• Aucun résultat trouvé

IS TRANSMITTED BY THE TICK HYALOMMA CF. AEGYPTIUM

N/A
N/A
Protected

Academic year: 2022

Partager "IS TRANSMITTED BY THE TICK HYALOMMA CF. AEGYPTIUM "

Copied!
11
0
0

Texte intégral

(1)

HEPATOZOON KISRAE N. SP. INFECTING THE LIZARD AGAMA STELUO

IS TRANSMITTED BY THE TICK HYALOMMA CF. AEGYPTIUM

PAPERNA E*. KREMER-MECABELL T.* & FINKELMAN S.*

S u m m a r y :

Hepatozoon kisrae n. sp. was found infecting a starred lizard at a site in southeastern Samaria, Palestine. These lizards were also hosts to the ixodid tick Hyolomma cf. aegyptium, which was demonstrated to be the vector of this hemogregarine. Hepatozoon and tick infections occurred in lizards within a very restricted locality; at a second site, nearby, ticks occurred without Hepatozoon infection. Micro- and macromeronts occurred mainly in the lungs, while cyst-like merogonic stages, mainly dizoic, occurred in the liver. Mature intraerythrocytic gametocytes were stout and encapsulated. Development from oocysts to sporocysts took place in the tick hemocoel, and was examined by

transmission electron microscopy. Lizards were successfully infected when fed on sporocyst-infected ticks or viscera of infected lizards.

Ticks become infected when fed on infected lizards; sporogony was complete when the ticks reached adult stage, over 4 0 days after initial attachment.

KEY WORDS : Hepatozoon kisrae n. sp., Agama stellio, Hyalomma cf.

aegyptium, development, transmission, sporogony, ultrastructure.

Résumé : HEPATOZOON KISRAE N. SP., PARASITE DU LÉZARD AGAMA STELLIO EST TRANSMIS PAR LA T I Q U E HYALOMMA CF. AEGYPTIUM Hepatozoon kisrae n. sp. a été découvert chez Agama stellio dans une localité du sud-est de la Samarie (Palestine). Ces Lézards sont égalemant les hôtes de Hyalomma cf. aegyptium. Il est démontré que cet Ixodidé est le vecteur de l'Hémogrégarine. Le cycle ne s'effectue que dans une zone précise : les Tiques d'une région voisine sont indemnes. Les micro et macromérontes se trouvent essentiellement dans les poumons, alors que les kystes (la plupart contenant deux cystozoïtes) siègent dans le foie. Les gamétocytes intraérythrocytaires mûrs, de forme trapue, sont encapsulés. Le développement depuis l'oocyste jusqu'au sporocyste, qui a lieu dans l'hémocéle de la Tique, a été étudié en microscopìe électronique. Les Lézards s'infectent par ingestion, soit de Tiques infectées de sporocystes, soit de viscères de Lézards infectés. Les Tiques s'infectent par repas sur Lézards infectés ; la sporogonie est achevée 40 jours après la fixation de la nymphe, lorque le stade adulte est atteint.

MOTS CLES : Hepatozoon kisrae n. sp., Agama stellio, Hyalomma cf.

aegyptium, développement, transmission, sporogonie, ultrastructure.

INTRODUCTION

T

icks and mites have b e e n shown to vector Hepa- tozoon o f mammalian (Miller, 1 9 0 8 ; Hoogstraal, 1961; Furman, 1 9 6 6 ; M a t h e w et al, 1 9 9 9 ) and avian hosts ( B e n n e t et al, 1 9 9 2 ) ; there is, h o w e v e r , only o n e report o f reptile-host Hepatozoon s p o r o g o n i c d e v e l o p m e n t in a tick (in Amblyoma dissimilae, Ball et al., 1 9 6 9 ) . H e m o g r e g a r i n e s o f the g e n u s Hemolivia, infecting toads (Bufo marinus), lizards (Tiliqua rugosa) and land tortoises ( T e s t u d o graecd) are tick-transmitted, and differ considerably in their course o f d e v e l o p m e n t in their v e c t o r from s p e c i e s o f Hepatozoon infecting reptiles transmitted via insects, notably mosquitoes. In the first, in the tick host, oocysts remain in the gut cells to yield a p r o g e n y o f mobile sporokinetes, w h i c h re- enter the gut tissue to p r o c e e d s p o r o g e n e s i s (Petit et al., 1990; Smallridge & Paperna, 1997; Landau & Paperna,

* Department of Animal Sciences, Faculty of Agricultural, food and environmental sciences, The Hebrew University of Jerusalem, Rehovot 76-100 Israel.

Correspondence: Paperna I.

Tel.: 972 8 9489945 - Fax: 972 8 9465763.

E-mail: paperna@agri.huji.ac.il

1997; Smallridge & Paperna, 2 0 0 0 a,b). In the latter, developing in dipteran insects (predominantly m o s - quitoes), oocysts e s c a p e into the h e m o c o e l , sporocysts d e v e l o p and remain to sporulate within the oocyst b o d y (Lowichick et al, 1993)- Hepatozoon o f mam- malian and avian hosts, unergo similar d e v e l o p m e n t into sporocyst loaded oocysts in their vector's h e m o - c o e l ( B e n n e t et al, 1992; Mathew et al., 1 9 9 9 ) . A few s p e c i e s o f n a m e d Hepatozoon s p e c i e s h a v e b e e n reported to b e transmitted via mites (Lewis & Wagner, 1964; Allison & Desser, 1981), their potential affiliation, h o w e v e r , with the mite-transmitted hemogregarinid genus Karyolysus (Reichenow, 1921; Svahn, 1975) needs to b e r e - e x a m i n e d .

T h e starred lizard, Agama stellio, is widespread throu- ghout the Middle East (Haas, 1 9 5 1 ) . D e s s e r & Y e k u - tiel ( 1 9 8 6 - 1 9 8 7 ) e x a m i n e d b l o o d smears from starred lizards c o l l e c t e d from different localities in Israel and Palestine and found two morphologically distinct types o f undescribed hemogregarines, stout and elongate.

