• Aucun résultat trouvé

Combining Population Modeling and Bayesian Inference for Tumor Growth Prediction

N/A
N/A
Protected

Academic year: 2021

Partager "Combining Population Modeling and Bayesian Inference for Tumor Growth Prediction"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-02424592

https://hal.archives-ouvertes.fr/hal-02424592

Submitted on 27 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combining Population Modeling and Bayesian Inference for Tumor Growth Prediction

Cristina Vaghi

To cite this version:

Cristina Vaghi. Combining Population Modeling and Bayesian Inference for Tumor Growth Prediction.

SMB 2019 annual meeting, Jul 2019, Montreal, Canada. �hal-02424592�

(2)

Combining Population Modeling and Bayesian Inference for Tumor Growth Prediction

Cristina Vaghi

Ph.D. Candidate at Inria Sud-Ouest-Bordeaux, MONC team

SMB 2019

Montreal, July 22nd 2019

(3)

Motivations

Few studies have modeled tumor growth kinetics with a population approach and across tumor types.

The Gompertz model is a widely accepted model of tumor growth. Several studies have reported a strong correlation between the two parameters of the model [1].

Prediction of the time from cancer initiation would have important clinical implications, such as the determination of invisible metastasis at diagnosis.

[1] Brunton GF, Wheldon TE. (1978) Characteristic Species Dependent Growth Patterns of Mammalian Neoplasms. Cell Tissue Kinet. !2

(4)

Objectives

!3

Test the descriptive power of different tumor growth models within a population.

Study the correlation between the parameters of the Gompertz model within a population and define a novel, simplified model: the reduced Gompertz model.

Use the estimated population parameters to perform individual predictions of tumor initiation using Bayesian inference.

(5)

Outline

!4

Material and methods

‣ Preclinical data

‣ Tumor growth models

‣ Nonlinear mixed effects modeling: population approach

‣ Bayesian inference

Results

‣ Population analysis

‣ The reduced Gompertz model

‣ Backward prediction of the initiation time of the tumor

Conclusions

(6)

Material and methods

!5

Data

Preclinical data

Longitudinal measurements of the primary tumor

Three data sets:

‣ Breast cancer (volume data): 66 individuals (J. Ebos et al., Roswell Cancer Park)

‣ Breast cancer (fluorescence data): 8 individuals (A. Rodallec et al., SMARTc team)

‣ Lung cancer (volume data): 20 individuals (S. Benzekry, C. Lamont, Center of Cancer and System Biology)

(7)

Material and methods

Tumor growth models

!6

Exponential Logistic Gompertz

dV

dt = αi βi log (

V

Vinj ) V V(tI) = VI

dV

dt = αiV (1− V

Ki ) V(tI) = VI

dV

dt = αiV V(tI) = VI

Benzekry S. et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth. PLoS Comput Biol. (2014)

(8)

Structural model

Model for the individual parameters

Error model

yji = f(tij; i) + eij

<latexit sha1_base64="aMaDZs6VuLZgO1vFMmbf8uirFOA=">AAACO3icbVBNaxRBEK2JH4nrR1Y9emkMQiSwzOQSQQJBLzlGyCaBnXWp6a3JtumeHrprAsMw4H/Rv+EP8BpPnj0IwWvu9uwmEBMLmn793iuq+mWlVp7j+Ge0dOfuvfvLKw96Dx89frLaf/rswNvKSRpKq607ytCTVgUNWbGmo9IRmkzTYXbyvtMPT8l5ZYt9rksaGzwuVK4kcqAm/e1e/bFR7aT51Iptka/z1ettmlk99bUJV5PyjBjbTnstNgR1hrmxvxYP4nmJ2yC5BGs7GxdfPwPA3qT/O51aWRkqWGr0fpTEJY8bdKykpraXVp5KlCd4TKMACzTkx838m614FZipyK0Lp2AxZ693NGh8t3BwGuSZv6l15P+0UcX5m3GjirJiKuRiUF5pwVZ0mYmpciRZ1wGgdCrsKuQMHUoOyfbSbpscjdJ1wzizBlshQjLJzRxug4PNQRIPkg8honewqBV4AS9hHRLYgh3YhT0YgoQv8B3O4Ef0LfoVnUd/Ftal6LLnOfxT0cVf7uyxxA==</latexit><latexit sha1_base64="8z0Ig10WFAyPKYBrkekiSA5AiyU=">AAACO3icbVDBShxBEO0xiZpNYtZ4zKXJEjAIy4yXBMKCmItHA64KO5ulprfG7dg9PXTXCMMwX+BnmN/wA7zqybOHgHj1bs+ugtEUNP36vVdU9UtyJR2F4WUw9+Llq/mFxdetN2/fLb1vL3/YdaawAvvCKGP3E3CoZIZ9kqRwP7cIOlG4lxz+aPS9I7ROmmyHyhyHGg4ymUoB5KlRu9cqf1WyHlW/a97j6So9vL7HiVFjV2p/VTFNkKButC98jWNjmBrbnbAbTos/B9E96Gys3f45xk6+PWr/jcdGFBozEgqcG0RhTsMKLEmhsG7FhcMcxCEc4MDDDDS6YTX9Zs0/e2bMU2P9yYhP2ccdFWjXLOydGmjinmoN+T9tUFD6bVjJLC8IMzEblBaKk+FNZnwsLQpSpQcgrPS7cjEBC4J8sq242SYFLVVZEUyMhppzn0z0NIfnYHe9G4Xd6KePaJPNapF9ZJ/YKovYV7bBttg26zPBTtgZO2cXwWlwFVwHNzPrXHDfs8L+qeD2Dl5Wssc=</latexit><latexit sha1_base64="8z0Ig10WFAyPKYBrkekiSA5AiyU=">AAACO3icbVDBShxBEO0xiZpNYtZ4zKXJEjAIy4yXBMKCmItHA64KO5ulprfG7dg9PXTXCMMwX+BnmN/wA7zqybOHgHj1bs+ugtEUNP36vVdU9UtyJR2F4WUw9+Llq/mFxdetN2/fLb1vL3/YdaawAvvCKGP3E3CoZIZ9kqRwP7cIOlG4lxz+aPS9I7ROmmyHyhyHGg4ymUoB5KlRu9cqf1WyHlW/a97j6So9vL7HiVFjV2p/VTFNkKButC98jWNjmBrbnbAbTos/B9E96Gys3f45xk6+PWr/jcdGFBozEgqcG0RhTsMKLEmhsG7FhcMcxCEc4MDDDDS6YTX9Zs0/e2bMU2P9yYhP2ccdFWjXLOydGmjinmoN+T9tUFD6bVjJLC8IMzEblBaKk+FNZnwsLQpSpQcgrPS7cjEBC4J8sq242SYFLVVZEUyMhppzn0z0NIfnYHe9G4Xd6KePaJPNapF9ZJ/YKovYV7bBttg26zPBTtgZO2cXwWlwFVwHNzPrXHDfs8L+qeD2Dl5Wssc=</latexit><latexit sha1_base64="W/uDJjvIzJkT1MhTCd5W+S6Ckvk=">AAACO3icbVBNSxxBEO1RE83mazXHXBqXgCGwzHiJIILoxeMK2VXY2Sw1vTVux+7pobtGGIb5Nf4Of4BXPXnOQRCvuadn3YAfKWj69XuvqOqX5Eo6CsObYGFx6dXr5ZU3rbfv3n/42F5dGzhTWIF9YZSxxwk4VDLDPklSeJxbBJ0oPEpO9xv96Aytkyb7QWWOIw0nmUylAPLUuL3TKn9Wsh5Xv2q+w9MN+vfajhOjJq7U/qpimiJB3Whf+TeOjWFmbHfCbjgr/hJEc9Bh8+qN27fxxIhCY0ZCgXPDKMxpVIElKRTWrbhwmIM4hRMcepiBRjeqZt+s+RfPTHhqrD8Z8Rn7uKMC7ZqFvVMDTd1zrSH/pw0LSrdGlczygjATD4PSQnEyvMmMT6RFQar0AISVflcupmBBkE+2FTfbpKClKiuCqdFQc+6TiZ7n8BIMNrtR2I0Ow87u3jyjFfaZrbMNFrHvbJcdsB7rM8HO2SW7YtfBRfA7uAvuH6wLwbznE3tSwZ+/VHyvQA==</latexit>

