• Aucun résultat trouvé

Air leakage data for the design of elevator and stair shaft pressurization systems

N/A
N/A
Protected

Academic year: 2021

Partager "Air leakage data for the design of elevator and stair shaft pressurization systems"

Copied!
16
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 82, 2, pp. 179-190, 1976

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Air leakage data for the design of elevator and stair shaft pressurization

systems

Tamura, G. T.; Shaw, C. Y.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=af9afb8a-0879-4f52-b5b7-8b7f726d3b2a https://publications-cnrc.canada.ca/fra/voir/objet/?id=af9afb8a-0879-4f52-b5b7-8b7f726d3b2a

(2)

National Research Council of Canada

c . 2

19ieaE

Conseil national de recherches du Canada

- -

-AIR LEAKAGE DATA FOR THE DESIGN OF ELEVATOR

AND

. STAIR SHAFT PRESSURIZATION SYSTEMS

4 '1 r

by

G.T.

Tamura and

C.Y. Shaw

Reprinted from

ASHRAE

TRANSACTIONS 19

76

Vol.

82,

Part 2,

p.

179

-

190

DBR Paper No. 717

Division of Building Research

(3)

SO

MMAIRE

3

3

Un Cventail de 50,000 pi / m n (23.5-m / s ) montC s u r une remorque

a CtC utilisk pour ditterminer l e s c a r a c t k r i s t i q u e s d e s fuites d l a i r

des gaines d ' a s c e n c e u r s et d e s cages d ' e s c a l i e r s e t l a r h s i s t a n c e

'

aux Ccoulements

'a

llintCrieur des cages d l e s c a l i e r s de huit

bstiments

'a

plusieurs Ctages. L e s rCsultats d e s e s s a i s rapportCs

dans cette communication fournis sent d e s donnCes pouvant S t r e

utilisCes pour l a conception de s s s t'e mes de p r e s s u r i s a t i o n qui

prot'egent l e s cages d ' e s c a l i e r s ou l e s gaines d ' a s c e n s e u r de la

contamination par l a fumCe durant un incendie.

(4)

No. 2413

AIR LEAKAGE DATA FOR

THE DESIGN OF ELEVATOR

AND STAIR SHAFT PRESSURIZATION SYSTEMS

GEORGE T. TAMURA CHlA YU SHAW

,\4eniber ASHRAE

Smoke migration a s a r e s u l t o f f i r e can contaminate e l e v a t o r and s t a i r s h a f t s , posing a s e r i o u s

t h r e a t t o f i r e f i g h t e r s and occupants, p a r t i c u l a r l y i n h i g h - r i s e b u i l d i n g s where t h e time f o r evacuation can be long and t h e f i r e must be fought from i n s i d e . Measures t o prevent smoke contamination o f e l e v a t o r and s t a i r s h a f t s , t h e r e f o r e , a r e an e s s e n t i a l p a r t of t h e o v e r - a l l f i r e p r o t e c t i o n system f o r h i g h - r i s e b u i l d i n g s .

P r e s s u r i z a t i o n o f a s h a f t i s one means o f maintaining it t e n a b l e d u r i n g a f i r e . This involves i n c r e a s i n g t h e p r e s s u r e s i n s i d e t h e s h a f t above t h o s e o f a d j a c e n t f l o o r spaces by

i n j e c t i n g outdoor a i r i n t o t h e s h a f t with a supply f a n . The d i r e c t i o n of a i r flow would then be

from t h e s h a f t t o t h e f l o o r spaces, p r e v e n t i n g t h e smoke generated by a f i r e from m i g r a t i n g i n t o t h e s h a f t . The a i r s u p p l i e d t o t h e s h a f t n o t only a s s i s t s i n p r e v e n t i n g smoke e n t r y b u t a l s o h e l p s t o d i l u t e smoke which might have migrated i n t o t h e s h a f t p r i o r t o a c t i v a t i o n of t h e

p r e s s u r i z a t i o n system o r when s e v e r a l s h a f t doors a r e opened d u r i n g evacuation and f i r e f i g h t i n g . There a r e v a r i o u s approaches t o t h e d e s i g n of p r e s s u r i z a t i o n systems (1,2,3,4,5 and 6 ) , but i n a l l d e s i g n s a knowledge of t h e a i r t i g h t n e s s o f t h e s h a f t w a l l s i s needed t o c a l c u l a t e t h e

supply a i r r a t e needed t o achieve t h e r e q u i r e d l e v e l of p r e s s u r i z a t i o n . Such information i s n o t

r e a d i l y a v a i l a b l e a t p r e s e n t , and hence, a r e s e a r c h p r o j e c t was undertaken t o o b t a i n a i r leakage v a l u e s of t h e w a l l s of e l e v a t o r and s t a i r s h a f t s . In a d d i t i o n , t h e p r e s s u r e l o s s c h a r a c t e r - i s t i c s of s t a i r s h a f t s were determined, a s t h e flow r e s i s t a n c e o f t h e winding s t a i r c a s e can have a s i g n i f i c a n t e f f e c t on t h e v e r t i c a l d i s t r i b u t i o n of p r e s s u r i z a t i o n .