T h e e l o n g a t e h e m o g r e g a r i n e is an as yet undescribed s p e c i e o f Hepatozoon (vide sp. A), w h i c h was trans- mitted experimentally via m o s q u i t o e s (Culexpipiens, Finkelman & Paperna, unpublished).

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/200209117

(2)

PAPERNA I., KREMER-MECABELL T. & FINKELMAN S.

In this communication w e describe the species forming the stout gametocytes, Hepatozoon kisraen. sp., which infects t h e starred lizard at sites in s o u t h e a s t e r n Samaria, Palestine. T h e s e lizards are also the hosts to an ixodid tick Hyalomma cf. aegyptium, w h i c h is demonstrated to vector this hemogregarine.

MATERIALS AND METHODS

S

tarred lizards (A. stellio) (n = 2 7 ) were captured bet­

w e e n S e p t e m b e r 2 3 , 1999 to August 24, 2000 on the southeastern slopes o f the Samarian mountains in Palestine ( 1 9 7 8 edition m a p o f Israel grids: 155-170 N / 1 8 2 - 1 8 7 E ) , at altitudes o f 5 5 0 to 7 0 0 m a b o v e sea level, in a semiarid Mediterranean habitat (~ 3 5 0 m m annual rainfall) consisting o f rocky areas and terrace- f e n c e d olive groves. T h e collection sites w e r e the fol­

lowing: a ) a stone-fenced olive grove, < 1,000 m2 in area ("Kisra", grid 1 6 6 N / 1 8 4 E ) ; b ) its adjoining grounds, at a perimeter o f 5 0 0 m ("near Kisra"); c ) at roadsides along two km on Akraba-Kisra road; d ) a site situated 13 k m d o w n this road to the south ("Roman c a m p " ) and e ) t w o localities situated three and five km o n the road branching eastwards from Kisra (sites c-e are listed as "elsewhere" in table I ) .

B l o o d smears w e r e obtained by clipping the lizard's t o e tip. Ticks w e r e o p e n e d by incision and their vis­

ceral contents w e r e e x a m i n e d by direct light micro­

s c o p y and from stained smears. Prepared b l o o d films and smears w e r e air-dried, fixed in absolute methyl a l c o h o l and stained for o n e hour in G i e m s a ( 1 0 % in p h o s p h a t e buffer pH 7 . 4 ) . Levels o f p a r a s i t a e m i a defined as: ± light (< 0.5 % ) , + low (0.5-3 % ) . ++ mode­

rate ( 3 - 9 % ) , +++ high (> 9 % ) w e r e determined from c o u n t e d 5 0 fields at x 1,000 magnification (~ 4 0 0 ery­

throcytes per field).

From moribund, euthanized and freshly dead lizards, tissue samples o f the liver, lungs and sometimes spleen w e r e fixed for histological examination in 10 % neu­

tral-buffered formalin. After dehydration in graded ethanols, the tissues w e r e e m b e d d e d in glycol-metha- crylate medium (GMA o f Agar Comp., U K ) . Sections, 3 pm thick, w e r e cut with a glass knife o n a Sorval J B 4 m i c r o t o m e and stained with either Meyer's hae-

malum-eosin or, after a 2 0 min incubation in B o u i n ' s solution and a rinse with water and 7 0 % ethanol, with 10 % G i e m s a , in p h o s p h a t e buffer pH 7.4, for o n e hour.

Captive lizards w e r e kept, e a c h in a glass terrarium 5 0 x 3 0 x 3 0 c m in size under c o n t i n u o u s illumination at room temperature o f 25-31° C and w e r e fed on meal­

w o r m s s u p p l e m e n t e d by c h o p p e d c h i c k e n liver and meat. Experimental infection o f lizards was carried out 1) through their feeding o n sporocysts dissected from naturally and laboratory infected ticks (H. cf. aegyp­

tium); 2 ) by feeding on b l o o d clots and viscera (mainly liver) o f euthanized infected lizards. T o g e t h e r with the starred lizards, two g e c k o e s (Ptyodactylus basselquistii) w e r e also fed o n viscera o f infected ticks.

Infection-free lizards w e r e obtained from habitats other than the e n z o o t i c location, and c h e c k e d over t w o w e e k period to verify the a b s e n c e o f infection. Visceral contents o f the ticks: males, semi-engorged adult stages and nymphs released by small incision, w e r e e x a ­ m i n e d directly a n d / o r from air-dried, methanol-fixed, Giemsa- stained smears. Positive ticks w e r e used either for an ultrastructural study, or to infect lizards via fee­

ding.

E n g o r g e d female ticks r e m o v e d from captured lizards w e r e kept in individual vials for oviposition, in slightly m o i s t e n e d c h a m b e r s (~ 7 0 - 9 0 % RH) at ambient r o o m temperature o f 25-31° C. Laid eggs w e r e incubated, and e n g o r g e d larvae and n y m p h s w e r e allowed to molt in vials under s a m e conditions o f temperature and humi­

dity. Hungry larvae, n y m p h s and adults w e r e stored in a 16° C incubator. Lizards, left free or c a g e d in a n e t - b o x , w e r e e x p o s e d to larvae or nymphs in contai­

ners with the rims o f their tops aligned by sticky bands.

For transmission electron m i c r o s c o p i c ( T E M ) e x a m i ­ nation, ticks w e r e immersed in 2.5 % glutaraldehyde in cacodylate buffer (0.1 M, pH 7 . 4 ) , tick a b d o m e n was then s e c t i o n e d at the anterior and posterior extremi­

ties, and either left that w a y or followed by progres­

sive separation o f the digestive tract from the chitinous e n v e l o p e o f the tick. T h e tick material left in the s a m e fixative for 24 h at 4° C, w a s then rinsed in 0.1 M c a c o ­ dylate buffer and postfixed in 1 % osmium tetroxide in the s a m e buffer for o n e hour. After rinsing in the

Kisra Near Kisra Elsewhere

Localities (site a) (site b) (sites c-e)

Total no lizards examined 10 2 15

No. lizards infested with ticks 7 1 4

No. infected with H. kisrae 9 0 0

No. infected with Hepatozoon sp. A 0 0 3

No. lizards with Hepatozoon-infected ticks 6 0 0

Table I. - Summary of numbers of starred lizards examined from localities in Samaria, found infected by Hepatozoon spp. and found infested by Hepatozoon-infected and non-infected ticks.