yji = f(tij; i) + eij

<latexit sha1_base64="aMaDZs6VuLZgO1vFMmbf8uirFOA=">AAACO3icbVBNaxRBEK2JH4nrR1Y9emkMQiSwzOQSQQJBLzlGyCaBnXWp6a3JtumeHrprAsMw4H/Rv+EP8BpPnj0IwWvu9uwmEBMLmn793iuq+mWlVp7j+Ge0dOfuvfvLKw96Dx89frLaf/rswNvKSRpKq607ytCTVgUNWbGmo9IRmkzTYXbyvtMPT8l5ZYt9rksaGzwuVK4kcqAm/e1e/bFR7aT51Iptka/z1ettmlk99bUJV5PyjBjbTnstNgR1hrmxvxYP4nmJ2yC5BGs7GxdfPwPA3qT/O51aWRkqWGr0fpTEJY8bdKykpraXVp5KlCd4TKMACzTkx838m614FZipyK0Lp2AxZ693NGh8t3BwGuSZv6l15P+0UcX5m3GjirJiKuRiUF5pwVZ0mYmpciRZ1wGgdCrsKuQMHUoOyfbSbpscjdJ1wzizBlshQjLJzRxug4PNQRIPkg8honewqBV4AS9hHRLYgh3YhT0YgoQv8B3O4Ef0LfoVnUd/Ftal6LLnOfxT0cVf7uyxxA==</latexit><latexit sha1_base64="8z0Ig10WFAyPKYBrkekiSA5AiyU=">AAACO3icbVDBShxBEO0xiZpNYtZ4zKXJEjAIy4yXBMKCmItHA64KO5ulprfG7dg9PXTXCMMwX+BnmN/wA7zqybOHgHj1bs+ugtEUNP36vVdU9UtyJR2F4WUw9+Llq/mFxdetN2/fLb1vL3/YdaawAvvCKGP3E3CoZIZ9kqRwP7cIOlG4lxz+aPS9I7ROmmyHyhyHGg4ymUoB5KlRu9cqf1WyHlW/a97j6So9vL7HiVFjV2p/VTFNkKButC98jWNjmBrbnbAbTos/B9E96Gys3f45xk6+PWr/jcdGFBozEgqcG0RhTsMKLEmhsG7FhcMcxCEc4MDDDDS6YTX9Zs0/e2bMU2P9yYhP2ccdFWjXLOydGmjinmoN+T9tUFD6bVjJLC8IMzEblBaKk+FNZnwsLQpSpQcgrPS7cjEBC4J8sq242SYFLVVZEUyMhppzn0z0NIfnYHe9G4Xd6KePaJPNapF9ZJ/YKovYV7bBttg26zPBTtgZO2cXwWlwFVwHNzPrXHDfs8L+qeD2Dl5Wssc=</latexit><latexit sha1_base64="8z0Ig10WFAyPKYBrkekiSA5AiyU=">AAACO3icbVDBShxBEO0xiZpNYtZ4zKXJEjAIy4yXBMKCmItHA64KO5ulprfG7dg9PXTXCMMwX+BnmN/wA7zqybOHgHj1bs+ugtEUNP36vVdU9UtyJR2F4WUw9+Llq/mFxdetN2/fLb1vL3/YdaawAvvCKGP3E3CoZIZ9kqRwP7cIOlG4lxz+aPS9I7ROmmyHyhyHGg4ymUoB5KlRu9cqf1WyHlW/a97j6So9vL7HiVFjV2p/VTFNkKButC98jWNjmBrbnbAbTos/B9E96Gys3f45xk6+PWr/jcdGFBozEgqcG0RhTsMKLEmhsG7FhcMcxCEc4MDDDDS6YTX9Zs0/e2bMU2P9yYhP2ccdFWjXLOydGmjinmoN+T9tUFD6bVjJLC8IMzEblBaKk+FNZnwsLQpSpQcgrPS7cjEBC4J8sq242SYFLVVZEUyMhppzn0z0NIfnYHe9G4Xd6KePaJPNapF9ZJ/YKovYV7bBttg26zPBTtgZO2cXwWlwFVwHNzPrXHDfs8L+qeD2Dl5Wssc=</latexit><latexit sha1_base64="W/uDJjvIzJkT1MhTCd5W+S6Ckvk=">AAACO3icbVBNSxxBEO1RE83mazXHXBqXgCGwzHiJIILoxeMK2VXY2Sw1vTVux+7pobtGGIb5Nf4Of4BXPXnOQRCvuadn3YAfKWj69XuvqOqX5Eo6CsObYGFx6dXr5ZU3rbfv3n/42F5dGzhTWIF9YZSxxwk4VDLDPklSeJxbBJ0oPEpO9xv96Aytkyb7QWWOIw0nmUylAPLUuL3TKn9Wsh5Xv2q+w9MN+vfajhOjJq7U/qpimiJB3Whf+TeOjWFmbHfCbjgr/hJEc9Bh8+qN27fxxIhCY0ZCgXPDKMxpVIElKRTWrbhwmIM4hRMcepiBRjeqZt+s+RfPTHhqrD8Z8Rn7uKMC7ZqFvVMDTd1zrSH/pw0LSrdGlczygjATD4PSQnEyvMmMT6RFQar0AISVflcupmBBkE+2FTfbpKClKiuCqdFQc+6TiZ7n8BIMNrtR2I0Ow87u3jyjFfaZrbMNFrHvbJcdsB7rM8HO2SW7YtfBRfA7uAvuH6wLwbznE3tSwZ+/VHyvQA==</latexit>