The e l e v a t o r and s t a i r s h a f t s of e i g h t m u l t i s t o r y b u i l d i n g s ranging i n h e i g h t froni 9 t o 22

s t o r i e s were t e s t e d , and t h e r e s u l t s a r e h e r e i n r e p o r t e d . METHOD OF TEST

A 50,000-cfm (23.5-m3/s) vane a x i a l f a n was used t o conduct t h e s h a f t a i r leakage t e s t s (Fig. 1 ) .

The f a n d a s mounted on a t r a i l e r s o t h a t i t could be t r a n s p o r t e d e a s i l y t o t h e b u i l d i n g s under

t e s t . The f a n i s equipped with v a r i a b l e p i t c h e d b l a d e s t h a t permit manual c o n t r o l of t h e supply

a i r r a t e . The s o u r c e o f power supply was e i t h e r a 550-volt c i r c u i t o f t h e b u i l d i n g , i f one was

r e a d i l y a c c e s s i b l e , o r a mobile g e n e r a t o r .

The t r a i l e r and f a n were p l a c e d o u t s i d e and a d j a c e n t t o t h e b u i l d i n g . A s e a l e d plywood box

was placed on t h e ground f l o o r i n f r o n t of t h e door opening of t h e s h a f t t o be t e s t e d . The e l e v a t o r c a r was moved away from t h e ground f l o o r p r i o r t o i n s t a l l i n g t h e plywood box t o prevent t h e c a r from i n t e r f e r i n g with t h e a i r i n j e c t i o n . The d i s c h a r g e s i d e of t h e fan was connected t o t h e plywood box by means o f a number of 3 - f t (0.914-m) diameter alumihum d u c t s (Fig. 2 ) . T o t a l p r e s s u r e averaging t u b e s and s t q t i c p r e s s u r e t a p s were i n s t a l l e d i n t h e ductwork f o r measuring t h e r a t e of supply a i r . These were c a l i b r a t e d with p i t o t t r a v e r s e s which i n d i c a t e d t h a t t h e accuracy o f t h e flow measurement was w i t h i n 5%.

The a i r leakage measurements o f each s h a f t were conducted i n two s t e p s : f i r s t l y with a l l

door c r a c k s s e a l e d with t a p e (between door frame and wall n o t s e a l e d ) and then with a l l t a p e

G.T. Tamura and C.Y. Shaw a r e Research O f f i c e r s i n t h e Energy and S e r v i c e s S e c t i o n , Division of Building Research, National Research Council of Canada, Ottawa, Canada.

(5)

removed. Each s t e p involved p r e s s u r i i i n g t h e s h a f t with t h e supply a i r fan a t four flow r a t e s adjusted t o give s h a f t p r e s s u r i z a t i o n of up t o about 0.50 i n . of water (125 N/m2). The r e s u l t a n t pressure differences across t h e s h a f t wall

a t

s e v e r a l l e v e l s were measured with a pressure meter (diaphragm type with s i l i c o n p i e z o - r e s i s t i v e gauge; s t a t i c e r r o r band of 5% f u l l - s c a l e output) together with t h e concomitant supply a i r r a t e s . The a i r leakage measurements with a l l door cracks sealed g i v e t h e a i r leakage c h a r a c t e r i s t i c of t h e s h a f t wall construction, and with t h e door s e a l s removed, give t h e o v e r a l l a i r leakage c h a r a c t e r i s t i c of t h e s h a f t enclosure. The d i f f e r e n c e between t h e two r e p r e s e n t s t h a t of t h e doors.

The determination of t h e a i r leakage c h a r a c t e r i s t i c of t h e e l e v a t o r s h a f t wall construction required, i n a d d i t i o n , estimating t h e leakage flow through t h e top of t h e s h a f t , a s it can be s u b s t a n t i a l . The leakage openings i n t h e sub-floor of t h e e l e v a t o r machine room, i . e . , openings f o r vents, c a r cables and o t h e r e l e v a t o r accessories t h a t could not e a s i l y be covered and sealed f o r t h e t e s t , were measured with a measuring t a p e , and t h e pressure d i f f e r e n c e across t h e sub- f l o o r was recorded during t h e t e s t . From t h e s e measurements t h e leakage flow through t h e top of t h e s h a f t was c a l c u l a t e d using t h e equation f o r an o r i f i c e and substracted from t h e t o t a l flow through t h e s h a f t with t h e doors sealed t o a r r i v e a t t h e leakage flow through t h e s h a f t wall construction.

To measure t h e pressure l o s s c h a r a c t e r i s t i c of a s t a i r s h a f t , p l a s t i c tubes 1/4 i n . (6.35 mm) i n diameter were strung v e r t i c a l l y i n t h e s t a i r s h a f t from t h e top, terminating a t s e v e r a l l e v e l s so t h a t t h e ends of t h e tubes served a s pressure t a p s . A l l s t a i r doors were sealed except f o r t h e one a t t h e top which was l e f t open t o expose t h e top of t h e s t a i r s h a f t t o outdoor ambient pressure. Outdoor a i r was i n j e c t e d i n t o t h e s t a i r s h a f t and allowed t o flow up and out through t h e open s t a i r door a t t h e top. The pressure drop i n s i d e t h e s t a i r s h a f t together with t h e supply a i r r a t e were measured during t h e t e s t .

RESULTS AND DISCUSSION

The d e s c r i p t i o n s of t h e t e s t e l e v a t o r s h a f t s and s t a i r s h a f t s a r e given i n Table 1 and 2 which a l s o give t h e dimensions of both s h a f t and door and t h e type of wall construction. The

average door cracks given i n t h e t a b l e s a r e based on measurements of a t l e a s t ten doors of each s h a f t with t h r e e measurements p e r s i d e of each door. The estimated s i z e s of t h e opening a t t h e top of t h e e l e v a t o r s h a f t a r e a l s o included i n Table 1;

A i r Leakage C h a r a c t e r i s t i c of Elevator S h a f t s

The a i r leakage c h a r a c t e r i s t i c s of t h e s h a f t wall of e l e v a t o r s h a f t s i n terms of volume flow r a t e per u n i t wall a r e a vs pressure d i f f e r e n c e , shown on Fig. 3, i n d i c a t e considerable v a r i a t i o n i n t h e i r values. Those of masonry canstruction e i t h e r of concrete o r hollow clay t i l e block, including a ~ h a f t ~ c o n s t r u c t e d f r o n t and back of c a s t - i n - p l a c e concrete with t h e two s i d e s of concrete block, gave t h e highest leakage values of about 1.80 cfm per

sq

f t

(0.00914 m3/s per m2) of wall a r e a a t a pressure d i f f e r e n c e of 0.30 i n . of water (75.0 N/m2). Those constructed e n t i r e l y of c a s t - i n - p l a c e concrete o r a combination of c a s t - i n - p l a c e concrete on t h r e e s i d e s and concrete block on t h e f r o n t s i d e were about one-third of t h i s value. AS t h e cast-in-place concrete wall i t s e l f can be expected t o be r e l a t i v e l y a i r t i g h t , it i s l i k e l y t h a t t h e leakage flow i n t h e l a t t e r cases occurred mainly through crack openings between door frame and wall and pipe chases f o r e l e c t r i c a l conduits ( l i g h t s , c a l l buttons, e t c . ) i n t h e s h a f t walls.

The leakage openings a t t h e top of t h e e l e v a t o r s h a f t (Table l ) , determined with a

measuring t a p e , v a r i e d from 4.2 t o 10.5 sq f t (0.39 t o 0.97 m2) except f o r 0.50 sq f t (0.046 m2) f o r Elevator Shaft No. 5,whose openings i n t h e concrete f l o o r s l a b were found t o be covered i n p a r t with sheet metal. The pressure d i f f e r e n c e s across t h e t o p of t h e e l e v a t o r s h a f t (sub-floor of e l e v a t o r machine room) with t h e s h a f t pressurized were about one-half those a c r o s s t h e

s h a f t walls.

The a i r leakage values f o r e l e v a t o r doors shown on Fig. 4 varied from 650 t o 950 cfm (0.307 t o 0.448 m3/s) a t a pressure d i f f e r e n c e of 0.30 i n . of water (75.0 N/m2). The average value of t h e flow exponent i s about 0.55 which i s s i m i l a r t o t h a t f o r a flow through an o r i f i c e . The leakage values a t 0.30 i n . of water (75.0 N/m2) c o r r e l a t e approximately with t h e average crack width around t h e door which varied from 0.19 t o 0.27 i n . (4.8 t o 6.8 mm), a s shown on Fig. 5. The a i r leakage value f o r pressure d i f f e r e n c e AP o t h e r than 0.30 i n . of water

(75.0 ~ / r n ~ ) can be obtained by multiplying t h e value given i n Fig. 5 by ( A P / O . ~ O ) ~ . ~ ~ o r (A~/75)0.55 f o r values i n B r i t i s h and SI u n i t s r e s p e c t i v e l y .

(6)

An ad hoc t e s t was conducted on Elevator Shaft No. 1 t o determine t h e e f f e c t i v e opening formed by a combination of an open e l e v a t o r door and an e l e v a t o r c a r . A 3000-cfm (1.42 m3/s) fan was used t o p r e s s u r i z e t h e box placed i n f r o n t of t h e open elevator door and t h e flow r a t e s and t h e r e s u l t a n t pressure d i f f e r e n c e s across t h e s h a f t wall were measured. From these

measurements t h e leakage area i n terms of an equivalent o r i f i c e area was calculated t o be about 6.0 sq f t (0.56 m2).

A i r Leakage C h a r a c t e r i s t i c of S t a i r Shafts

The a i r leakage r a t e s of t h e walls of t h e t e s t s t a i r s h a f t s a r e given i n Fig. 6. They a r e i n t h e range of t h e a i r leakage r a t e s f o r walls of e l e v a t o r s h a f t s constructed of cast-in-place concrete. The v a r i a t i o n i n t h e a i r leakage r a t e s i s probably due t o extraneous leakages around door frames, e l e c t r i c a l conduits f o r l i g h t i n g , and s e r v i c e panels i n t h e walls. The r e l a t i v e l y high a i r leakage r a t e f o r S t a i r Shaft No. 6 was probably caused by l a r g e cracks around t h e door frames through which t h e flow of leakage a i r was f e l t during t h e t e s t .

The a i r leakage r a t e s f o r t h e s t a i r doors given i n Fig. 7 i n d i c a t e t h a t they vary from 240 t o 575 cfm (0.113 t o 0.271 m3/s) p e r door a t a pressure d i f f e r e n c e of 0.30 i n . of water

(75.0 N/m2) and t h a t they a r e r e l a t e d t o t h e average crack width between door and door frame which ranged from 0.08 t o 0.18 i n . (2.03 t o 4.57 mm) (Fig. 5).

Pressure Loss C h a r a c t e r i s t i c of S t a i r Shafts

Pressure l o s s e s i n s i d e t h e s t a i r s h a f t s were measured with t h e a i r i n j e c t e d i n t o t h e s t a i r s h a f t on t h e ground f l o o r and t h e s t a i r doors sealed except f o r t h e door a t t h e top which was l e f t open. Measured pressure l o s s e s f o r t h e t e s t s t a i r shafts,shown i n Fig. 8 i n d i c a t e t h a t they a r e l i n e a r with t h e height of t h e s t a i r s h a f t . Also, t h e t o t a l pressure losses f o r each s t a i r s h a f t a t various flow r a t e s given i n Table 3 i n d i c a t e t h a t t h e pressure l o s s i s d i r e c t l y i

I

proportional t o t h e square of t h e flow r a t e .

I t appears t h a t t h e pressure l o s s i n s i d e a s t a i r s h a f t behaves much l i k e t h a t caused by f r i c t i o n i n a rectangular a i r duct. An equation describing t h e pressure l o s s i n s i d e a s t a i r s h a f t , t h e r e f o r e , was based on t h a t f o r a rectangular a i r duct.

where APL = t o t a l p r e s s u r e l o s s p e r f l o o r , i n . o f w a t e r ( ~ / r n ~ )

I

K = pressure l o s s c o e f f i c i e n t

I

L

= h e i g h t o f s h a f t p e r f l o o r , f t (m)

I

De = equivalent diameter, f t (m) V = v e l o c i t y pressure, i n . of water (N/m2) P

I

The pressure l o s s c o e f f i c i e n t K i s analogous t o f r i c t i o n f a c t o r f which depends on t h e roughness of t h e i n t e r i o r s u r f a c e of a duct.

I

The equivalent diameter can be c a l c u l a t e d a s follows: where

I

I

A = i n s i d e horizontal cross-sectional a r e a of s h a f t , sq f t (m2)

P = o u t e r perimeter of t h e i n s i d e horizontal cross-section of s h a f t , f t (m)

(7)

where

Q = flow r a t e , cfm (m3/s)

Note

-

when SI u n i t s a r e used, constant. 4005 i n Eq 3 i s replaced by 1.29.

-

The v a l u e s of t h e p r e s s u r e l o s s c o e f f i c i e n t K c a l c u l a t e d from Eq 1 a r e given i n Table 3. They a r e approximately c o n s t a n t a t d i f f e r e n t flow r a t e s f o r each s t a i r s h a f t . The v a l u e s of K ranged from 32 t o 38 f o r t h e conventional s t a i r s h a f t s ( S t a i r S h a f t s No. 1 t o 7 ) . These v a l u e s compared with t h o s e f o r a i r d u c t s whose f r i c t i o n f a c t o r f v a r i e s from 0.01 t o 0.05 (7) i n d i c a t e t h a t t h e flow r e s i s t a n c e i n t h e s t a i r s h a f t i s s e v e r a l o r d e r s g r e a t e r t h a n t h a t of an a i r d u c t . The s c i s s o r s t a i r s d i f f e r from t h e conventional s t a i r s h a f t i n t h a t t h e former c o n t a i n s two s e p a r a t e s t a i r c a s e s i n t h e one s h a f t . In c a l c u l a t i n g t h e K v a l u e f o r t h e s c i s s o r s t a i r ,

t h e r e f o r e , one-half of t h e c r o s s - s e c t i o n a l a r e a of t h e s h a f t was taken t o determine t h e v e l o c i t y p r e s s u r e . On t h i s b a s i s , t h e v a l u e of K f o r t h e s c i s s o r s t a i r ( S t a i r S h a f t No. 8) was found t o be about 15, which i s l e s s than one h a l f t h a t f o r t h e conventional s t a i r s h a f t . I t i s l i k e l y t h a t t h e lower v a l u e o f K f o r t h e s c i s s o r s t a i r s compared with t h a t f o r t h e conventional s t a i r s h a f t i s mainly due t o t h e d i f f e r e n c e i n t h e number o f 180-deg t u r n s : two p e r f l o o r f o r t h e conventional s t a i r s h a f t and one p e r f l o o r f o r t h e s c i s s o r s t a i r s a s

i t s

s t a i r c a s e c o n t i n u e s i n t h e same d i r e c t i o n between f l o b r s .

The flow r e s i s t a n c e of a s t a i r s h a f t can a l s o be r e p r e s e n t e d by an o r i f i c e a t each f l o o r l e v e l assuming no r e s i s t a n c e between f l o o r s . The s i z e o f t h e o r i f i c e can be c a l c u l a t e d from t h e p r e s s u r e l o s s c o e f f i c i e n t K by t h e following equation.

where

A. = o r i f i c e a r e a , s q f t (m2)

Cd = c o e f f i c i e n t o f d i s c h a r g e f o r an o r i f i c e (Cd = 0.60 f o r t u r b u l e n t flow)

i

This equation was obtained by equating Eq 1 and t h e equation f o r c a l c u l a t i n g p r e s s u r e l o s s through an o r i f i c e . The c a l c u l a t e d v a l u e s o f Ao/A f o r t h e t e s t s t a i r s h a f t s a r e given i n Table 3. I t i s seen t h a t t h e s i z e of t h e o r i f i c e v a r i e s from 24 t o 32% o f t h e c r o s s - s e c t i o n a l a r e a of t h e s h a f t .

The p r e s s u r e d i f f e r e n c e a c r o s s a s h a f t wall a s a r e s u l t of p r e s s u r i z a t i o n depends n o t only on t h e a i r leakage c h a r a c t e r i s t i c s of t h e s h a f t w a l l s b u t a l s o on t h o s e of t h e w a l l s i n t e r v e n i n g between t h e p r e s s u r i z e d s h a f t and o u t s i d e . Where only a few s h a f t s a r e p r e s s u r i z e d , t h e e f f e c t of t h e i n t e r v e n i n g w a l l s may n o t be s i g n i f i c a n t , b u t where a l a r g e number a r e p r e s s u r i z e d , t h e p r e s s u r e d i f f e r e n c e s a c r o s s t h e p r e s s u r i z e d s h a f t can be l e s s t h a n expected, a s t h e leakage

flow would r a i s e t h e p r e s s u r e s o f t h e f l o o r space a d j a c e n t t o t h e s h a f t . The c a l c u l a t i o n of t h e p r e s s u r e d i f f e r e n c e s a c r o s s t h e w a l l s of a p r e s s u r i z e d s t a i r s h a f t i s f u r t h e r complicated by t h e p r e s s u r e l o s s e s t h a t occur i n s i d e it. I t s e f f e c t i s t o cause nonuniform p r e s s u r i z a t i o n of t h e s t a i r s h a f t with t h e h i g h e s t p r e s s u r i z a t i o n n e a r t h e p o i n t of a i r i n j e c t i o n and t h e l e a s t a t t h e o p p o s i t e end (1,2,3 and 4 ) . T r i a l and e r r o r c a l c u l a t i o n s a r e r e q u i r e d t o achieve a system which w i l l g i v e t h e r e q u i r e d l e v e l of p r e s s u r i z a t i o n b u t n o t exceed t h a t which w i l l i n t e r f e r e with door o p e r a t i o n . A computer program t o a s s i s t i n t h e d e s i g n o f p r e s s u r i z a t i o n systems i s given i n Ref (8).

CONCLUSION

The r e s u l t s of t h e a i r leakage t e s t s on e l e v a t o r and s t a i r s h a f t s of e i g h t m u l t i s t o r y b u i l d i n g s a r e r e p o r t e d . They can be used i n t h e d e s i g n of p r e s s u r i z a t i o n systems f o r t h e p r o t e c t i o n of e l e v a t o r s and s t a i r s h a f t s from smoke contamination i n t h e event o f a f i r e .

Fig. 3 g i v e s t h e a i r leakage o f w a l l s of e l e v a t o r s h a f t s . I t i n d i c a t e s t h a t t h e leakage v a l u e s f o r w a l l s c o n s t r u c t e d o f masonry u n i t s a r e c o n s i d e r a b l y h i g h e r than t h o s e of c a s t - i n - p l a c e concrete. Fig. 4 g i v e s t h e a i r leakage r a t e s of e l e v a t o r doors, which c o r r e l a t e d with t h e average crack width between door and door frame a s shown on Fig. 5. Table 1 i n d i c a t e s t h a t t h e t o t a l a r e a of openings a t t h e t o p of t h e s h a f t can be s u b s t a n t i a l ; t h e y v a r i e d from 0.5

(8)

t o 10.5 s q f t (0.046 t o 0.97 m2). F i e l d measurements i n d i c a t e t h a t t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e openings a t t h e t o p of a p r e s s u r i z e d s h a f t can be taken t o be one-half o f t h a t a c r o s s t h e s h a f t wall. The a i r leakage r a t e o f an open e l e v a t o r door with t h e c a r i n p l a c e can be c a l c u l a t e d assuming an e f f e c t i v e opening with an e q u i v a l e n t o r i f i c e a r e a of 6.0 s q f t

(0.56 m2).

The a i r leakage r a t e s of t h e w a l l s of s t a i r s h a f t s given i n Fig. 6 i n d i c a t e t h a t t h e y a r e s i m i l a r t o t h o s e o f t h e e l e v a t o r s h a f t s c o n s t r u c t e d o f c a s t - i n - p l a c e c o n c r e t e , a s t h e w a l l s o f t h e t e s t s t a i r s h a f t s c o n s t r u c t e d of masonry were u s u a l l y e i t h e r parged o r p l a s t e r e d . The v a r i a t i o n i n t h e a i r leakage r a t e s of t h e w a l l s o f s t a i r s h a f t s could n o t be r e l a t e d t o t h e type of wall c o n s t r u c t i o n a s was t h e c a s e fox t h e e l e v a t o r s h a f t s . I t depended, probably, on t h e workmanship i n s e a l i n g crack openings around door frames, l i g h t f i x t u r e s and s e r v i c e p a n e l s i n t h e w a l l s . Fig. 7 g i v e s t h e a i r leakage r a t e s o f s t a i r doors which c o r r e l a t e d with t h e average crack width between door and door frame a s shown on Fig. 5.

The v a l u e of t h e p r e s s u r e l o s s c o e f f i c i e n t , K,

was

determined t o be about 35 f o r t h e conventional s t a i r s h a f t and 15 f o r t h e s c i s s o r s t a i r s ; t h e l a t t e r v a l u e being based only on t h e one s t a i r s h a f t and, hence, r e q u i r i n g a d d i t i o n a l t e s t i n g t o c o n f i m ' t h i s v a l u e . A s t h e s e values i n d i c a t e , t h e i n t e r n a l flow r e s i s t a n c e of a s t a i r s h a f t i s s u b s t a n t i a l and it must be taken i n t o account, t h e r e f o r e , i n d e s i g n i n g a s t a i r s h a f t p r e s s u r i z a t i o n system.

REFERENCES 1.

DeCicco, P.R., C r e s c i , R . J . , and C o r r e a l e , W.H., "Report of F i r e T e s t s , Analyses and Evaluation o f S t a i r P r e s s u r i z a t i o n and Exhaust i n High-Rise O f f i c e Buildings," Performed f o r t h e

New

York C i t y F i r e Department. ' Center f o r Urban Environmental S t u d i e s ,

Polytechnic I n s t i t u t e o f Brooklyn, September 1972.

2. Koplon, N.A., "Report o f t h e Henry Grady F i r e T e s t s , " C i t y of A t l a n t a Building Department, A t l a n t a , Georgia, January 1973.

3'

Fung, F.C.W., "Evaluation o f a P r e s s u r i z e d S t a i r w e l l Smoke Control System f o r a 12 S t o r e y Apartment Building," Center f o r Building Technology, I n s t i t u t e f o r Applied Tdchnology, National Bureau of Standards, Washington, D.C. NBSIR 73-277, June 1973.

4 ' Tamura, G.T., " ~ x p e r i m e n r a l S t u d i e s on P r e s s u r i z e d Escape Routes, "Division of Building

Research, National Research Council Canada, NRCC 14566, r e p r i n t e d from ASHRAE TRANSACTIONS Vol. 80, P a r t 2 , 1974.

5 '

E r d e l y i , B . J . , "Test R e s u l t s of a Ducted S t a i r w e l l P r e s s u r i z a t i o n System i n

a

High Rise Building," ASHRAE TRANSACTIONS P a r t I , Vol. 81, 1975.

6. Shaw, C . Y . , Tamura G.T., "Design o f a S t a i r s h a f t P r e s s u r i z a t i o n System f o r T a l l Buildings", ASHRAE JOURNAL, February 1976.

7' ASHRAE HANDBOOK OF FUNDAMENTALS, Chapter '5, "Fluid Flow," 1972.

8 ' Shaw, C.Y., Sander, D.M., and Tamura, G.T., "A F o r t r a n IV Program t o Simulate S t a i r - S h a f t

P r e s s u r i z a t i o n System i n Multi-Storey Buildings," Division o f Building Research, National Research Council Canada, DBR Computer Program No. 38, December 1974.

ACKNOWLEDGEMENT

The a u t h o r s a r e indebted t o t h e Department o f Public Works and Glenwood R e a l t y f o r t h e i r

cooperation i n making t h i s s t u d y p o s s i b l e , and wish t o acknowledge t h e a s s i s t a n c e of R.G. Evans i n t h e f i e l d t e s t s and i n t h e p r o c e s s i n g o f t e s t r e s u l t s .

This paper i s a c o n t r i b u t i o n from t h e Division o f Building ~ e s e a r c h , National Research Council o f Canada and i s published with t h e a p p r o v a l o f t h e D i r e c t o r o f t h e Division.

(9)

Table 1

Description of Test Elevator S h a f t s

Test

Shaft No.

No. of

S t o r i e s Shaft Average

Inside Door Crack Width

Dimension Opening of Door

No, o f f t x f t f t x f t i n . Cars Cm x m)

(m

x

m)

(mm3

Opening a t Top of Shaft Wall Construction c a s t - i n - p l a c e concrete except two s i d e s of concrete block cast-in-place concrete except f r o n t of concrete block c a s t - i n - p l a c e concrete concrete block cast-in-place concrete c l a y t i l e block cast-in-place concrete except f r o n t of concrete block

(10)

Table 2

Description of Test S t a i r Shafts

Shaft Average

Inside Door Crack Width

Test No. of Dimension Opening of Door

Shaft S t o r i e s f t x f t f t x f t i n . Wall No.

-

Served (m x m) (m x m) (mm) Construction 1 19 7.7x17.0 3.0x7.0 0.08 c a s t - i n - p l a c e (2.35x5.18) (0.914x2.13) (2 0) concrete, parged 2 2 3 6.7x14.2 3.0x7.0 0.13 c a s t - i n - p l a c e (2.04x4.33) (0.914x2.13) (3.3) concrete, parged 3 2 8 8.0x13.7 3.0x7.0 0.16 c a s t - i n - p l a c e (2.44x4.17) (0.914x2.13) (4.0) concrete, parged 4 2 3 7.4x14.6 3.0x7.0 0.12 cast-in-place (2.25x4.45) (0.914x2.13) (3.0) concrete, parged 5 15 10.1x18.6 5 . 0 ~ 7 . 2 " 0.11 c a s t - i n - p l a c e concrete

(3.08x5.67) (1.52x2.19) (2 8) except f r o n t and back

of concrete block 6 17 7.4x13.5 3.0x7.0 0.18 c a s t - i n place (2.26x4.11) (0.914x2.13) (4.6) concrete, parged 7 11 9.4x16.4 3.0x6.8 0.14 c l a y t i l e block (2.86x5.00) (0.914x2.07) (3.5) p l a s t e r e d 8** 12 3.9x34.5 3.0x7.0 0.18 cast-in-place concrete (1.19x10.5) (0.914x2.13) (4.6) except f r o n t of c l a y t i l e block

*

double door

**

s c i s s o r s t a i r s h a f t , a l l o t h e r s a r e conventional s t a i r s h a f t s

(11)

Table

3

Pressure Loss Coefficients of Stair Shaft

Flow

Pressure

Test

Height

Rate

Loss

Pressure

Shaft

ft.

cfm

in. of water

Coefficient

Ao/A*

NO.

(m)

(m3/s)

(N/m2>

K

per floor

*

.

A

=

flow resistance in terms of equivalent orifice area per floor,

sq ft (m2)

A

=

cross-sectional area of shaft, sq ft (m2)

(12)

F i g . 1 A i r s u p p l y f a n a n d d u c t w o r k o u t s i d e t e s t b u i l d i n g F i g . 2 A i r s u p p l y s y s t e m c o n n e c t e d t o t e s t e l e v a t o r s h a f t PRESSURE D I F F E R E N C E A C R O S S S H A F T W A L L S , N / , ~ E L E V A T O R S H A F T N O S . 3,5

-

C A S T - I N - P L A C E C O N C R E T E

-

N O S . 2 , 7

-

C A S T - I N - P L A C E C O N C R E T E , E X C E P T F R O N T O F C O N C R E T E B L O C K N O . 1 - - C A S T - I N - P L A C E C O N C R E T E , E X C E P T T W O S I D E S O F C O N C R E T E B L O C K N O . 4

-

C O N C R E T E B L O C K

-

N 0 . 6 - C L A Y T I L E B L O C K 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.8"0 P R E S S U R E D I F F E R E N C E A C R O S S S H A F T W A L L S , I N C H O F W A T E R F i g . 3 A i r l e a k a g e r a t e s o f e l e v a t o r s h a f t w a l l s

(13)

PRESSURE DIFFERENCE ACROSS ELEVATOR DOOR, N / m 2 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0 0 . N O - 2 ( 0 . 2 3 i n . , 5 . 8 m m ) N O - 1 ( 0 . 2 3 i n . ,5 . 8 m m ) 0 . N O - 5 ( 0 . 2 7 i n .,6.8rnrn) N O . 3 ( 0 . 2 3 i n . , 5 - 8 m m ) N O . 4 ( 0 . 2 1 i n . , 5 . 3 m m ) 0 . N O .6 ( 0 . 1 9 i n . , 4 . 8 m m ) 0 . 0 . 0 . 0 . 0. DOOR OPENINGS ARE

3 . 5 x 7 . 0 F T (1 . 0 7 x 2 . 1 3 m ) 0 . N O . 2 OF 4 . 0 ~ 7 . 0 F T ( 1 . 2 2 x 2 . 1 3 m ) N O . 3 OF 3 . 3 x 7 . 0 F T ( I - 0 0 x 2 . 1 3 m ) 0 . 0

PRESSURE DIFFERENCE ACROSS ELEVATOR DOOR,INCH OF WATER

(14)

A V E R A G E C R A C K W I D T H B E T W E E N D O O R A N D D O O R F R A M E , mm N O T E S

-

1 . F L O W RATES A T PRESSURE D I F F E R E N C E A C R O S S D O O R ( A P ) O F 0 . 3 0 I N C H O F WATER ( 7 5 ~ / r n ~ ) F O R O T H E R A P , M U L T I P L Y L E A K A G E RATE BY ( A P / O . ~ O ) ~ ' ~ ~ O R ( ~ ~ / 7 5 ) ' . ~ ~ W H E N S I U N I T S

-

ARE U S E D 2 . FOR O T H E R D O O R S I Z E , A D J U S T L E A K A G E RATE I N P R O P O R T I O N T O T O T A L C R A C K L E N G T H

-

3 . A V E R A G E C R A C K W I D T H

-

A V E R A G E O F M E A S U R E M E N T S O N F O U R S I D E S

/

E L E V A T O R D O O R ( 3 . 5 F T BY 7 . 0 FT, 1 . 0 7 x 2 . 1 3 m )

7"

I

/ /

( 3 . 0 FT BY 7 . 0 FT, 0 . 9 1 4 x 2 . 1 3 rn) 4 0 A V E R A G E C R A C K W I D T H B E T W E E N D O O R A N D D O O R F R A M E , I N C H F i g . 5 A i r l e a k a g e r a t e o f d o o r v s a v e r a g e c r a c k w i d t h

PRESSURE DIFFERENCE ACROSS SHAFT WALLS, ~ / m '

STAIRSHAFT N O S . 1 . 2 . 3 . 4 . 6

-

C A S T - I N - P L A C E CONCRETE, PARGED C Y

t

N O . 5

-

C A S T - I N - P L A C E C O N C R E T E , PARGED EXCEPT F R O N T A N D B A C K O F

E

0 . 8 0 C O N C R E T E B L O C K \ N O . 7

-

C L A Y TILE B L O C K , PLASTERED

f

N O . 8

-

C A S T - I N - P L A C E C O N C R E T E , PARGED u EXCEPT D O O R SIDE O F C L A Y TILE

,'0 . 7 0

t

B L O C K

4

4

$

PRESSURE DIFFERENCE ACROSS SHAFT WALLS, I N C H O F WATER

F i g . 6 A i r l e a k a g e r a t e s o f s t a i r s h a f t w a l l s

(15)

PRESSURE DIFFERENCE ACROSS STAIR D O O R , ~ / m ~ looo

I

2 5 7 1 1 5 1 1 5 1 0 0 . 4 5

4

( A V E R A G E C R A C K W I D T H ) N 0 . 3 ( 0 . 1 6 i n . , 4 . 0 m m )

-

-

N 0 . 6 ( 0 . 1 8 i n . , 4 . 6 m m ) N O . 4 (0.12in.,3.Omm) N 0 . 2 (0.13in.,3.3mm) N 0 . 5 ( O . l l i n . , 2 . B m m )

-

N O . l ( 0 . 0 8 i n . , 2 . 0 m m )

-

D O O R O P E N I N G FOR A L L

STAIR SHAFTS ARE

-

3 . 0 1 7 . 0 F T ( 0 . 9 1 4 x 2 . 1 3 m ) EXCEPT N O . 5 O F

2 . 5 x 7 . 2 FT ( 0 . 7 6 % 2 . 1 9 m )

I

- 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . 7 0 0 . 8 0 PRESSURE DIFFERENCE ACROSS STAIR D O O R , I N C H O F WATER

Fig. 7 A i r l e a k a g e r a t e s of s t a i r d o o r s H E I G H T O F STAIRSHAFT A B O V E G R O U N D F L O O R , m

I

2 4 0 8 , 0 ~ 0 1 1 0 0 0 4 . 0 0 H E I G H T O F STAIRSHAFT A B O V E G R O U N D F L O O R , FT Fig. 8 P r e s s u r e l o s s e s i n s i d e s t a i r s h a f t

(16)

This publication i s being distributed by the Division of Building Research of the National Research Council of Canada. I t should not be reproduced in whole o r in p a r t without permission of the original publisher. The Di- vision would be glad to be of assistance in obtaining such permission.

Publications of the Division may be obtained by mail- ing the appropriate remittance ( a Bank, Express, or P o s t Office Money Order, o r a cheque, made payable to the Receiver General of Canada, c r e d i t NRC) to the National Research Council of Canada, Ottawa. K1A OR6.

Stamps a r e not acceptable.

A l i s t of a l l publications of the Division i s available and may be obtained f r o m the Publications Section, Division of Building Research, National Research Council of Canada, Ottawa. KIA OR6.

Figure

Fig.  3  g i v e s   t h e   a i r   leakage  o f   w a l l s   of  e l e v a t o r   s h a f t s
Fig.  7  A i r   l e a k a g e  r a t e s   of  s t a i r   d o o r s   H E I G H T   O F   STAIRSHAFT  A B O V E   G R O U N D   F L O O R ,   m  I  2  4  0  8 ,   0  ~ 0 1 1 0 0 0  4

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers