a l problems. An e l e c t r i c a l p o t e n t i a l g r a d i e n t t h a t developed d u r i n g f r e e z i n g c o u l d enhance m o i s t u r e t r a n s p o r t t h r o u g h t h e s o i l t o t h e f r e e z i n g f r o n t and c a u s e a d d i t i o n a l heave. Also, t h e c a t h o d i c p r o t e c t i o n used on underground p i p e l i n e s t o i n h i b i t c o r r o s i o n c o u l d b e a f f e c t e d by any e l e c t r i c a l p o t e n t i a l r e s u l t i n g from ground f r e e z i n g . Model s t u d i e s h a v e been c a r r i e d o u t by t h e a u t h o r on t h e b e h a v i o u r of p i l e s i n f r o z e n s o i l s and i c e (Parameswaran 1978, 1981). I n t h i s c o n n e c t i o n i t w a s t h o u g h t u s e f u l t o measure t h e e l e c t r i c a l p o t e n t i a l s t h a t may d e v e l o p when w a t e r and s o i l s f r e e z e t o a m e t a l l i c p i l e . Some of t h e r e s u l t s a r e p r e s e n t e d i n t h i s paper. EXPERIMENTAL PROCEDURE Two d i f f e r e n t e x p e r i m e n t a l s e t - u p s ( F i g s . 1 and 2) were u s e d t o measure t h e f r e e z i n g p o t e n t i a l s d e v e l o p e d d u r i n g f a s t and slow c o o l i n g , r e s p e c t i v e l y . I n t h e f i r s t s e t - u p (Fig. l ) , a c y l i n d r i c a l t u b e "A" ( a small p i l e made f r o m c o p p e r o r s t e e l c o a t e d w i t h c o p p e r ) t h r o u g h which a c o o l i n g f l u i d c o u l d b e c i r c u l a t e d w a s p l a c e d i n s i d e a c y l i n d r i c a l

v e s s e l "B" made from p o l y v i n y l c h l o r i d e (PVC) and i n s u l a t e d w i t h s t y r o f o a m "D". The c e n t r a l t u b u l a r metallic p i l e , which

was c o n n e c t e d t o t h e p o s i t i v e t e r m i n a l s of a two-pen c h a r t r e c o r d e r , a c t e d a s t h e i n n e r e l e c t r o d e t o which t h e m a t e r i a l ( w a t e r o r m o i s t s o i l ) f r o z e . Two c o n c e n t r i c o u t e r e l e c t r o d e s "C"

,

made from p e r f o r a t e d c o p p e r s h e e t r o l l e d i n t o c y l i n d e r s , were c o n n e c t e d t o t h e n e g a t i v e t e r m i n a l s of t h e two pens. COOLANT

-

=

,

11

-

scale U 1 in. F i g u r e 1. Schematic drawing o f e x p e r i m e n t a l s e t - u p t o s t u d y f r e e z i n g p o t e n t i a l s a t f a s t c o o l i n g r a t e s V a r i o u s m a t e r i a l s , s u c h a s d i s t i l l e d w a t e r , a q u a r t z s a n d from Ottawa, I l l i n o i s , h a v i n g u n i f o r m g r a i n s i z e (0.2 -0.6 mm) and c o n t a i n i n g 14 and 20% m o i s t u r e by w e i g h t , a n d a s i l t y s a n d c o n t a i n i n g 20% w a t e r , were p l a c e d one a t a t i m e i n t h e v e s s e l t o measure t h e i r f r e e z i n g p o t e n t i a l s . P r e c o o l e d methanol (-30°c and - 5 0 ' ~ ) was c i r c u l a t e d t h r o u g h t h e p i l e and t h e v o l t a g e which r e s u l t e d when t h e w a t e r o r s o i l f r o z e t o t h e p i l e was r e c o r d e d . For some t e s t s , f r e e z i n g

was a c h i e v e d by p o u r i n g l i q u i d n i t r o g e n d i r e c t l y i n t o t h e h o l l o w p i l e i n s t e a d o f c i r c u l a t i n g c o l d methanol. The e x p e r i m e n t a l s e t - u p and p r o c e d u r e a r e d e s c r i b e d i n d e t a i l e l s e w h e r e (Parameswaran 1982). A d i a g r a m of t h e equipment u s e d i n t h e s e c o n d s e t - u p t o s t u d y t h e e l e c t r i c a l p o t e n t i a l s and c u r r e n t s g e n e r a t e d d u r i n g v e r y s l o w c o o l i n g of m o i s t s o i l s i n s i d e a c o l d room i s shown i n F i g u r e 2. A

I

p r o b e "A", made from a PVC t u b e a n d

r i n g e d w i t h copper e l e c t r o d e s "C" I i n s t a l l e d i n g r o o v e s , w a s embedded i n m o i s t s o i l i n a c y l i n d r i c a l v e s s e l "B" made o f PVC and i n s u l a t e d w i t h g l a s s

i

wool "D". C o a x i a l c a b l e s were a t t a c h e d t o t h e e l e c t r o d e s and e x t e n d e d t h r o u g h t h e c e n t r a l c o r e of t h e t u b e s . Three d i f f e r e n t s o i l s were used: a s a n d f r o m Ottawa, I l l i n o i s , mixed w i t h 14% w a t e r by w e i g h t , a s i l t y s o i l from Norman Wells,

(6)

Northwest T e r r i t o r i e s (Canada), mixed w i t h 20% water by weight, and a very f ine-grained c l a y from Thompson,

Manitoba, mixed w i t h 30% water by weight. The a p p a r a t u s was k e p t i n s i d e a c o l d room maintained a t -2.2 f O . l ° C , and t h e

e l e c t r i c a l p o t e n t i a l g e n e r a t e d a t e a c h e l e c t r o d e a s t h e f r e e z i n g f r o n t g r a d u a l l y moved through t h e s o i l from t h e t o p

downwards was measured by a a l t i m e t e r . The bottom-most e l e c t r o d e , numbered "OM,

was connected t o t h e n e g a t i v e , o r ground, t e r m i n a l of t h e meter and t h e o t h e r

e l e c t r o d e s were connected s u c c e s s i v e l y t o t h e p o s i t i v e t e r m i n a l through a r o t a r y switch. The v o l t a g e r e a d i n g s a t each e l e c t r o d e and t h e corresponding

temperatures were recorded.

ELECTRODE THERMOCOUPLE PROBE PVC VESSEL INSULATION COPPER ELECTRODES Scale U 1 In.

Figure 2. Schematic drawing of s e t - u p i n s i d e c o l d room f o r u n i d i r e c t i o n a l f r e e z i n g a t slow r a t e s

RESULTS AND DISCUSSIONS

The r a p i d c o o l i n g of t h e m a t e r i a l s i n t h e f i r s t set-up provided t h e

following r e s u l t s (Figs. 3 t o 6). In F i g u r e s 3 ( a ) and ( b ) , which show t h e v a r i a t i o n of f r e e z i n g p o t e n t i a l w i t h t i m e

( i n seconds) f o r p u r e w a t e r when c o l d methanol and l i q u i d n i t r o g e n were used i n

t u r n a s t h e c o o l a n t , t h e copper p i l e can be seen t o have a h i g h e r peak f r e e z i n g v o l t a g e t h a n t h e c o p p e r p l a t e d s tee1 p i l e . It can a l s o be s e e n t h a t a t lower t e m p e r a t u r e s t h e c o o l a n t caused t h e f r e e z i n g p o t e n t i a l s t o i n c r e a s e and t h e

peak t o occur sooner. T h i s may b e due t o t h e f a s t e r r a t e of f r e e z i n g caused by t h e lower-temperature c o o l a n t .