i = µ (⌘i)

<latexit sha1_base64="N329Khvr0bIbvlvRtFhqLKovsW0=">AAACMHicbVDJSgNBEO1xjXGLevTSGIR4CTMi6EUIetBjBLNAJoaeTiVp0rPQXSMJw3ySFz9FLwqKePUr7CwHk1jQ9OO9elTV8yIpNNr2u7W0vLK6tp7ZyG5ube/s5vb2qzqMFYcKD2Wo6h7TIEUAFRQooR4pYL4noeb1r0d67RGUFmFwj8MImj7rBqIjOENDtXI3rhfKth765ktc7AGy9EHQSzrD+3HqIgwwgUGUFmakieGklcvbRXtcdBE4U5An0yq3ci9uO+SxDwFyybRuOHaEzYQpFFxCmnVjDRHjfdaFhoEB80E3k/HBKT02TJt2QmVegHTM/nUkzNejBU2nz7Cn57UR+Z/WiLFz0UxEEMUIAZ8M6sSSYkhH6dG2UMBRDg1gXAmzK+U9phhHk3HWhODMn7wIqqdFxy46d2f50tU0jgw5JEekQBxyTkrklpRJhXDyRF7JB/m0nq0368v6nrQuWVPPAZkp6+cXNdqsGg==</latexit><latexit sha1_base64="N329Khvr0bIbvlvRtFhqLKovsW0=">AAACMHicbVDJSgNBEO1xjXGLevTSGIR4CTMi6EUIetBjBLNAJoaeTiVp0rPQXSMJw3ySFz9FLwqKePUr7CwHk1jQ9OO9elTV8yIpNNr2u7W0vLK6tp7ZyG5ube/s5vb2qzqMFYcKD2Wo6h7TIEUAFRQooR4pYL4noeb1r0d67RGUFmFwj8MImj7rBqIjOENDtXI3rhfKth765ktc7AGy9EHQSzrD+3HqIgwwgUGUFmakieGklcvbRXtcdBE4U5An0yq3ci9uO+SxDwFyybRuOHaEzYQpFFxCmnVjDRHjfdaFhoEB80E3k/HBKT02TJt2QmVegHTM/nUkzNejBU2nz7Cn57UR+Z/WiLFz0UxEEMUIAZ8M6sSSYkhH6dG2UMBRDg1gXAmzK+U9phhHk3HWhODMn7wIqqdFxy46d2f50tU0jgw5JEekQBxyTkrklpRJhXDyRF7JB/m0nq0368v6nrQuWVPPAZkp6+cXNdqsGg==</latexit><latexit sha1_base64="N329Khvr0bIbvlvRtFhqLKovsW0=">AAACMHicbVDJSgNBEO1xjXGLevTSGIR4CTMi6EUIetBjBLNAJoaeTiVp0rPQXSMJw3ySFz9FLwqKePUr7CwHk1jQ9OO9elTV8yIpNNr2u7W0vLK6tp7ZyG5ube/s5vb2qzqMFYcKD2Wo6h7TIEUAFRQooR4pYL4noeb1r0d67RGUFmFwj8MImj7rBqIjOENDtXI3rhfKth765ktc7AGy9EHQSzrD+3HqIgwwgUGUFmakieGklcvbRXtcdBE4U5An0yq3ci9uO+SxDwFyybRuOHaEzYQpFFxCmnVjDRHjfdaFhoEB80E3k/HBKT02TJt2QmVegHTM/nUkzNejBU2nz7Cn57UR+Z/WiLFz0UxEEMUIAZ8M6sSSYkhH6dG2UMBRDg1gXAmzK+U9phhHk3HWhODMn7wIqqdFxy46d2f50tU0jgw5JEekQBxyTkrklpRJhXDyRF7JB/m0nq0368v6nrQuWVPPAZkp6+cXNdqsGg==</latexit><latexit sha1_base64="N329Khvr0bIbvlvRtFhqLKovsW0=">AAACMHicbVDJSgNBEO1xjXGLevTSGIR4CTMi6EUIetBjBLNAJoaeTiVp0rPQXSMJw3ySFz9FLwqKePUr7CwHk1jQ9OO9elTV8yIpNNr2u7W0vLK6tp7ZyG5ube/s5vb2qzqMFYcKD2Wo6h7TIEUAFRQooR4pYL4noeb1r0d67RGUFmFwj8MImj7rBqIjOENDtXI3rhfKth765ktc7AGy9EHQSzrD+3HqIgwwgUGUFmakieGklcvbRXtcdBE4U5An0yq3ci9uO+SxDwFyybRuOHaEzYQpFFxCmnVjDRHjfdaFhoEB80E3k/HBKT02TJt2QmVegHTM/nUkzNejBU2nz7Cn57UR+Z/WiLFz0UxEEMUIAZ8M6sSSYkhH6dG2UMBRDg1gXAmzK+U9phhHk3HWhODMn7wIqqdFxy46d2f50tU0jgw5JEekQBxyTkrklpRJhXDyRF7JB/m0nq0368v6nrQuWVPPAZkp6+cXNdqsGg==</latexit>

i N (0, ⌦)