(3)

TICK TRANSMITTED HEPATOZOON OF AGAMA

buffer, the material was dehydrated in graded ethanols and e m b e d d e d in Agar 1 0 0 m e d i u m (Agar Scientific, Ltd., U K ) . Thin sections, cut o n a Reichert Ultracut m i c r o t o m e with a d i a m o n d knife w e r e stained o n grids with uranyl acetate and lead citrate, and e x a ­ mined with a J e o l 1 0 0 C X TEM. Semithin sections cut o n the s a m e m i c r o t o m e w e r e stained with toluidine b l u e for examination b y light m i c r o s c o p y .

RESULTS

SPATIAL D I S T R I B U T I O N O F HEPATOZOON A N D T I C K S A M O N G L I Z A R D S

A

ll but o n e o f the lizards (n = 1 0 ) caught in the olive grove in Kisra w e r e infected with Hepato­

zoon kisraen. sp.; o f these, seven w e r e infested with the tick Hyaloma cf. aegyptium ( T a b l e I ) . T h e only lizard found non-infected b y H. kisrae was free from ticks. Ticks r e m o v e d from the H. kisrae-infected lizards hosted either mature sporocysts or premature sporogony stages (Table I I ) , with the exception o f ticks r e m o v e d from the low-infected lizard (No. 2, T a b l e I I ) , w h i c h w e r e not infected. None o f the lizards caught outside the olive grove, either nearby (n = 2 ) , or else­

w h e r e (n = 1 5 ) w e r e infected with H. kisrae. T h r e e o f the latter lizards w e r e infected b y the mosquito-trans­

mitted Hepatozoon sp. A. Ticks w e r e found o n o n e lizard from site b ( a larva), o n t w o in site c (a nymph and a male, both lizards w e r e also infected with Hepa­

tozoon sp. A), and o n two lizards in site d (a male and t w o u n e n g o r g e d females); n o n e w e r e found hosting d e v e l o p i n g stages o f Hepatozoon ( T a b l e I I ) .

DESCRIPTION O F HEPATOZOON KISRAE N . S P .

Hosts: Starred lizard, Agama stellio; the tick Hyalomma cf. aegyptium.

T y p e locality: Olive grove at Kisra (grids 182 E / 1 6 2 N), southeast Samaria, Palestine.

Etymology: Named after the type-host locality.

Stages in the starred lizard

M e r o g o n i c s t a g e s d i v i d i n g b y p o l y e n d o d y o g e n y (Fig. 1A), s e e n in the lungs, w e r e encapsulated (29-39 x 15-22 pm in size, n = 7 ) inside endothelial cells, c o m ­ prised o f either m a c r o m e r o n t s dividing into 4 to 16, 11-16 x 3-4 um merozoites (Fig. 1 A-D), or m i c r o m e - ronts dividing to 16 to 3 2 , 8-11 x 1.5-2 p m merozoites (Fig. 1, A, E - G ) .

In the liver o c c u r r e d the cyst-type meronts or cysto- zoites, with two ("dizoic", 19-24 x 12-17 pm in size, n = 7, Fig. 1H-L), four ( 2 0 - 2 8 x 10-15 pm in size, n - 7, Fig. 2A) and exceptionally eight zoites. T h e s e cysts w e r e lodged within melanomacrophage centers (MMC), evidently inside macrophages. T h e zoite (12-15 x 2-5 um in size, n = 12) c o u p l e s w e r e apparently formed by e n d o d y o g e n y . T h e y w e r e e n c l o s e d in a meront resi­

duum (the cystic b o d y ) filled with vacuolar matrix (visible only in histology). S o m e dizoites c o n t a i n e d a blue-staining inclusion, w h i c h might b e a crystalline b o d y (Fig. I I , L). Exceptionally large zoites, 22.2 x 3.8 pm, s h o w e d tapering, d e e p staining, anterior end (not s h o w n ) .

T h e liver also contained a few merogonic stages, mero­

g o n i c ( p o l y e n d o d y o g e n i c ) division inside an e n d o ­ thelial cell is s h o w n in Figure 2 B ; m a c r o and micro- m e r o g o n i c stages ( b o t h 2 3 - 2 9 x 1 5 - 1 8 pm in size) c o n t a i n e d up to 16 (Fig. 2 C ) and 32 zoites, respecti­

vely. Liver tissue also contained free, single, un-divided meronts (Fig. 2 D ) , reaching a size o f 16-17 x 4-7 pm (n = 2 ) .

Four lizards, two naturally infected, o n e infected by ingestion o f a tick and o n e by infected lizard viscera ( 1 ) , kept for 37 to 167 days, w h e n necropsied, all demonstrated the p r e s e n c e o f cyst-type meronts in the liver. In the two lizards also e x a m i n e d for lung infec-

Infected by No. No. No. With m a t u r e

Lizard m a r k i n g Date H. kisrae ticks p r e s e n t e x a m i n e d infected s p o r o ô c y s t s

1 September 23. 1999 + 0

2 September 23, 1999 i 1M. 2seN 1M, IseN 0

3 September 23, 1999 ++ 1M, IF, 2seN, leL 1M, IF 2 2

(.11 October 15, 1999 0 0

8C May 5, 2000 +++ 3M, IF, 3eL 1M, IF 2 2

9C May 5, 2000 +++ 3M, 4F 1M, 3F 1M, 2F 1M

10C May 5, 2000 ^ + 0

11C May 24, 2000 1M, IF 1M, IF 1M 1

2K August 24, 2000 lOseN 3seN, 1#M 3eN, 1#M 1#M

3K August 24, 2000 + 3seN, 1M 1M, 1#M, 1#F 1M, 1#M, 1#F 1M, 1#M, 1#F

Levels of parasitaemia: ± light (< 0.5 % ) , + low (0.5-3 % ) , ++ moderate (3-9 % ) , +++ high (> 9 % ) .

Table 11. - Analysis of the state of infection of starred lizards and ticks collected in Kisra olive grove (site a); ticks: M-male, F-female, N- nymph, L-larva, e-engorged, se-semiengorged. * Immature ticks were allowed to molt before examination.

(4)

PAPERNA I.. KREMER-MECABELL T. & FINKELMAN S.

Fig.1. - Merogonic stages of Hepatozoon kisrae n.sp. from lungs and liver of Agama stellio (x 1,300). A-G, stages in lungs: A. macrome- ronts in division (a) and divided micromeronts (i); B. Macromeronts after division; C. Macromeronts prior division; D. Post-division macro- meront formation; E. Micromeronts prior division; F,G. Post division micromeront formations. H-L: Dizoic cyst-type meronts in the liver (L, merozoites show blue-staining crystalline-like bodies, marked with arrows).

(5)

Fig. 2. - Stages of Hepatozoon kisrae n. sp. from Agama stellio (x 1,300). A-D, from the liver: A. Four-zoite cyst-like meront; B. Meront dividing by polyendodyogeny; C. Polyzoic meront (macromeront); D. Undivided meront (arrow) and intraerythrocytic gametocytes (d). E- G: Gametocytes in the blood. E. Oval young (a) and premature with spirale nucleus (c); F. Premature with dense nucleus (b) and mature, encapsulated (d); G. Mature encapsulated; H . Hepatozoon sp. A. in blood of A. stellio from site e.

TlCK TRANSMITTED HEPATOZOON OF AGAMA

(6)

PAPERNA L, KREMIER-MECABELL T. & FINKELMAN S.

Lizard m a r k i n g Date infected

Onset o f

parasitaemia Necropsy Liver Lungs Blood

1 natural

Collected September 23, 1999

(before 23.9) after 167 days z2 + Mi & Ma ++ Gam ++

3 natural

Collected September 23, 1999

(before 23.9) after 84 days z2 ++, z4,8 Mi & Ma ++++ Gam ++

2B November 7, 1999

by sporocysts

32 dpi 120 dpi z2 +++, z4, 8, Mi & Ma 16,32 +

? Gam ++

7B March 7, 1999

by lizard viscera

< 37 dpi 37 dpi z2+, z8 ± 7 Gam ++

Table III. - Protocol of necropsies of 4 infected starred lizards: Exoerythrocytic z-zoites (cystozoites), Mi-micromeronts, Ma-macromeronts, Gam-gametocytes in blood. Parasite stages in the tissue: ± scarce, + a few, ++ prevalent, +++ numerous, ++++ veiy numerous.

tion, m a c r o - and micromeront infection coincided with the liver infection ( T a b l e III).

G a m e t o c y t e s at several stages o f differentiation o c c u r ­ red in the erythrocytes. T h e earliest o n e s w e r e oblong, 6-8 x 4-5 pm (n = 4 ) , and s u b s e q u e n t l y oval, 7-9 x 5- 6 pm, with a large central nucleus (Fig. 2 E ) . Interme­

diate stages ( 7 - 1 1 x 5-7 pm, n = 4 ) had a nucleus with spirally scattered chromatin (Fig. 2E, F ) . T h e presu­

m a b l y fully mature stages w e r e stout, banana-shaped, 12-15 x 2-5.5 p m in size (n = 9 ) , with a centrally l o c a t e d 4 to 5.5 um w i d e multilobed or h o m o g e ­ n e o u s l y p a c k e d nucleus; the cytoplasm was either stained h o m o g e n e o u s l y pale, or had a variable quan­

tity o f v a c u o l e s and granules (Fig. 2F, G ) . Fully mature g a m e t o c y t e s w e r e e n c a s e d within a hard capsule. T h e g a m e t o c y t e s w e r e readily differentiated from the sym- patric s p e c i e s o f Hepatozoon found in A. stellio b l o o d (Hepatozoon sp. A, Finkelman & Paperna, unpubli­

s h e d ) , the latter being elongate, with inward-bent ends (Fig. 2 H ) .

D e v e l o p m e n t in the tick

Syzygy w a s not detected. Oocysts, 6 7 - 7 4 x 4 7 - 5 4 pm (n = 4 ) in size, with e x p a n d e d vacuolated cytoplasm, and a nucleus with a c o n s p i c u o u s l y large nucleolus, w e r e found in the h e m o c o e l , o n the gut surface o f engorged nymphs (Fig. 3A, B ) . Via segmentation (Fig. 3 0 , sporoblasts formed aggregates o f sporocysts, 4 3 - 5 0 x 24-27 pm (n = 10) in size (Fig. 3 D ) . Early differentiated sporocysts in e n g o r g e d nymphs s h o w e d the already split crystalline b o d i e s ( F i g . 3 E ) . O o c y s t p r o g e n y consisted o f over 100 sporocysts. T h e formed sporo­

cysts remained aggregated within the oocyst, forming a ball-like structures ( 2 0 0 - 2 3 0 x 2 3 0 p m in size) in the h e m o c o e l (Fig. 3 F ) visible to the n a k e d e y e as white balls. Mature oocysts with ripe sporocysts w e r e found in u n e n g o r g e d adult male and female ticks and in nymphs, w h i c h failed to c o m p l e t e e n g o r g e m e n t . Indi­

vidual sporocysts, e n c a s e d in a hardened wall, varied in size from 3 4 x 24 to 6l x 23 pm, and c o n t a i n e d 16 to 3 5 sporozoites (Fig. 3 G ) .

ULTRASTRIICTURAL OBSERVATIONS ON SPOROCYST DEVELOPMENT

Y o u n g sporocysts w h i c h had split from the sporoblast (Fig. 4 A ) gradually e x h a u s t e d their stored amylopectin granules as well as their lipid v a c u o l e s (Fig. 4 B ) . Small granular aggregates - the anlagen o f crystalloid bodies, e n c l o s e d within rough e n d o p l a s m i c reticulum ( E R ) , grew to large inclusions o f granular matrices (Fig. 4 B , C), w h i c h b e c a m e consolidated into arrays o f crystal­

loids (Fig. 4 D , E ) . T h e ER network also incorporated n u m e r o u s tubular mitochondria (Fig. 4 B ) . Small e l e c ­ tron-dense b o d i e s r e m a i n e d in the sporocyst cyto­

plasm to late stage of differentiation (Fig. 4A, B , D ) . T h e rough ER, w h i c h a c c o m p a n i e d the forming crys­

talloid b o d i e s , disappeared w h e n the crystalloid arrays b e c a m e consolidated (Fig. 4 D , E ) . T h e single nucleus of the formed sporocysts divided. All formed nuclei had a conspicuous, often aggregated nucleolus (Fig. 4 D , E ) . At this stage encapsulation started, the future hard wall consolidated a b o v e the p l a s m a l e m m a , and b e c a m e s u p e r i m p o s e d by a fine veil (Fig. 4 F ) . I n c r e a s e d har­

dening o f the sporocyst wall a c c e l e r a t e d its resistence to fixation and impregnation, w h i c h eventually pre­

cluded further ultrastructural analysis.

EXPERIMENTAL INFECTIONS From ticks to lizards

Six starred lizards (all adults), from sites other than Kisra, verified to b e non-infected, w e r e fed o n s p o r o - cysts-infected H. cf. aegyptium ticks ( T a b l e IV). Five w e r e fed, e a c h o n a tick r e m o v e d from naturally infected lizard and o n e ( 7 K ) o n a tick experimentally e n g o r g e d o n an infected lizard. T h e latter lizard d e v e ­ l o p e d the s a m e infection s c h e d u l e as the o n e s fed o n naturally infected ticks. All but o n e d e v e l o p e d parasi­

temia not later than 32 to 4 0 days post- infection (p.i), in the latter ( 1 C ) , light infection with y o u n g g a m e t o ­ cytes was d e t e c t e d only 9 0 days p.i. In two lizards b l o o d already c o n t a i n e d mature g a m e t o c y t e s b y day

(7)

TICK TRANSMITTED HETATOZOON OF AGAMA

Fig. 3. - Developmental stages of Hepatozoon kisrae n. sp. in the tick Hyalomma cf. aegyptium. A-E, toluidine-stained semithin sections;

F,G, unfixed, live: A,B. Oocysts, x 1,156 and x 462; C. Oocyst (o) dividing into sporocysts (s) x 500; D. Sporocysts x 887; E. Sporocysts with divided crystalline bodies x 939; F. Oocyst ball filled with ripe sporocysts x 324; G. Single sporocysts filled with sporozoites x 1,968.

(8)

Fig. 4. - Electron microscopic images of sporocysts from infected ticks. A. Newly formed sporocyst filled with amylopectin granules, sho­

wing anlagen of crystalloid bodies enclosed in rough ER (pr) mitochondria (m) and electron-dense bodies (d); x 7,150. B. Sporocyst with ER-aligned inclusion of pre-crystalloid granular bodies (r), showing also mitochondria (m) and lipid vacuoles (L); x 6,400. C. Sector of divided sporocysts showing a nucleus (n) with scattered nucleolus (ns), and ER (er) aligning the pre-crystalloid granular body (r): x 10,344.

D,E. Sporocysts with several nuclei (n), arrayed crystalloid bodies (r), amylopectin granules (a) and electron-dense bodies (d); x 6000 and X 6, 460. F. Walling process of a sporocyst, the forming wall is invested by a veil (arrowhead); In addition to the formed crystalloid body (r) a crystalloid anlage (pr) enclosed in ER still occurs; a, amylopectin granules; x 15,300.

PAPERNA I., KREMER-MECABELL T. & FINKELMAN S.

(9)

TICK TRANSMITTED HEPATOZOON OF AGAMA

Date fed Dpi to first Dpi to m a t u r e

Lizard m a r k i n g Origin Date o n s p o r o c y s t s s e e n infection gametocytes

2B site d October 15, 1999 November 7, 1999 32 60

IC site c May 5, 2000 May 15, 2000 93 ~

IK site b August 24, 2000 October 17, 2000 40

4K site b August 24, 2000 October 26, 2000 40

5K site e August 24, 2000 September 3, 2000 37

7K site d August 24, 2000 September 3. 2000 < 37 37 (died)

37 p.i., in further t w o by day 4 0 p.i. and in o n e b y day 60 p.i.

T h e t w o g e c k o e s fed simultaneously with I K and 4K starred lizards on sporocyst-infected tick viscera, failed to d e v e l o p infection b y day 4 0 p.i.

From starred lizard to starred lizard

T h r e e lizards ( t w o juveniles and o n e adult from out­

side Samaria) w e r e fed o n b l o o d and liver o b t a i n e d from a euthanized infected lizard (lizard 1, T a b l e I I ) . Parasitaemia, including o f mature e n c a p s u l a t e d g a m e ­ tocytes was detected b y day 37 in the adult and 47 days p.i. in b o t h juvenile lizards.

From lizards to tick

T w o H. k i s r a e - i n f e c t e d lizards, and three n o n infected o n e s w e r e e x p o s e d to H. cf. aegyptium larvae, engor­

g e d larvae w e r e o b t a i n e d after 11-13 days p o s t - e x p o ­ sure, s o m e o f the larvae p r o c e e d e d without d e s c e n ­ ding to the n y m p h stage and d r o p p e d off as e n g o r g e d nymphs 3 0 to 3 8 days later. N o n e o f these, engorged larvae o r hungry nymphs, r e c o v e r e d up to 4 0 days post-attachment w e r e found infected. Infection was, h o w e v e r , found in s p o n t a n e o u s l y d e t a c h e d s e m i - e n g o r g e d n y m p h s (n = 6) w h o failed to molt, exa­

m i n e d 41 days post initial attachment. Infection was already c o m p r i s e d o f mature sporocysts with sporo- zoites. Adult ticks developing from molting e n g o r g e d n y m p h s w e r e f o u n d i n f e c t e d b y n o n - s p o r u l a t e d oocysts, as well as oocysts containing non-differentiated and mature sporocysts. T h e s e ticks w e r e 41 to 77 days after initial e x p o s u r e .

All 10 dissected adult ticks and three engorged nymphs r e c o v e r e d after a feeding s c h e d u l e o n three Hepato­

zoon sp. A.-infected lizards e x a m i n e d either 42 to 77 days (adults) or 2 0 to 42 days ( e n g o r g e d n y m p h s ) after initial attachment w e r e negative. O n e engorged nymph e x a m i n e d 22 days post-attachment c o n t a i n e d Hepato­

zoon sp. A. g a m e t o c y t e s . Transovarian transmission

Infection w a s not traced in any o f the p r o g e n y grown from ovigerous female r e m o v e d from infected lizard from Kisra. E x a m i n e d ticks w e r e n y m p h s ( 3 ) and adults ( 1 0 ) e n g o r g e d after f e e d i n g o n three n o n - infected lizards.

DISCUSSION

A gama stellio, the starred lizard is abundant and widely distributed in the Near East and has

become

a peridomestic inhabitant (Haas, 1951).

O n the otherhand the spatial distribution o f both ticks and H. kisrae infection in starred lizards appears to b e very patchy, the present locality was restricted to a stone fence-enclosed area o f less than 1,000 m2. Desser

& Yekutiel ( 1 9 8 6 - 1 9 8 7 ) reported Hepatozoon infection b y stout g a m e t o c y t e s , a p p a r e n t l y c o n s p e c i f i c with H. kisrae, in starred lizards from three localities: two in the s a m e arid geographical subregion (in south-east Samaria), and o n e in the forested Mediterranean z o n e in west Jerusalem, with ~ 8 0 0 mm annual rainfall. Hya- lomma cf. aegyptium w e r e n e v e r b e e n found o n the previously investigated starred lizards (Ostrovska &

Paperna, 1987; Bristowetzki & Paperna, 1 9 9 0 ) . As was found in our study, not all p a t c h e s o f tick infection necessarily generate active H. kisrae transmission. T h e s p e c i e s o f Hepatozoon co-habiting starred lizards are readily distinguishable, and appears to demonstrate a strict specificity to their respective vector hosts, H. kis­

rae, with the stout gametocytes, to H. cf. aegyptium and Hepatozoon sp. A, with the elongate gametocytes, to m o s q u i t o e s (Culex pipiens, Finkelman & Paperna, unpublished). Transmission by mosquitoes could favor a m o r e continuous pattern o f distribution for Hepato­

zoon sp. A. T h e spatial distribution o f this apparently m o r e a b u n d a n t s p e c i e s , h o w e v e r , is a l s o p a t c h y , though over seemingly a wider range o f habitats (Fin­

kelman & Paperna, unpublished).

H. kisrae appears to have narrow host specificity, p o s ­ sibly only A. stellio, infection failed to established itself in g e c k o e s (P. hasselquistii) fed o n infected ticks.

T h e vector tick's identity remains inconclusive. T h e ticks found o n the lizards, by all morphological criteria outlined by Hoogstraal ( 1 9 5 6 ) , are indistinguishable from H. aegyptium, w h i c h has b e e n found feeding pre­

dominantly o n land tortoises (Testudo graeca) and vectors Hemolivia mauritanica (Michel, 1 9 7 3 ; Landau

& Paperna, 1 9 9 7 ) . Although Hoogstraal ( 1 9 5 6 ) notes that rarely the tick w a s found feeding o n A. stellio, in our e x p e r i m e n t s ( u n p u b l i s h e d ) , larvae, nymphs and Table IV. - Experimental infection of starred lizards by feeding on H. kisrae sporocysts from ticks.

(10)

P A P E R N A I., K R E M E R - M E C A B E L L T . & F I N K E L M A N S.

adults reared from the ticks recovered from the lizards, refused to attach to tortoises.

Ball et al. ( 1 9 6 9 ) found sporozoite stages in the tick Amblyoma dissimile as well as in m o s q u i t o e s (Culex tarsalis, Aedes togoito), w h e n fed o n s a m e Hepatozoon fusifex-'mkcted Boa constrictor. T h e parasites, w h i c h

d e v e l o p e d in the tick, as authors also admit, h o w e v e r , do not necessarily have to b e conspecific with the o n e s found in the m o s q u i t o e s . T h e s e m o s q u i t o e s failed to acquire infection w h e n fed on s n a k e s infected via A. dissimile.

Apparently, all true m e m b e r s o f the genus Hepatozoon, as well as s p e c i e s o f Hemolivia have a d i c h o t o m o u s course o f merogony, o n e o f active large-progeny mero- g o n i e s to sustain the s u b s e q u e n t g a m o g o n o u s g e n e ­ ration in the b l o o d and the other, yielding persistant c y s t - l i k e s t a g e s . T h e s e c y s t - e n c l o s e d s t a g e s w e r e termed cystozoites (Landau et al., 1 9 7 2 ) . T h e y w e r e transmitted w h e n ingested as prey by a subsequent ver­

tebrate host (Landau et al, 1972; Smith & Desser, 1998).

In our experiments, active m e r o g o n i c stages could not b e separated from the cyst-like stages in the viscera used to infect lizards via feeding.

In H. kisrae, active m e r o g o n i e s d e v e l o p e d in e n d o t h e ­ lial cells in the lungs and to a lesser extent in the liver.

Cystozoites o c c u r only in the liver, mostly in m a c r o ­ p h a g e s in MMC. In A. stellio experimentally infected by Hemolivia mariae, a few cystozoites also developed in the lungs, in formed MMC (Smallridge & Paperna, unpublished).

T h e large-progeny m e r o g o n i e s are formed by polyen- d o d y o g e n o u s m e r o g o n y , and generations o f 4 to 16 large meronts are followed by o n e or m o r e eight to 32 progeny-generations o f micromeronts, which e s c a p e to the b l o o d to d e v e l o p into g am e t o cy t e s. T h e dizoic cystozoites have b e e n s e e n to form by e n d o d y o g e n y (Landau et al, 1 9 7 2 ) , as also s e e n in this study: cystic stage-four and eight zoites are g e n e r a t e d b y s u c c e s ­ sive endoclyogenies.

D e v e l o p m e n t o f the p r e s e n t l y d e s c r i b e d s p e c i e s , although taking place in ticks, o c c u r s similarly to that seen in moquitoes, i.e. within the oocyst located in the tissue lining the h a e m o c o e l (Bashtar etal, 1984; Lowi- chik etal, 1993; Smith & Desser, 1 9 9 7 ) . In Hemolivia developing in ticks the sporocysts released (as sporo- k i n e t e s ) from the oocyst remain located inside parasi- tophorous vacuoles within the tick gut cells (Smallridge

& Paperna, 2 0 0 0 b ) .

In ultrastnicturally e x a m i n e d H. kisrae sporocysts, the crystalloid material initially a s s e m b l e d within p o c k e t s o f E R , by the s a m e route as s e e n in s p e c i e s d e v e l o ­ ping in m o s q u i t o e s (H. domerguei, Vivier etal, 1972;

H. aegyptii, Bashtar et al, 1 9 8 4 ) , and similarly led to the formation o f large crystalloid arrays w h i c h are split b e t w e e n t h e u l t i m a t e l y f o r m e d s p o r o z o i t e s . Although the developmental process in Hemolivia also

involves formation and split o f crystalloid substance b e t w e e n the offspring, it s e e m s to p r o c e e d differently.

T h e extensive E R , w h i c h a c c o m p a n i e s the forming crystalloid b o d i e s in Hepatozoon, is lacking in Hemo­

livia (or disappears at an earlier stage o f differentia­

tion). In Hemolivia the crystalloid substance is first split b e t w e e n sporokinetes (Smallridge & Paperna, 2 0 0 0 a ) , and only then b e t w e e n the sporozoites (Paperna &

Smallridge, 2 0 0 0 b ) .

REFERENCES

ALLISON B. & DESSER S.S. Developmental stages of Hepatozoon lygosomarum (Dore, 1919) comb.n. (Protozoa, Haemo- gregarinidae), a parasite of a New Zealand skink Leiolo- pisma nigriplantare. Journal of Parasitology 1981, 67, 852-858.

BALL G . H . , CHAO J . & TELFORD S.R. The life history of Hepa­

tozoon rarefaciens (Sambon and Seligmann, 1907) from Drymarchon corais (Colubridae) and its experimental transfer to Constrictor constrictor (Boidae). Journal of Parasitology 1967 53, 897-909.

BALL G . H . , CHAO J . & TELFORD S.R. Hepatozoon fusifex sp. n.

a hemogregarine from Boa constrictor producing marked morphological changes in infected erythrocytes. Journal of Parasitology 1969, 55, 800-813.

BASHTAR A.R., GHAFFAR F.A. & MEHLHORN H . Hepatozoon aegyptii nov. sp. 3. Electron microscope studies on the gamogony and sporogony inside the vector Culexpipiens

molestus. Zeitscbrift fur Parasitenkunde 1984, 70, 53- 65.

BENNET G . F . , EARLE R.A. & PENZHORN B.L. Ornithodorusper- ingueyi (Argasidae) and Xenopsilla trispinus (Siphonop- tera), probable intermediate hosts of Hepatozoon atti- corae of the South African cliff swallow, Himdo spilodera.

Canadian Journal of Zoology, 1992, 70, 188-190.

BRISTOWETSKI M. & PAPERNA I. Life cycle and transmission of Schellackia cf. agamae, a parasite of the starred lizard Agama stellio. International Journal for Parasitology, 1990, 20, 883-892.

DESSER S.S. & YEKUTIEL D. Blood parasites of amphibians and reptiles in Israel. Israel Journal of Zoology, 1986/1987, 34, 77-90.

FURMAN D.P. Hepatozoon balfouri (Laveran, 1905): sporogonic cycle, pathogenesis, and transmission by mites to jerboa hosts. Journal of Parasitology, 1966, 52, 373-382.

HAAS G . On the present state of our knowledge of the her- petofauna of Palestine. Bulletin of the Research Council of Israel, 1951, 1, No. 3 (August).

HOOGSTRAAI. H. African Ixodoidea Vol. 1. Ticks of the Sudan.

Research report NM 005 050.29.07 US Naval Medical Research Unit No. 3, Cairo, Egypt, 1956. 1101 pp.

HOOGSTRAAI. H . The life cycle and incidence of Hepatozoon balfuri (Laveran, 1905) in Egyptian jerboas (Jaculus spp.) and mites (Haemolaelaps aegyptium Keegan, 1956).

Journal of Protozoology, 1961, 8, 231-248.

(11)

TlCK TRANSMITTED HEPATOZOON OF AGAMA

LANDAU I., MICHEL J . C , CHAHAUD A.G. & BRYGOO E.R. Cycle biologique d Hepatozoon domerguei; discussion sur les caracteres fondamentaux d'un cycle de coccidie. Zeit- schrift fur Parasitenkunde, 1972, 38, 250-270.

LANDAU I. & PAPERNA I. The assignment of Hepatozoon mau- ritanicum, a tick-transmitted parasite o f tortoise, to the genus Hemolivia. Parasite, 1997, 4, 365-367.

LEWIS J.E. & WAGNER E.D. Hepatozoon sauromali sp. n. a hemogregarine from the Chuckwalla (Sauromalus spp.) with notes on the life history. Journal of Parasitology, 1964, 50, 11-14.

LOWICHIK A., LANNERS N.H., LOWRIE R.C. & MEINERS N.E. Game- togenesis and sporogony of Hepatozoon mocassini (Api- complexa: Adeleina: Hepatozoidae) in an experimental mosquito host, Aedes aegypti. Journal of Eukaryote Micro- biology, 1993, 40, 287-297.

MATHEW J.S., EWING S.A., PANCIERA R.J. & KOCAN K . M . Sporo- gonic development of Hepatozoon americanum (Api- complexa) in its definitive host, Amblyomma maculatum (Acariña). Journal of Parasitology, 1999, 85, 1023-1031 MICHEL J . C . Hepatozoon mauritanicum (Et. et Ed. Sergent,

1904) n. comb., parasite de Testudo graeca: Redescription de la sporogonie chez Hyalomma aegyptium et la schi- zogonie tissulaire d'après le material d'E. Brumpt. Annales de Parasitologie Humaine et Comparée, 1973, 48, 11-21.

MILLER W . W . Hepatozoon pemiciosum n.g. n.sp., a hemo- gregarine pathogenic for white rats; with a brief descrip- tion of the sexual cycle in the intermediate host, a mite (Laelaps ecbidnus Bellese). Bulletin of the Hygiene Labo- ratory of Washington, 1908, 46, 51-123.

OSTROVSKA K . & PAPERNA I. Fine structure of gamont stages of Schellackia cf. agamae (Lankesterellidae, Eucoccidia) from the starred lizard Agama stellio. Parasitology Research, 1987, 73, 492-499.

PETIT G., LANDAU I., BACCAM D. & LAINSON R. Description et cycle biologique d'Hemolivia stellata n.g., n. sp. hemo- gregarine de crapauds brésiliens. Annales de Parasitology Humaine et Comparée, 1990 65, 3-15.

REICHENOW E. Die Hamococcidian der Eidechsen. Vormer- kungen und I. Teil: Die Entwicklungsgeschichte von Kaiyolysus. Archiv Protistenkunde, 1921, 42, 179-291- SMALLRIDGE C. & PAPERNA I. The tick transmitted haemogrega-

rinid of the Australian sleepy lizard Tiliqua rugosa belongs to the genus Hemolivia. Parasite, 1997, 4, 359-363- SMALLRIDGE C. & PAPERNA I. Ultrastructure studies on post-

oocyst development of the lizard hemogregarine Hemo- livia mariae in the tick Amblyomma limbatum. Parasito- logy Research, 2000a, 86, 467-471.

SMALLRIDGE C. & PAPERNA I. Ultrastructure of Hemolivia mariae gamonts in the blood of the lizard Tiliqua rugosa and their development to oocyst stage in the tick Amblyomma lim- batum. Parasitology Research, 2000b, 86, 563-569.

SMITH T.G. The genus Hepatozoon (Apicomplexa: Adeleina).

Journal of Parasitology, 1996, 82, 565-585.

SMITH T.G. & DESSER S.S. Ultrastructural features of the game- togenic and sporogenic development o f Hepatozoon sipedon (Apicomplexa: Adeleorina). Parasite, 1997, 2, 141-151.

SMITH T.G. & DESSER S.S. Ultrastructural features of cystic and merogonic stages of Hepatozoon sipedon (Apicomplexa:

Adeleorina) in Northern Leopard Frogs (Ranapipiens) and northern Water Snakes (Nerodia sipedon) from Ontario, Canada. Journal of Eukaryote Microbiology, 1998, 45, 419- 425.

SMITH T.G., DESSER S.S. & MARTIN S.S. The development of Hepatozoon sipedon sp. nov. (Apicomplexa: Adeleina:

Hepatozoonidae) in its natural host, the northern water snake {Nerodia sipedon sipedon), in the culicine vectors Culex pipiens and Culex territans, and in an intermediate host, the northern leopard frog (Rana pipiens). Parasito- logy Research, 1994, 80, 559-568.

SVAHN K. Blood parasites of the genus Karyolysus (Coccidia, Adeleidae) in Scandinavian lizards. Description and life cycle. Nortvegian Journal of Zoology, 1975, 23, 277-295.

VIVIER E . , PETITPEREZ A. & LANDAU I. Observations ultrastruc- turales sur la sporoblastogenese de l'hemogregarine, Hepa- tozoon domerguei, Coccidie, Adeleidea. Protistologica, 1972, 8, 315-333.

Regu le 27 septembre 2001 Accepte le 12 novembre 2001

Références

Documents relatifs

rufipes teken zijn inheems in Noord-Afrika, Azië en Zuid- en Oost- Europa en worden occasioneel in Noord-West Europa ingevoerd door trekvogels (larven en nymfen).. Meestal kunnen

Three antigens (18.7, 50 and 80 kDa) were revealed weakly after the first and the second infestations by sera samples but not at infestation onward. A 13.5 kDa antigen

mais, inopinément, Georgina était survenue ou avait appelé Mathurine, ou bien encore le vieux Fanche était apparu aux alentours, et Alix se

Cette phrase montre que Solvay prend appui sur son référentiel de compétences dans son nouvel accord de GPEC pour saisir les différentes sources de compétences : lors de la

Il aide le groupe à se doter de stratégies de raisonnement opérantes pour chacun..

C’est l’esprit dans lequel sont formulées un certain nombre d’ interrogations pour éviter de faire « comme si » la seule question était, à travers la mise en évidence des

Trouvez des ensembles d’entiers naturels strictement positifs, dont la somme des éléments est minimale et qui contiennent exactement k multiples de k dans les cas suivants :Q1 :

Les 4 tableaux ci-après donnent les entiers qui sont retenus dans chacun des cas avec un astérisque pour repérer les entiers divisibles par l’un des facteurs premiers 2 ou 3 ou 5 ou