5 - COPPER-PLATED STEEL PILE. - N a C

15 - COPPER PILE. -N°C

18 - COPPER PILE. -45°C

-

>

0 50 100 150 200

T I M E , s

Figure 3(a). Freezing p o t e n t i a l s i n d i s t i l l e d w a t e r u s i n g methanol a s c o o l a n t

6 - COPPER-PLATED STEEL PlLE I N WATER

19. 20 - COPPER PlLE IN WATER

1

T I M E , s Figure 3(b). Freezing p o t e n t i a l s i n d i s t i l l e d w a t e r u s i n g l i q u i d n i t r o g e n a s c o o l a n t Figure 4 shows t h e f r e e z i n g p o t e n t i a l s g e n e r a t e d i n sand c o n t a i n i n g 14% by weight of m o i s t u r e when cooled by methanol a t -30°C. The i n i t i a l p o s i t i v e peak v o l t a g e up t o 30 mV i s probably due t o t h e f r e e z i n g of t h e water a d j a c e n t t o t h e p i l e , which forms t h e f i r s t t h i n i c e l a y e r . The s u r f a c e c h a r a c t e r i s t i c s of sand p a r t i c l e s soon e x e r t t h e i r i n f l u e n c e and cause a n e g a t i v e f r e e z i n g p o t e n t i a l of up t o -80 mV f o r m o i s t sand.

t e r t h i s n e g a t i v e peak t h e f r e e z i n g p o t e n t i a l decays towards zero. With t i m e i t may c r o s s i n t o t h e p o s i t i v e r e g i o n , a s w i l l be s e e n l a t e r i n t h i s s e c t i o n . Figure 5 shows t y p i c a l c u r v e s of t h e f r e e z i n g p o t e n t i a l s i n Ottawa sand c o n t a i n i n g 20% m o i s t u r e by weight when cooled by l i q u i d n i t r o g e n . I n i t i a l l y

,

p o s i t i v e p o t e n t i a l s of up t o 400 mV were

(7)

observed which t h e n d e c r e a s e d t o a s low r a n g e of -100 t o -160 mV. The r e v e r s a l a s -220 mV. The f a c t t h a t t h e s e i n i t i a l of p o t e n t i a l a s s e e n i n c u r v e s a and b p o s i t i v e p o t e n t i a l s a r e h i g h e r t h a n t h o s e h a s a l s o been r e p o r t e d by B o r o v i t s k i i i n Figure 4 may be due t o t h e lower (1976) and Yarkin (1978).

c o o l a n t t e m p e r a t u r e which r e s u l t s i n a f a s t e r r a t e of c o o l i n g . 80

0

TIME. rnin -100 I I 1 1

I

a 2 d 6 4 10 TIME, min Figure 4. Freezing p o t e n t i a l s i n g r a n u l a r sand c o n t a i n i n g 1 4 % m o i s t u r e , u s i n g methanol a s c o o l a n t (Numbers correspond t o d i f f e r e n t r u n s of experiment ) noo

r

,

I I I 1 -300 L I ! I I !I 5 10 15 20 r l M E , m i n Figure 5. Freezing p o t e n t i a l s i n g r a n u l a r sand c o n t a i n i n g 20% m o i s t u r e , u s i n g l i q u i d n i t r o g e n a s c o o l a n t (Numbers correspond t o d i f f e r e n t r u n s of experiment)

Figure 6 shows t y p i c a l curves of t h e change of f r e e z i n g v o l t a g e w i t h time i n t h e n a t u r a l s i l t y s o i l c o n t a i n i n g 20% w a t e r by weight and cooled by methanol a t -30°C. The wide v a r i a t i o n among t h e samples may b e due t o t h e i r nonhome g e n e i t y and t o t h e random n a t u r e of formation of i c e l e n s e s d u r i n g f r e e z i n g of t h i s fine-grained s o i l . The maximum f r e e z i n g v o l t a g e s observed were i n t h e

Figure 6. Freezing p o t e n t i a l s i n n a t u r a l s i l t y sand c o n t a i n i n g 20% m o i s t u r e , u s i n g methanol a s c o o l a n t (A, B and C r e p r e s e n t

3 d i f f e r e n t r u n s of experiment) Figure 7 shows t h e f r e e z i n g

p o t e n t i a l s measured d u r i n g slow f r e e z i n g of Ottawa sand c o n t a i n i n g 14% m o i s t u r e ( c u r v e a ) and Norman Wells s i l t y sand c o n t a i n i n g 20% m o i s t u r e ( c u r v e b) i n s i d e a c o l d room a t -2.2OC. The dashed c u r v e s

( a ' , b' ) show t h e change i n temperature of t h e s o i l w i t h time a t a p o i n t n e a r t h e corresponding e l e c t r o d e . F i g u r e 8 shows s i m i l a r c u r v e s f o r f r e e z i n g p o t e n t i a l s i n a s i l t y c l a y from Thompson, Manitoba, mixed w i t h 30% water. The v o l t a g e decays a s t h e f r e e z i n g f r o n t p a s s e s t h e

e l e c t r o d e on which t h e measurements a r e made. T h i s i n d i c a t e s t h a t t h e p r o g r e s s of t h e f r e e z i n g f r o n t down through t h e s o i l column can be determined by

o b s e r v i n g t h e f r e e z i n g p o t e n t i a l s

developed on e l e c t r o d e s p l a c e d a t r e g u l a r i n t e r v a l s

.

The peak p o t e n t i a l s observed

measured about 200 mV i n sand, 220 mV i n s i l t y sand and a b o u t 320 mV i n c l a y , a l l

i c e - p o s i t i v e . I t was mentioned e a r l i e r ,

t h a t , under f a s t c o o l i n g by methanol o r l i q u i d n i t r o g e n , t h e s e s o i l s e x h i b i t e d

i c e - n e g a t i v e p o t e n t i a l s ( s e e F i g s . 4 I

t o 6 ) which decayed t o z e r o and t h e n changed t o a p o s i t i v e p o t e n t i a l .

F i g u r e s 7 and 8 show o n l y t h e long-term

1

I p o s i t i v e p o t e n t i a l s developed under slow

r a t e s of c o o l i n g . Yarkin (1978) a t t r i b u t e d t h e r e v e r s a l of t h e s i g n of t h e f r e e z i n g p o t e n t i a l i n s o i l s t o a combination of exchange a b s o r p t i o n p r o c e s s e s o c c u r r i n g on t h e s u r f a c e of s o i l g r a i n s and m o i s t u r e m i g r a t i o n i n t h e presence of an e l e c t r i c f i e l d g e n e r a t e d d u r i n g f r e e z i n g . S i n c e t h e s u r f a c e of t h e m i n e r a l m a t r i x i s charged n e g a t i v e l y i n most n a t u r a l s o i l s (Yarkin, 1978), t h e

(8)

I t 1

I

1 ( a )

-

O T T A W A S A N D + 1 4 % W A T E R

L

( b )

-

S I L T Y S A N D + 2 0 % W A T E R Y I ( a ' ) , ( b ' ) - T E M P E R A T U R E \I

-

I

-

-

-

-

-.

---__

3 I

---:

T I M E , h

Figure 7. Freezing p o t e n t i a l s developed under slow c o o l i n g i n s i d e c o l d room a t -2.2OC ( a ) f o r g r a n u l a r sand c o n t a i n i n g 14% m o i s t u r e and ( b ) f o r n a t u r a l s i l t y sand c o n t a i n i n g 2 0 %

m o i s t u r e (Dashed c u r v e s i n d i c a t e temperature)

T I M E , h

Figure 8. Freezing p o t e n t i a l s developed i n a n a t u r a l c l a y c o n t a i n i n g 30% m o i s t u r e i n s i d e c o l d room a t - 2 . 2 O C (Dashed c u r v e s i n d i c a t e temperature. Numbers correspond t o e l e c t r o d e s on which measurements were made)

(9)

i n i t i a l f r e e z i n g p o t e n t i a l i s n e g a t i v e ( s e e F i g s . 4 t o 6 ) . However, a s f r e e z i n g p r o g r e s s e s a n d m o i s t u r e m i g r a t i o n t a k e s p l a c e under t h e i n f l u e n c e of e l e c t r o - o s m o t i c f o r c e s , f l o w p o t e n t i a l s ( o r s t r e a m i n g p o t e n t i a l s c a u s e d by t h e f l o w of a l i q u i d c o n t a i n i n g e x c e s s i o n s o f o n e s i g n ) arise which compensate f o r t h e

i n i t i a l n e g a t i v e p o t e n t i a l . T h i s r e s u l t s , i n t h e long-term, i n a p o s i t i v e p o t e n t i a l ( s e e F i g s . 7 and 8 ) . A d e t a i l e d d i s c u s s i o n of t h e r e s u l t s and c a l c u l a t i o n s o f t h e f i e l d and c h a r g e d e n s i t i e s i s p r e s e n t e d e l s e w h e r e (Parameswaran 1982). CONCLUDING REMARKS When w a t e r o r m o i s t s o i l s f r o a e r a p i d l y on a c o l d m e t a l l i c p i l e , e l e c t r i c a l f r e e z i n g p o t e n t i a l s were o b s e r v e d , t h e magnitude of which were of t h e o r d e r of 4 t o 1 2 v o l t s i n p u r e w a t e r and a b o u t -100 t o -220- mV i n m o i s t s o i l s .

Under slow c o o l i n g i n s i d e a c o l d room a t

-2.2'C, m o i s t s o i l s showed f r e e z i n g p o t e n t i a l s of t h e o r d e r of 200 t o 300 mV

.

These p o t e n t i a l s c o u l d be a t t r i b u t e d t o primary s t r u c t u r a l c h a n g e s o c c u r r i n g d u r i n g f r e e z i n g of p u r e w a t e r and, i n s o i l s , t o a combination of exchange a b s o r p t i o n p r o c e s s e s on t h e s u r f a c e of s o i l g r a i n s and of m o i s t u r e m i g r a t i o n i n t h e e l e c t r i c f i e l d g e n e r a t e d d u r i n g f r e e z i n g . ACKNOWLEDGEMENTS The a u t h o r a p p r e c i a t e s t h e h e l p of C o l i n Hubbs i n s e t t i n g u p t h e e x p e r i m e n t and c a r r y i n g o u t t h e measurements. S i n c e r e t h a n k s a r e a l s o e x t e n d e d t o Marcel Roy and Andrew C h e v r i e r f o r t h e i r c o n t r i b u t i o n t o t h e s e measurements.

REFERENCES

Hayadina, F.I. (1960). V o l t a g e d i f f e r -

e n c e o r i g i n a t i n g between t h e s o l i d and

l i q u i d p h a s e s of w a t e r . USSR Academy of

S c i e n c e s , News, Geophysical S e r i e s No. 2.

B o r o v i t s k i i , V.P. (1976). The develop- ment o f i n h e r e n t e l e c t r i c a l f i e l d s d u r i n g t h e f r e e z i n g of r o c k s i n t h e a c t i v e l a y e r and t h e i r r o l e i n t h e m i g r a t i o n of trace e l e m e n t s . J o u r n a l o f Geochemical E x p l o r a t i o n , Vol. 5, pp. 65-70.

Cobb, A.W. and Gross, G.W. (1969).

I n t e r f a c i a l e l e c t r i c a l e f f e c t s o b s e r v e d d u r i n g t h e f r e e z i n g of d i l u t e e l e c t r o l y t e s i n water. J o u r n a l o f E l e c t r o c h e m i c a l S o c i e t y ; E l e c t r o c h e m i c a l S c i e n c e s , Vol. 116, pp. 796-804. G i l l , E.W.B. and A l f r e y , G.F. (1952). P r o d u c t i o n of e l e c t r i c a l c h a r g e s on w a t e r d r o p s . N a t u r e , Vol. 169, pp. 203-204.

Hanley

,

T. O'D. a n d Ramachandra Rao, S

.

(1980). F r e e z i n g p o t e n t i a l s i n wet

c l a y s : I. E a r l y r e s u l t s , and 11.

S p e c i f i c systems. Cold Regions S c i e n c e

and Technology, Vol. 3, pp. 163-168, and 169-175. J u m i k i s , A.R. ( 1 958). Some c o n c e p t s p e r t a i n i n g t o t h e f r e e z i n g s o i l s y s t e m s . Highway R e s e a r c h Board S p e c i a l R e p o r t 40, NAS/NRC, Washington, D.C., pp. 178-190. Korkina, R.I. (1975). E l e c t r i c a l p o t e n t i a l s i n f r e e z i n g s o l u t i o n s and

e f f e c t on m i g r a t i o n . U.S. Army CRREL

D r a f t T r a n s l a t i o n 490, 15 pages.