<latexit sha1_base64="uZ5NXB4PoAGAlHecz+d/9J+c788=">AAACGHicbVBNS8NAEN34WetX1aOXxSIoSE1E0GPRiyetYFVoYplspnXpbhJ2N0IJ/Rle/CtePCjitTf/jZu2B78Gln28N8O8eWEquDau++lMTc/Mzs2XFsqLS8srq5W19WudZIphkyUiUbchaBQ8xqbhRuBtqhBkKPAm7J0W+s0DKs2T+Mr0UwwkdGPe4QyMpdqVfT9MRKT70n65jwYGd5z6mkvqSzD3DER+Pthx96h/IbELu+1K1a25o6J/gTcBVTKpRrsy9KOEZRJjwwRo3fLc1AQ5KMOZwEHZzzSmwHrQxZaFMUjUQT46bEC3LRPRTqLsiw0dsd8ncpC68G47C7f6t1aQ/2mtzHSOg5zHaWYwZuNFnUxQk9AiJRpxhcyIvgXAFLdeKbsHBczYLMs2BO/3yX/B9UHNc2ve5WG1fjKJo0Q2yRbZIR45InVyRhqkSRh5JM/klbw5T86L8+58jFunnMnMBvlRzvALTByf3A==</latexit><latexit sha1_base64="uZ5NXB4PoAGAlHecz+d/9J+c788=">AAACGHicbVBNS8NAEN34WetX1aOXxSIoSE1E0GPRiyetYFVoYplspnXpbhJ2N0IJ/Rle/CtePCjitTf/jZu2B78Gln28N8O8eWEquDau++lMTc/Mzs2XFsqLS8srq5W19WudZIphkyUiUbchaBQ8xqbhRuBtqhBkKPAm7J0W+s0DKs2T+Mr0UwwkdGPe4QyMpdqVfT9MRKT70n65jwYGd5z6mkvqSzD3DER+Pthx96h/IbELu+1K1a25o6J/gTcBVTKpRrsy9KOEZRJjwwRo3fLc1AQ5KMOZwEHZzzSmwHrQxZaFMUjUQT46bEC3LRPRTqLsiw0dsd8ncpC68G47C7f6t1aQ/2mtzHSOg5zHaWYwZuNFnUxQk9AiJRpxhcyIvgXAFLdeKbsHBczYLMs2BO/3yX/B9UHNc2ve5WG1fjKJo0Q2yRbZIR45InVyRhqkSRh5JM/klbw5T86L8+58jFunnMnMBvlRzvALTByf3A==</latexit><latexit sha1_base64="uZ5NXB4PoAGAlHecz+d/9J+c788=">AAACGHicbVBNS8NAEN34WetX1aOXxSIoSE1E0GPRiyetYFVoYplspnXpbhJ2N0IJ/Rle/CtePCjitTf/jZu2B78Gln28N8O8eWEquDau++lMTc/Mzs2XFsqLS8srq5W19WudZIphkyUiUbchaBQ8xqbhRuBtqhBkKPAm7J0W+s0DKs2T+Mr0UwwkdGPe4QyMpdqVfT9MRKT70n65jwYGd5z6mkvqSzD3DER+Pthx96h/IbELu+1K1a25o6J/gTcBVTKpRrsy9KOEZRJjwwRo3fLc1AQ5KMOZwEHZzzSmwHrQxZaFMUjUQT46bEC3LRPRTqLsiw0dsd8ncpC68G47C7f6t1aQ/2mtzHSOg5zHaWYwZuNFnUxQk9AiJRpxhcyIvgXAFLdeKbsHBczYLMs2BO/3yX/B9UHNc2ve5WG1fjKJo0Q2yRbZIR45InVyRhqkSRh5JM/klbw5T86L8+58jFunnMnMBvlRzvALTByf3A==</latexit><latexit sha1_base64="uZ5NXB4PoAGAlHecz+d/9J+c788=">AAACGHicbVBNS8NAEN34WetX1aOXxSIoSE1E0GPRiyetYFVoYplspnXpbhJ2N0IJ/Rle/CtePCjitTf/jZu2B78Gln28N8O8eWEquDau++lMTc/Mzs2XFsqLS8srq5W19WudZIphkyUiUbchaBQ8xqbhRuBtqhBkKPAm7J0W+s0DKs2T+Mr0UwwkdGPe4QyMpdqVfT9MRKT70n65jwYGd5z6mkvqSzD3DER+Pthx96h/IbELu+1K1a25o6J/gTcBVTKpRrsy9KOEZRJjwwRo3fLc1AQ5KMOZwEHZzzSmwHrQxZaFMUjUQT46bEC3LRPRTqLsiw0dsd8ncpC68G47C7f6t1aQ/2mtzHSOg5zHaWYwZuNFnUxQk9AiJRpxhcyIvgXAFLdeKbsHBczYLMs2BO/3yX/B9UHNc2ve5WG1fjKJo0Q2yRbZIR45InVyRhqkSRh5JM/klbw5T86L8+58jFunnMnMBvlRzvALTByf3A==</latexit>

eij = ( 1 + 2f(tij; i))"ij

<latexit sha1_base64="N9E8JtfJ7bleT9EKS50UKbO5+ag=">AAACY3icbVHbahsxEB1vL0mdXtykb6UgGgIOAbOblwZKILQvfUyhTgKWs8zKs7ZiSbtI2oBZFvox/Zz+QD+g+YBCn9qHau0E2qQDQodzzqCZo6xU0vk4/taJ7t1/8HBt/VF34/GTp896zzdPXFFZQUNRqMKeZehISUNDL72is9IS6kzRaTZ/3+qnl2SdLMwnvyhprHFqZC4F+kClvZzOZXrBDvuMOznVmCZs7wbus7zvz2vZpPVF85ZnhZq4hQ5Xzf2MPDattrvLL9FS6aQqzI25u8NRlTNkh2zOs2BNe9vxIF4WuwuSa7B9tPfzy2cAOE57V3xSiEqT8UKhc6MkLv24RuulUNR0eeWoRDHHKY0CNKjJjetlHg3bCcyE5YUNx3i2ZP/uqFG7dpPg1Ohn7rbWkv/TRpXPD8a1NGXlyYjVQ3mlmC9YGy6bSEvCq0UAKKwMszIxQ4vChy/o8naaHLVUi7CIRNUwFoJJbsdwF5zsD5J4kHwMCb2DVa3DS3gNfUjgDRzBBziGIQj4Cj/gF/zufI82os3oxcoada57tuCfil79AZiLvPQ=</latexit><latexit sha1_base64="2PbfcVIB6kUaiKUkwpb/Hr6HlsE=">AAACY3icbVHdahNBFJ6sfzX1J63eiTAYCimFsNsbhVIoeuNlBdMWMulydnI2mWb+mJkthGWfwNfwcXwBH0AfQPBKL5xNWtDWA8N8fN93mHO+KawUPqTp105y5+69+w82HnY3Hz1+8rS3tX3iTeU4jriRxp0V4FEKjaMggsQz6xBUIfG0WLxr9dNLdF4Y/TEsLU4UzLQoBYcQqbxX4rnIL+jhgDIvZgryjO5dw31aDsJ5LZq8vmgOWGHk1C9VvGoW5higabXdXXYJDq0X0uhrc3eHgbRzoId0wYpozXv9dJiuit4G2RXoH+39/PwJ+/Y4731nU8MrhTpwCd6Ps9SGSQ0uCC6x6bLKowW+gBmOI9Sg0E/qVR4N3YnMlJbGxaMDXbF/d9SgfLtJdCoIc39Ta8n/aeMqlG8mtdC2Cqj5+qGykjQY2oZLp8IhD3IZAXAn4qyUz8EBD/ELuqydpgQl5DIuIkA2lMZgspsx3AYn+8MsHWYfYkJvybo2yAvyigxIRl6TI/KeHJMR4eQL+UF+kd+db8lmsp08X1uTzlXPM/JPJS//AAbyvfc=</latexit><latexit sha1_base64="2PbfcVIB6kUaiKUkwpb/Hr6HlsE=">AAACY3icbVHdahNBFJ6sfzX1J63eiTAYCimFsNsbhVIoeuNlBdMWMulydnI2mWb+mJkthGWfwNfwcXwBH0AfQPBKL5xNWtDWA8N8fN93mHO+KawUPqTp105y5+69+w82HnY3Hz1+8rS3tX3iTeU4jriRxp0V4FEKjaMggsQz6xBUIfG0WLxr9dNLdF4Y/TEsLU4UzLQoBYcQqbxX4rnIL+jhgDIvZgryjO5dw31aDsJ5LZq8vmgOWGHk1C9VvGoW5higabXdXXYJDq0X0uhrc3eHgbRzoId0wYpozXv9dJiuit4G2RXoH+39/PwJ+/Y4731nU8MrhTpwCd6Ps9SGSQ0uCC6x6bLKowW+gBmOI9Sg0E/qVR4N3YnMlJbGxaMDXbF/d9SgfLtJdCoIc39Ta8n/aeMqlG8mtdC2Cqj5+qGykjQY2oZLp8IhD3IZAXAn4qyUz8EBD/ELuqydpgQl5DIuIkA2lMZgspsx3AYn+8MsHWYfYkJvybo2yAvyigxIRl6TI/KeHJMR4eQL+UF+kd+db8lmsp08X1uTzlXPM/JPJS//AAbyvfc=</latexit><latexit sha1_base64="7y+6QnS6s5uAC5GOrOByhC/JfBI=">AAACY3icbVHbahsxEJW3l6ROL07St1IQNQGHgtnNSwMhENqXPqZQJwHLWWblWVuxtFqk2YBZ9g/7A/2A9gP6mj5U6zjQJh0QOpxzBs0cZaVWnuL4eyd69PjJ043NZ92t5y9evupt75x5WzmJI2m1dRcZeNSqwBEp0nhROgSTaTzPFp9a/fwanVe2+ErLEicGZoXKlQQKVNrL8VKlV/x4wIVXMwNpwt/fwQOeD+iyVk1aXzVHIrN66pcmXLWgORI0rba/L67BYemVtsWdubsnQJdz4Md8IbJgTXv9eBivij8EyRr02bpO095PMbWyMliQ1OD9OIlLmtTgSEmNTVdUHkuQC5jhOMACDPpJvcqj4XuBmfLcunAK4iv2744ajG83CU4DNPf3tZb8nzauKD+c1KooK8JC3j6UV5qT5W24fKocStLLAEA6FWblcg4OJIUv6Ip2mhyM0suwiALdcB6CSe7H8BCcHQyTeJh8ifsnH9cRbbI37B0bsIR9YCfsMztlIybZN/aL3bDfnR/RVrQTvb61Rp11zy77p6K3fwAAn7pw</latexit>

of 188 observations.

2.2 Tumor growth models.

We denote by t0 and V0 the initial condition of the equation. At time of injection (tinj = 0), we assumed that all animal tumor volumes within a group have the same

volume Vinj (taken to be equal to the number of injected converted in the appropriate unit) and denote by the specific growth rate (↵ = V1 dVdt ) at this time and volume.

We considered the Exponential, Logistic and Gompertz models [10]. The first two are respectively defined by:

V (t) = V0 exp(↵(t t0)) and V (t) = V0K

V0 + (K V0)e ↵(t t0) . (2) In the logistic equation, K is a carrying capacity parameter.

The Gompertz model is characterized by an exponential decrease of the specific growth rate with rate . The differential form thus writes:

8>

<

>: dV

dt =

log

V Vinj

◆◆ V, V (t0) = V0.

(3)

Note here that the injected volume Vinj appears in the differential equation defining V . This is natural from our assumption that is the specific growth rate at V = Vinj.

2.3 Population approach.

Let N be the total number of subjects within the population and Y i = {y1i, ..., yni i} the vector of longitudinal measurements of the animal i, where yji is the observation of subject i at time tij for i = 1, ..., N and j = 1, ..., ni (ni is the total number of

measurements of individual i). We assumed the following statistical model

yji = f(tij; i) + eij, j = 1, ..., ni, i = 1, ..., N, (4) where f(tij; i) is the evaluation of the tumor growth model at time tij, i 2 Rp is the vector of the parameters relative to the individual i and eij the residual error model, to be defined later. Parameter set i depends on the fixed effects µ, identical within the population, and on the random effects i, that are specific for each animal. They follow a normal distribution i N(0, !) with mean zero and variance matrix !. The

relation that identifies the individual parameter i is given by i = µ exp(⌘i).

We considered a combined residual error model eij, defined as

eij = 1 + 2f(tij; i)"ij, where "ij N(0, 1) are the residual errors and = [ 1, 2] is the vector with the residual error model parameters.

In order to compute the population parameters, we maximized a population

likelihood, obtained by pooling together all the data. Usually, this likelihood cannot be computed explicitely for nonlinear mixed-effect models. The optimization procedure can be implemented using the stochastic approximation expectation minimization algorithm (SAEM) [11], implemented in Monolix.

The initial condition of the equations defined in the previous section was considered at the time of injection, i.e. t0 = tinj and V0 = Vinj.

From now on we denote by = {µ, !, } the set of the population parameters

containing the fixed effects µ and the random effects ! of the parameters and the error model parameters .

February 12, 2019 3/14

Material and methods

Nonlinear mixed effects modeling

!7

Statistical framework to study longitudinal data

The goal is to understand the intra-subject process of tumor growth and its variability across the individuals

Lavielle, M. (2014). Mixed effects models for the population approach: models, tasks, methods and tools. Chapman & Hall/CRC biostatistics series. Taylor & Francis, Boca Raton.

Monolix Version 2018R2. Lixoft SAS (2018)

Exponential Logistic Gompertz

A

B

C

D

1

(9)

Material and methods

p(✓j|yj ; )

| {z }

posterior distribution

= p(✓j; )

| {z }

prior

distribution

p(yj |✓j; )

| {z }

likelihood

<latexit sha1_base64="rANFIeQAy7V7n22mToDZC8ofu6s=">AAADMXicjVLNbtQwEHbCXyl/WzhysaiQymWV0ANICKmiF46LxLaVNsvKcSaNWce27AkiCn6RvkZfoCckeIPeEAcuvATObg+lS1FHsvzpG898ns/OjRQOk+Q0iq9dv3Hz1trt9Tt3791/MNh4uOd0YzmMuZbaHuTMgRQKxihQwoGxwOpcwn4+3+3z+5/AOqHVe2wNTGt2qEQpOMNAzTai7axRBdjcMg6d2cpyLQvX1mHrMqwAmf/QffRfzvPtgnqVmUo887Muc03ukPF5KIDP2BntEKzQ1mcZXVJFGMSKvOk1vff0NV2/kuzlGv/vf3nzdnWcq+hJMQ8WV1oXffvZYDMZJougqyA9A5s7o68FJYSMZoNfWaF5U4NCLplzkzQxOO2YRcEl+GCGAxPU2CFMAlSsBjftFq/r6dPAFLTUNiyFdMGer+hY7fpRwsmaYeUu5nryX7lJg+XLaSeUaRAUXwqVjaSoaf9VaCEscJRtAIxbEe5KecWCqeF5Q6f+NiWrhWzDIIJJT3tj0os2rIK958M0GabvgkNvyDLWyGPyhGyRlLwgO+QtGZEx4dFRdBJ9i77Hx/Fp/CP+uTwaR2c1j8hfEf/+AwDTF0s=</latexit><latexit sha1_base64="aqXGU2kQMgfM3hJGwySD7OhjMdI=">AAADMXicjVLNbtQwEHbCXyl/WzhywKJCKpdVAgeQEFIFF7gtEruttFlWjj1p3HXiyJ4gIuMX4TV4AU5I8Aa9IQ5ceAmc3R5Kl6KOZPnTN575PJ+dN0paTJKjKL5w8dLlKxtXN69dv3Hz1mDr9sTq1nAYc6202c+ZBSVrGKNEBfuNAVblCvbyxcs+v/cejJW6fotdA7OKHdSykJxhoOZb0eOsrQWY3DAOrtnJcq2E7aqwuQxLQObfuUP/8STfLalnWVPKh37uMtvmFhlfhAL4gK7RFsFIbXyW0RUlwiBG5m2v6b2nz+nmuWTP1vh//7Obd+vjnEdPyUWwuNRa9O3ng+1kmCyDroP0GGzvjr6Ke+L1ZDQf/MqE5m0FNXLFrJ2mSYMzxwxKrsAHMyw0QY0dwDTAmlVgZ275up4+CIyghTZh1UiX7MkKxyrbjxJOVgxLezrXk//KTVssns6crJsWoeYroaJVFDXtvwoV0gBH1QXAuJHhrpSXLJganjd06m9TsEqqLgwimfK0NyY9bcM6mDwapskwfRMcekFWsUHukvtkh6TkCdklr8iIjAmPPkVfom/R9/hzfBT/iH+ujsbRcc0d8lfEv/8AbcIYTQ==</latexit><latexit sha1_base64="aqXGU2kQMgfM3hJGwySD7OhjMdI=">AAADMXicjVLNbtQwEHbCXyl/WzhywKJCKpdVAgeQEFIFF7gtEruttFlWjj1p3HXiyJ4gIuMX4TV4AU5I8Aa9IQ5ceAmc3R5Kl6KOZPnTN575PJ+dN0paTJKjKL5w8dLlKxtXN69dv3Hz1mDr9sTq1nAYc6202c+ZBSVrGKNEBfuNAVblCvbyxcs+v/cejJW6fotdA7OKHdSykJxhoOZb0eOsrQWY3DAOrtnJcq2E7aqwuQxLQObfuUP/8STfLalnWVPKh37uMtvmFhlfhAL4gK7RFsFIbXyW0RUlwiBG5m2v6b2nz+nmuWTP1vh//7Obd+vjnEdPyUWwuNRa9O3ng+1kmCyDroP0GGzvjr6Ke+L1ZDQf/MqE5m0FNXLFrJ2mSYMzxwxKrsAHMyw0QY0dwDTAmlVgZ275up4+CIyghTZh1UiX7MkKxyrbjxJOVgxLezrXk//KTVssns6crJsWoeYroaJVFDXtvwoV0gBH1QXAuJHhrpSXLJganjd06m9TsEqqLgwimfK0NyY9bcM6mDwapskwfRMcekFWsUHukvtkh6TkCdklr8iIjAmPPkVfom/R9/hzfBT/iH+ujsbRcc0d8lfEv/8AbcIYTQ==</latexit><latexit sha1_base64="JaHFNMwH4cCA/xxKBiVYX5A+ELM=">AAADMXicjVLNbtQwEHbCXyk/3ZYjF4sVUrmsEjhQCSFV9MKxSGxbabOsHGfSmHVsy54gouAX4TV4Aa7wBr0hDlx4CZzdPZQuRR3J8qdvPPN5Pjs3UjhMkrMovnb9xs1bG7c379y9d39rsL1z5HRjOYy5ltqe5MyBFArGKFDCibHA6lzCcT4/6PPHH8A6odVbbA1Ma3aqRCk4w0DNtqNnWaMKsLllHDqzm+VaFq6tw9ZlWAEy/6577z+d59sF9SIzlXjiZ13mmtwh4/NQAB+xM9ohWKGtzzK6pIowiBV502t67+lLunkl2cs1/t//8ubt+jhX0ZNiHiyutC769rPBMBkli6DrIF2BIVnF4WzwKys0b2pQyCVzbpImBqcdsyi4BB/McGCCGjuFSYCK1eCm3eJ1PX0cmIKW2oalkC7Y8xUdq10/SjhZM6zcxVxP/is3abDcm3ZCmQZB8aVQ2UiKmvZfhRbCAkfZBsC4FeGulFcsmBqeN3Tqb1OyWsg2DCKY9LQ3Jr1owzo4ejpKk1H6Jhnuv1pZtEEekkdkl6TkOdknr8khGRMefY6+Rt+i7/GX+Cz+Ef9cHo2jVc0D8lfEv/8AWs4VcQ==</latexit>

Bayesian inference

!8

Algorithm:

Draw a realization from the posterior distribution

Compute !

a

pred(l)i

= f

−1

( V

inj

; θ

(l)i

)

, !

l = 1,...,L

Gelman A. (2014) Bayesian Data Analysis. Third edition ed. Chapman & Hall/CRC texts in statistical science. Boca Raton: CRC Press.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. (2017) Stan: A Probabilistic Programming Language. J Stat Softw.

err!i

= a

predi

a

i

a

i

k-fold cross validation

!a tn-2

(10)

Results

!9

Population analysis

Exponential Logistic Gompertz A

B

C

D

Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.

C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential, Center: Logistic, Right: Gompertz models.

8

Exponential Logistic Gompertz

A

B

C

D

Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.

C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential, Center: Logistic, Right: Gompertz models.

8

(11)

Results

!10

Population analysis

Exponential Logistic Gompertz

A

B

C

D

Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.

C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential, Center: Logistic, Right: Gompertz models.

8

Exponential Logistic Gompertz

A

B

C

D

Figure 1. Population analysis of experimental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction intervals (P.I) in comparison to empirical ones. B) Prediction distributions.

C) Individual weighted residuals (IWRES) with respect to time. D) Observations vs predictions Left: Exponential, Center: Logistic, Right: Gompertz models.

8

(12)

Results

!

α

i

=

i

The reduced Gompertz model

dV

dt = i βi log (

V

Vinj ) V V(tI) = VI

A B

C D

E

Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of individual fits (C) and scatter plots of the residuals (D).

12

A B

C D

E

Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of individual fits (C) and scatter plots of the residuals (D).

12

A B

C D

E

Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of individual fits (C) and scatter plots of the residuals (D).

12

A B

C D

E

Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of individual fits (C) and scatter plots of the residuals (D).

12

!11

(13)

Results

!12

The reduced Gompertz model: biological interpretation

Cell line Model Method Accuracy (%) Precision (days)

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)

Reduced Gompertz LM 74.1 (11.6) 186 (52.8)

Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)

Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)

Reduced Gompertz LM 66.1 (31) 81.6 (71.7)

Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)

Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)

Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)

Gompertz LM 236 (150) -

Table 1: Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell lines.

Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the width of the 95%

prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM = likelihood maximization

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day1 0.573 34.73 2.56

β day1 0.0705 391.49 3.61

σ - [19.1, 0.12] [18.3, 7.36]

Reduced Gompertz β day1 0.0725 180.69 1.91

k - 7.98 0 0.363

σ - [13.9, 0.183] [22.3, 5.17]

Logistic α day1 0.324 42.90 1.88

K mm3 1332 0.02 4.39

σ - [57.2, 0.136] [9.8, 8.74]

Exponential α day1 0.229 34.98 1.35

σ - [283, 0.254] [6.06, 14.3]

Table 2: Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors (R.S.E.) of the estimates.

Ki = Vinje α

i βi

Vinjek ≃ 2900 mm3, ∀i.

1

Constant maximal tumor size within a tumor type in a given species

Breast cancer Lung cancer

Cell line Model Method Accuracy (%) Precision (days)

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)

Reduced Gompertz LM 74.1 (11.6) 186 (52.8)

Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)

Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)

Reduced Gompertz LM 66.1 (31) 81.6 (71.7)

Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)

Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)

Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)

Gompertz LM 236 (150) -

Table 1: Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell lines.

Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the width of the 95%

prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM = likelihood maximization

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day1 0.573 34.73 2.56

β day1 0.0705 391.49 3.61

σ - [19.1, 0.12] [18.3, 7.36]

Reduced Gompertz β day1 0.0725 180.69 1.91

k - 7.98 0 0.363

σ - [13.9, 0.183] [22.3, 5.17]

Logistic α day1 0.324 42.90 1.88

K mm3 1332 0.02 4.39

σ - [57.2, 0.136] [9.8, 8.74]

Exponential α day1 0.229 34.98 1.35

σ - [283, 0.254] [6.06, 14.3]

Table 2: Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors (R.S.E.) of the estimates.

Ki = Vinje α

i βi

Vinjek ≃ 2900 mm3, ∀i.

1

(14)

Results

!13

Population analysis

Cell line Model Method Accuracy (%) Precision (days)

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)

Reduced Gompertz LM 74.1 (11.6) 186 (52.8)

Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)

Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)

Reduced Gompertz LM 66.1 (31) 81.6 (71.7)

Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)

Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)

Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)

Gompertz LM 236 (150) -

Table 1: Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell lines.

Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the width of the 95%

prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM = likelihood maximization

Model Parameter Unit Fixed effects CV (%) R.S.E. (%)

Gompertz α day1 0.573 34.73 2.56

β day1 0.0705 391.49 3.61

σ - [19.1, 0.12] [18.3, 7.36]

Reduced Gompertz β day1 0.0725 180.69 1.91

k - 7.98 0 0.363

σ - [13.9, 0.183] [22.3, 5.17]

Logistic α day1 0.324 42.90 1.88

K mm3 1332 0.02 4.39

σ - [57.2, 0.136] [9.8, 8.74]

Exponential α day1 0.229 34.98 1.35

σ - [283, 0.254] [6.06, 14.3]

Table 2: Fixed effects (typical values) of the parameters of the different models. CV = Coefficient of Variation, expressed in percentage and estimated as the standard deviation of the parameter divided by the fixed effect and multiplied by 100. σ is vector of the residual error model parameters. Last column shows the relative standard errors (R.S.E.) of the estimates.

1

Model -2LL AIC BIC

Gompertz 7128 7142 7157

Reduced Gompertz 7259 7269 7280

Logistic 7584 7596 7609

Exponential 8652 8660 8669

Table 3: Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices are the log- likelihood estimate (-2LL) and the Bayesian information criterion (BIC).

2

(15)

Results

!14

A B

C D

E

Figure 3. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz model from population analysis. Correlation between the individual parameters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive check (B), examples of individual fits (C) and scatter plots of the residuals (D).

12

Exponential Logistic Gompertz

A

B

C

Figure 2. Individual fits from population analysis. Three representative examples of individual fits computed with the population approach relative to the Exponential (left), the Logistic (center) and the Gompertz (right) models.

9

Exponential Logistic Gompertz

A

B

C

Figure 2. Individual fits from population analysis. Three representative examples of individual fits computed with the population approach relative to the Exponential (left), the Logistic (center) and the Gompertz (right) models.

9

Exponential Logistic Gompertz

A

B

C

Figure 2. Individual fits from population analysis. Three representative examples of individual fits computed with the population approach relative to the Exponential (left), the Logistic (center) and the Gompertz (right) models.

9

Population analysis: example of individual fits

Exponential Logistic

Gompertz Reduced Gompertz

(16)

Results

!15

Backward predictions: posterior distribution

Gompertz

Reduced Gompertz

0 tn-2

(17)

Results

!16

Backward predictions: posterior distribution

N = 3 N = 4 A N = 5 B N = 6 C

Gompertz (LM)

Reduced Gompertz

(LM)

Gompertz (Bayesian inference)

Reduced Gompertz (Bayesian inference)

Figure 4. Backward predictions computed with likelihood maximization and with Bayesian infer- ence. Three examples of backward predictions of individuals A, B and C computed with likelihood maximization (LM) and Bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz with likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line is the predicted initiation time and the black vertical line the actual initiation time.

13

(18)

Results

!17

Backward predictions

A B C

Gompertz (LM)

Reduced Gompertz

(LM)

Gompertz (Bayesian inference)

Reduced Gompertz (Bayesian inference)

Figure 4. Backward predictions computed with likelihood maximization and with Bayesian infer- ence. Three examples of backward predictions of individuals A, B and C computed with likelihood maximization (LM) and Bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz with likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line is the predicted initiation time and the black vertical line the actual initiation time.

13

A B C

Gompertz (LM)

Reduced Gompertz

(LM)

Gompertz (Bayesian inference)

Reduced Gompertz (Bayesian inference)

Figure 4. Backward predictions computed with likelihood maximization and with Bayesian infer- ence. Three examples of backward predictions of individuals A, B and C computed with likelihood maximization (LM) and Bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gompertz with likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are considered to estimate the parameters. The grey area is the 90% prediction interval (P.I) and the dotted blue line is the median of the posterior predictive distribution. The red line is the predicted initiation time and the black vertical line the actual initiation time.

13

(19)

Results

!18

Reduced Gompertz >> Gompertz

Bayesian inference >> likelihood maximization (LM)

Backward predictions

Cell line Model Method Accuracy (%) Precision (days)

Breast, volume Reduced Gompertz Bayesian 12.1 (1.02) 15.2 (0.503)

Reduced Gompertz LM 74.1 (11.6) 186 (52.8)

Gompertz Bayesian 19.6 (1.77) 40.1 (1.94)

Gompertz LM 205 (55.4) -

Lung, volume Reduced Gompertz Bayesian 9.4 (1.57) 7.34 (0.33)

Reduced Gompertz LM 66.1 (31) 81.6 (71.7)

Gompertz Bayesian 19.6 (2.99) 18.2 (2.38)

Gompertz LM 175 (69.6) -

Breast, fluorescence Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)

Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)

Gompertz LM 236 (150) -

Table 1: Accuracy and precision of methods for prediction of the age of experimental tumors of the three cell lines.

Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined as the width of the 95%

prediction interval (in days). Reported are the means and standard errors (in parenthesis). LM = likelihood maximization

1

(20)

Conclusions

!19

The Gompertz model described well tumor growth kinetics while the Exponential and the Logistic showed inferior predictive power.

We proposed a novel reduced Gompertz model with only one individual parameter.

The combination of nonlinear mixed effects modelling and Bayesian inference allowed to have reliable predictions of individual tumor age.

The method proposed herein remains to be extended to clinical data: it would yield important epidemiological insights and could also be informative in routine clinical practice for prediction of metastatic extent.

(21)

Thank you for your attention!

Preprint available!

Références

Documents relatifs

Keywords: State space models; parameter estimation; data assimilation; uncertainty analysis; yield prediction; LNAS; STICS; dynamic crop model; Markov chain Monte Carlo

Formation Flight Unsolved Problems STEM Disinterested Students STEM Interested Students FF Problem-solving Rate Successful Outreach Rate + Crowdsourcing &amp; Engagement Programs +

The con- nections to the literature stem from the concept of normalized cut taking a central place in graph partitioning and related methods in clustering; from a recent trend

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

and the U.K., the water industry realized they could not guarantee that the drinking water they supplied would be free from all pathogens, however meticulously

The final size of the array will depend on the initial loading efficiency, while the probability to have a defect- free array after rearrangement will depend on the atom lifetimes

Chapter 5 presents a method to automatically produce plausible image segmen- tation samples from a single expert segmentation. A probability distribution of image

In this paper, we present a model of this kind, where mass flow is obtained through a viscoelastic description of the tumor mass and describing the mechanical behavior of the