Murphy, E.J. ( 1 970). The g e n e r a t i o n o f

e l e c t r o m o t i v e f o r c e s d u r i n g t h e f r e e z i n g of water. J o u r n a l of C o l l o i d and I n t e r f a c e S c i e n c e , Vol. 3 2 , pp. 1-11. Parameswaran, V. R. ( 1 978). Adf r e e z e s t r e n g t h of f r o z e n s a n d t o model p i l e s . Canadian G e o t e c h n i c a l J o u r n a l , Vol. 15, pp. 494-500. Parameswaran, V.R. ( 1 981). A d f r e e z e s t r e n g t h of model p i l e s i n i c e . Canadian G e o t e c h n i c a l J o u r n a l , Vol. 1 8 , pp. 8-16. Parameswaran, V.R. (1982). E l e c t r i c a l f r e e z i n g p o t e n t i a l s i n aqueous s o l u t i o n s and s o i l s ( t o be p u b l i s h e d ) . Pruppacher, H.R., S t e i n b e r g e r

,

E .H. and Wang, T.L. (1968). On t h e e l e c t r i c a l e f f e c t s t h a t accompany t h e s p o n t a n e o u s growth of i c e i n s u p e r c o o l e d aqueous s o l u t i o n s . J o u r n a l of G e o p h y s i c a l Research, Vol. 7 3 , pp. 571-584.

Workman, E.J. and Reynolds, S.E. (1950).

E l e c t r i c a l phenomena o c c u r r i n g d u r i n g t h e

i

f r e e z i n g o f d i l u t e aqueous s o l u t i o n s and t h e i r p o s s i b l e r e l a t i o n s h i p t o t h u n d e r s t o r m e l e c t r i c i t y . P h y s i c a l Review, Vol. 7 8 , pp. 254-259. Y a r k i n , I .G. ( 1 974). P h y s i c c r c h e m i c a l p r o c e s s e s i n f r e e z i n g s o i l s and ways of c o n t r o l l i n g them. C o l l e c t e d p a p e r s No.

6 4 , N.M. Gersevanov Foundation and

Underground S t r u c t u r e R e s e a r c h I n s t i t u t e ,

(10)

Yarkin, I.G. (1978). E f f e c t of n a t u r a l T h i s p a p e r i s a c o n t r i b u t i o n from e l e c t r i c a l p o t e n t i a l s on water m i g r a t i o n t h e D i v i s i o n of B u i l d i n g Research,

Ln f r e e z i n g s o i l s . PERMAFROST, USSR N a t i o n a l R e s e a r c h C o u n c i l o f Canada, and C o n t r i b u t i o n t o Second I n t e r n a t i o n a l i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e Conference, Ed. Sanger, F .J. and Hyde, D i r e c t o r o f t h e D i v i s i o n .

P. J., N a t i o n a l Academy of S c i e n c e s ,

(11)

T h i s p a p e r , w h i l e b e i n g d i s t r i b u t e d i n r e p r i n t f o r m by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , O t t a w a , O n t a r i o , K I A 0R6.

Figure

Figure  2.  Schematic  drawing  of  s e t - u p   i n s i d e   c o l d   room  f o r  u n i d i r e c t i o n a l   f r e e z i n g   a t   slow  r a t e s
Figure  6.  Freezing  p o t e n t i a l s   i n  n a t u r a l   s i l t y  sand  c o n t a i n i n g   20% m o i s t u r e ,   u s i n g   methanol  a s  c o o l a n t   (A,  B  and  C  r e p r e s e n t
Figure  7.  Freezing  p o t e n t i a l s   developed  under  slow  c o o l i n g   i n s i d e   c o l d   room  a t   -2.2OC  ( a )   f o r   g r a n u l a r   sand  c o n t a i n i n g   14% m o i s t u r e   and  ( b )   f o r   n a t u r a l   s i l t

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers