• Aucun résultat trouvé

On the separation properties of the duals of general topological vector spaces

N/A
N/A
Protected

Academic year: 2022

Partager "On the separation properties of the duals of general topological vector spaces "

Copied!
24
0
0

Texte intégral

(1)

On the separation properties of the duals of general topological vector spaces

M. RIBE

Link6ping University, Link6ping, Sweden

Consider a non IocaIly convex topological vector space E. Suppose there is a non-zero point x in the subset E 1 c E of all points which cannot be separated from the origin b y a n y continuous linear form on E. One might ask whether x can be separated from the origin by a continuous linear form which is defined only on E 1. I t will be shown b y means of examples t h a t this m a y be the case. Since E 1 is a linear subspaee -- namely, the intersection N f-l(0) of all closed hyperplanes

f E E '

through the origin1 -- this fact gives rise to a more general question: L e t E~ be the subspace in E 1 of points which cannot be separated from the origin b y a n y continuous linear form; and then define recursively subspaces E a ~ E 4 ~ . . . I n a natural w a y we thus get a transfinite decreasing ~>sequencc~) (indexed b y the ordinals) of closed linear subspaces of E. Obviously, this sequence must become stationary at some ordinal ~(E). The observation just mentioned shows t h a t this need not happen at once, i.e., we m a y have E 1 ~= E2, so t h a t ~(E) > 2. Thus we ask: Which ordinal values can be assumed b y ~(.)? Our aim in I I below is to answer this question b y constructing examples to show t h a t even for locally bounded spaces, ~(.) m a y assume a n y ordinal value.

I n I below, we investigate some general properties of the transfinite ~>sequence)) mentioned above.

As a by-product of the constructive methods employed in II, we obtain (Section II.3) a certain isometric imbedding of metric spaces into p-normed spaces, which has universal and funcforial properties.

For brevity, we will write tvs for topological vector space(s). Further, E ' will denote the (topological) dual of a tvs E, and ~ is as usual the least transfinite ordinal. All tvs are supposed to have the same scalar field, which m a y be the real or the complex number field. A linear subspace of a tvs is always topologized by the subspace topology.

(2)

280 ARKIV FOIr lgATEMATIK. V o l . 9. N o 2

I a m m o s t g r a t e f u l t o t h e late Professor H a n s R g d s t r S m for his v i v i d i n t e r e s t a n d v e r y v a l u a b l e criticism.

I. General considerations 1. Definition. F o r a t v s E we w r i t e

A E = N f - l ( 0 ) 9 feK"

B y t r a n s f i n i t e i n d u c t i o n we define for e v e r y ordinal A~E so t h a t

A r E = A ( [-I A t E ) 9

v'<~v

v a closed linear subspace

1.1. PROPOSITION. Under ~ , the class {A~E}~ is well-ordered and has a last element. There is a least ordinal vo such that A~oE = A ~~ 1E.

1.2. Definition. F o r a t v s E , t h e ordinal Vo of 1.1 is d e n o t e d a(E).

1.3..Remark. T o see t h a t D e f i n i t i o n s 1 a n d 1.2 are worth-while, it is o f course essential t o show t h a t t h e r e are t v s E w i t h c~(E) ~ 2. As p o i n t e d o u t in t h e i n t r o d u c t i o n , it will be seen below t h a t a(.) m a y assume a n y ordinal v a l u e (see II.2.1 a n d ef. also S e c t i o n 7 o f I).

2. PnoPOSlTIO~. F o r tvs E and F and a continuous linear m a p p i n g f : E --> F , we have, for every ordinal v, that f(A~E) c A ' F . I f f is open and f-l(O) c A~~

f o r some ~o, we have f ( A ~ E ) = A ~ F for v <_v o.

Proof. W e see t h a t

f ( A E ) = f ( e N 9-1(0))

c : f ( 1 7 / - 1 V - l ( 0 ) ) = FI V-l(0) = A F ,

wEF' ~vEF'

~rhieh gives t h e f i r s t par~ in t h e case v = 1. I f f is open a n d f - l ( 0 ) ~ A E , e v e r y e l e m e n t in E ' is o f t h e f o r m ~0 o f w i t h ~ E F ' ; h e n c e we m a y replace t h e inclusion b y e q u a l i t y .

F o r a r b i t r a r y v, t h e relations are n o w o b t a i n e d b y s t r a i g h t f o r w a r d t r a n s f i n i t e i n d u c t i o n .

2.1. COnOLLAI~Y. Let E be a tvs. For every quotient space E / H , say, such that H C A~(E)E, we have o:(E/H) = o~(E).

(3)

OIq- T H E SEI:'ARATIOI~ I:'I~OPEI%TIES O F T H E D U A L S 281 2.2 COrOLLArY. A tvs E has a quotient space E / H with ~ ( E / H ) = v when- ever v ~_ a(E).

Proof. T a k e H = AVE.

3. P~OFOmTm~. A tvs E has precisely one subspace L C E such that (i) L' = { 0 } and

(ii) every subspace H c E / L , H =/= {0}, has H ' =/= {0}.

Proof. 1 ~ Uniqueness: Suppose (i) a n d (ii) to be satisfied for L = L 1 as well as for L = L0, say. I f L 1 c~ Lo, t h e subspace (L 0 + L J / L o o f E / L o is d i s t i n c t f r o m {0} a n d has a n o n - v a n i s h i n g e o n t i n u o a s linear f o r m f o n a c c o u n t o f (ii) for L ---- L o. T h e n f induces a n o n - v a n i s h i n g c o n t i n u o u s linear f o r m on L a, a n d t h u s raises c o n t r a d i c t i o n against (i) for L ~ L r H e n c e L 1 c L o, a n d similarly L o o t 1 .

2 ~ E x i s t e n c e : L e t L 0 be t h e linear hull o f all subspaces w i t h dual (0]. A g i v e n c o n t i n u o u s linear f o r m on L o vanishes on all subspaces w i t h dual {0], a n d t h u s on each o f a class o f sets s p a n n i n g L 0, a n d so on L o. H e n c e L0 = {0]. T h e s u b s p a e e L o is also t h e largest one w i t h dual {0}.

Suppose H is a n y s u b @ a c e ~: (0} o f E / L o. I t s canonical inverse image H 1 in E has a n o n - v a n i s h i n g c o n t i n u o u s linear f o r m

f

b y t h e p r e c e d i n g p a r a g r a p h (since H 1 \ L o 4= O). B u t f(Lo) = O, so f i n d u c e s a n o n - v a n i s h i n g c o n t i n u o u s linear f o r m on H = H1/L o. H e n c e (i) a n d (ii) are satisfied w h e n L ---- L 0.

T h e p r o o f also gives t h e n e x t p r o p o s i t i o n (same n o t a t i o n ) .

3.1. 1)ROrOSITION. The subspace L is the largest one which has dual {0}.

3.2. THEOREM. When E and L as in 3, we have L = A~(E)E.

Proof. Since A~'(E)E clearly has dual {0], we get A~(E)E c L f r o m 3.1.

Conversely, we show b y t r a n s f i n i t e i n d u c t i o n t h a t L c A~'E for e v e r y v.

T h e assertion is t r i v i a l l y v a l i d for v = 1; t h u s a s s u m e t h a t L C A t E w h e n e v e r v' < v. B u t L c N A t E = P,, say, c e r t a i n l y implies f ( L ) = 0 w h e n e v e r f E P~.

H e n c e L c AVE b y D e f i n i t i o n 1.

3.3. PROPOSITION. When E and L as in 3, we have, for every v, that (A"E)/L = AV(E/L). Further, ~ ( E ) = o~(E/L).

Proof. Follows f r o m 3.2, 2, a n d 2.1.

3.4. Definition. A t v s will be called an A-space if e v e r y subspace d i s t i n c t f r o m {0} has dual distinct f r o m {0}.

(4)

282 nl~XlV ]~sR MATEMATIK. Vol. 9. NO 2

3.5. Remarlc. W h e n E a n d L as in 3, notice t h a t (i) E has dual {0} if a n d o n l y if E---L, a n d t h a t (ii) E is an A-space if a n d o n l y i f L----{0}.

F u r t h e r m o r e , L is t h e smallest subspace for which E / L is a n A-space. (Follows f r o m 2.)

W e f i n a l l y s t a t e y e t a n o t h e r c h a r a c t e r i z a t i o n o f L.

3.6. 1)ttOPOSITIO~. When E and L as in 3, every continuous linear mapping f : E - * - F into an A-space may be canonically decomposed according to

E ~ E / L h_~ F ,

where g and h are continuous and linear. ,Moreover, L is the largest subspace for which such a decomposition may be accomplished for all f and F.

_Proof. I f t h e image in F o f L is distinct f r o m {0}, it has a n o n - v a n i s h i n g c o n t i n u o u s linear f o r m ~, say. T h e n ~ o f does n o t v a n i s h on L, w h i c h is c o n t r a - d i c t o r y .

T h e last s t a t e m e n t n o w follows if we t a k e F ~- E / L a n d let f be t h e canonical m a p p i n g .

4. Consider an A-space E . I f E is n o t locally c o n v e x , a c o n t i n u o u s linear f o r m m a y of course n o t always be e x t e n d e d f r o m a subspace to E . H o w e v e r , if E has s e p a r a t i n g dual - - t h a t is, if a ( E ) ---- 1 - - a c o n t i n u o u s linear f o r m d e f i n e d on a finite-dimensional subspaee m a y always be e x t e n d e d t o E . B u t if a(E) ~ 2, n o t e v e n t h a t is t r u e ; j u s t let t h e g i v e n f o r m be d e f i n e d a n d n o n - v a n i s h i n g on a one- dimensional subspace o f A E . T h e b e s t we can accomplish in such a case is t o e x a m i n e w h e t h e r t h e f u n c t i o n a l m a y be e x t e n d e d t o c e r t a i n subspaces or not. T h u s we shall s a y t h a t a class ~r o f subspaces o f E is an extension-class if t h e following c o n d i t i o n is satisfied:

F o r e v e r y subspace K a n d n o n - v a n i s h i n g c o n t i n u o u s linear f o r m f d e f i n e d on it, t h e r e is a space C E<~ such t h a t

(i) f ( g [7 C) :4= {0} a n d

(ii) for e v e r y f i n i t e - d i m e n s i o n a l subspace F o f K [7 C, t h e r e s t r i c t i o n o f f to F c a n b e e x t e n d e d t o C.

Of course, t h e class o f all one-dimensional subspaces f o r m s a v e r y trivial e x a m p l e of a n extension-class. To o b t a i n s o m e t h i n g m o r e significant, we r e s t r i c t o u r a t t e n t i o n t o e x t e n s i o n classes t h a t are totally ordered u n d e r inclusion. I f a ( E ) is finite, t h e r e is such an extension-class, i.e., t h e class %~ ---- (A'E}~ O {E}. N a m e l y , if f a n d K are given, t a k e C ---- An~ w h e n n o is t h e least i n t e g e r such t h a t f ( K rl AnoE) =~

(0}.

B e f o r e t ~ f i n g t o a m o r e general situation, we i n t r o d u c e a n o t h e r n e w n o t i o n . W e s a y t h a t E is a n AP-space if e v e r y 0 - n e i g h b o u r h o o d contains all b u t f i n i t e l y m a n y o f t h e spaces o f ~:~. - - N o t i c e t h a t E m a y be an A P - s p a c e o n l y i f ~(E) _<

(5)

ON T H E S E P A R A T I O N P R O P E R T I E S OF T t I E D U A L S 283 a n d f'l A~E = {0}; a n d f u r t h e r , t h e t o p o l o g y on E m a y be c o a r s e n e d t o an A P -

V<e~

space t o p o l o g y i f a n d o n l y if t h e l a t t e r conditions are fulfilled. I f ~(E) is finite, E is t r i v i a l l y an A P - s p a c e .

F u r t h e r m o r e , let us b y an A'-spaee u n d e r s t a n d an A - s p a c e w h i c h has a 0-neigh- b o u r h o o d base o f w h i c h e a c h e l e m e n t U has t h e p r o p e r t y t h a t I"1 9 U is a linear

o > 0

subspaee. This l a t t e r c o n d i t i o n is n o t a u t o m a t i c a l l y fulfilled in a n o n locally c o n v e x tvs; h o w e v e r , it is, for instance, in t h e case o f a supremum topology of locally bounded topologies. (In v i e w o f 7.7 or II.2.2, it is clear f r o m t h e r e m a r k o f t h e p r e c e d i n g p a r a g r a p h t h a t t h e r e are, indeed, AP-spaces o f t h e l a s t - m e n t i o n e d k i n d w i t h a = co.) 4.1. I~ROPOSITm~r _For an A'-space E, the following statements are equivalent:

(i) E is an AP-space,

(ii) E has an extension-class that is well-ordered under ~ , and

(iii) E has an extension-class that is a decreasing sequence under inclusion.

Proof. (i) implies (iii): T h e a r g u m e n t a b o v e for ~(E) < ~ is applicable also in t h e case a ( E ) = ~. F o r suppose f a n d K t o b e given. T h e n f is b o u n d e d on t h e i n t e r s e c t i o n o f K w i t h some 0 - n e i g h b o u r h o o d U, say. Since E is a n A P - s p a c e , U contains An~ for some n o < w. T h e n f ( K f] A'~ ~ {0}, a n d we can p r o c e e d as before. So ~=~ is an extension-class.

(iii) implies (ii): Trivial.

(ii) implies (i): L e t (~ be a well-ordered extension-class.

A i m i n g a t a c o n t r a d i c t i o n , we a s s u m e E n o t t o b e a n A P - s p a c e . On a c c o u n t o f t h e well-ordering, t h e class ~ has t h e n , for e a c h n < oJ, a largest space Cn w h i c h does n o t c o n t a i n A~E. T h e n C, contains An+IE; otherwise, t h e defining conditions for a n extension-class w o u l d n o t be fulfilled if we let K be a o n e - d i m e n - sional subspace o f A~+IE n o t in C n. F o r if C~ ~ , t h e n C O has i n t e r s e c t i o n {0}

w i t h K - - a n d t h u s we h a v e f ( K f3 C o) = 0 for e v e r y f -- except i f C O ~ Cn # O;

a n d in t h a t case, we h a v e C O ~ A~E, so a n o n - v a n i s h i n g f on K C A~+IE can c e r t a i n l y n o t be e x t e n d e d t o C o .

Since E is a n A ' - s p a e e t h a t is n o t a n A P - s p a c e , we can n o w f i n d a 0-neigh- b o u r h o o d U such t h a t N = ['1 9 U is a linear subspace w h i c h does n o t c o n t a i n

Q > 0

A"E for a n y n < ~ . So we can t a k e e l e m e n t s z ~ E A ~ E ~ N , n < w ; t h e n we t a k e for K t h e linear hull o f N U {z,]n < ~}. W e m a y a s s u m e t h a t iV ~ ['1 C~.

(Otherwise, r e p l a c e U b y U + A C~.) F o r e a c h n < ~o, we d e f i n e a c o n t i n u o u s

r t < ~o

linear f o r m g~ on K so t h a t ga(Za) # 0 a n d so t h a t g~(K rl A=+~E) = 0; this is possible, since K f'l A"+~E has f i n i t e c o d i m e n s i o n in K . F u r t h e r , b y t h e choice o f U a n d z=, we see t h a t each o f t h e g= is b o u n d e d on U [ 3 K ; so t a k e Y ~ > 0 so t h a t y , lg=[ < 1/2 ~ on U fl K . B y t a k i n g f = Zn~'ng,t o n K , we shall h a v e o u r

(6)

284 AI~KIV FOtt MATEIVIA_TIt~. Vol. 9. No 2

c o n t r a d i c t i o n against t h e defining p r o p e r t i e s o f an extension-class, l~irst, f is con- tinuous, since [fl --< 1 on U rl K . T h e n , on a c c o u n t o f f ( N C,) = 0 (seen f r o m

n ~ c o

f(TV) = 0, which follows f r o m If] --< 1 on U Cl K), it is sufficient t o show t h a t f c a n n o t be e x t e n d e d to C O ~ C,, say, f r o m t h e one-dimensional subspace s p a n n e d

b y z , + ~ E C , f l K . This is so, for C ~ a n d z,+TEA"+TE.

T o i l l u m i n a t e t h e s i t u a t i o n s o m e w h a t , we s t a t e t h e following simple proposition.

4.2. 1)~OPOSITm~. For a totally ordered extension-class ~ of an A-space E, we have c a r d ~ > c a r d m i n {c~(E), co}.

4.3. Remar]c. T h e n o t i o n o f A P - s p a c e clearly has t h e following significance.

A n A - s p a c e E is a n A P - s p a c e if a n d o n l y if it is t h e inverse limit o f some A-spaces w i t h f i n i t e c~-values (namely, E/A"E w h e r e n < o); cf. 2 above).

5. F o r a tvs E , it is n a t u r a l t o ask w h e t h e r t h e A'E-spaces m a y be c h a r a c t e r i z e d in t e r m s n o t involving these spaces. A f i r s t step in this d i r e c t i o n was t a k e n in 3.2 a b o v e , w h e r e we c h a r a c t e r i z e d A~(~)E. Also in 4 - - 4 . 1 o u r p u r s u i t was t o enlighten this question; n a m e l y , t h e A P - s p a c e p r o p e r t y , w h i c h is d e f i n e d as a p r o p e r t y o f t h e class {AYE},, is t h e r e r e l a t e d t o t h e existence o f c e r t a i n extension-classes;

a n d t h e l a t t e r n o t i o n is d e f i n e d otherwise. A n d n o t i c e t h a t t h e case a(E) = ~o t h e r e a p p e a r s as >>criticab). - - T h e r e s t o f t h e q u e s t i o n we h a v e t o leave as an o p e n p r o b l e m .

6. This is a n a u x i l i a r y section.

6.1. Definition. L e t E be a v e c t o r space. I n a c c o r d a n c e w i t h L a n d s b e r g [3], we s a y t h a t

a) a f u n c t i o n a l x --> Ilxll is a T-norm, w h e r e 0 < p _~ 1, if it satisfies (i) I[x + yll -< [[xl[ ~- HyI[,

(ii) II~xl[ = [~IPtlzII, a n d

(iii) Hx[I = 0 implies x = 0, w h e n e v e r x , y E E a n d A scalar;

b) if a p - n o r m [I'll on E is given a n d i f t h e r e b y E is c o n s i d e r e d as a t v s w i t h 0 - n e i g h b o u r h o o d base {{xllIx H < A}I~ > 0} (this is c e r t a i n l y a 0-neighbour- h o o d base o f a v e c t o r space t o p o l o g y ; cf. L a n d s b e r g [3]), t h e n E is a p-normed 8pace.

6.2. Examples. W e r e m i n d of some c o m m o n e x a m p l e s o f p - n o r m e d spaces:

a) t h e spaces I p o f sequences x ~ (41, 4 2, . . . ) such t h a t ~ 14k[ P < oo, w i t h T - n o r m [IxIl = ~]~ [4kl p. F o r P < 1, w e h e r e h a v e simple e x a m p l e s o f n o n locally

c o n v e x spaces t h a t are d u a l - s e p a r a t e d ( T y c h o n o f f [7]; cf. also L a n d s b e r g [3]).

b) t h e spaces LP(0, 1) o f m e a s u r a b l e f u n c t i o n s x(~) on (0, 1) such t h a t

(7)

O N T H E S E P A R A T I O N P R O I ~ : E I ~ T I E S O F T I I E D I J A L S 285

f

l0lx(~ ) led~ < ~- oo (or, properly, certain equivalence classes o f such functions)

s

w i t h p - n o r m Iixll-~ T h e Le(O, i) with p < I are k n o w n not to

h a v e a n y non-vanishing continuous linear forms ( D a y [I]).

e) the q u o t i e n t space E / H of a given p - n o r m e d space E w i t h p - n o r m H , say, for a closed snbspace H . T h e n t h e q u o t i e n t space t o p o l o g y is given b y t h e q u o t i e n t space p - n o r m II)ll~ -- inf{lly]]y E x + H}, if t h e canonical m a p p i n g E --> E / H is w r i t t e n x --> x. tX

Also, we introduce:

d) the p - n o r m e d direct s u m of a class {E,} of p - n o r m e d spaces w i t h p - n o r m s {l['ll,}, say, as a p-normed space S as follows. Consider t h e algebraic direct s u m (~, E~ of t h e linear spaces E,, i.e., t h e linear space of all formal finite sums ~.~ x , such t h a t x~ C E, a n d all b u t f i n i t e l y m a n y of the x, are zero. T h e n t h e p - n o r m e d space S is defined as the linear space 0 , E, e n d o w e d w i t h t h e p - n o r m II']l given b y II~, x, lI = ~ IIx,[[~-

6.3. Example. We also recall t h e space S(O, 1) of measurable functions on (0, 1) w i t h t h e topology of convergence in measure. This t o p o l o g y is also given b y t h e metric jr1 I x ( ~ ) - y('r)] d r . I t is well this has dual d(x, y) = 1 @ [x(~) -- Y(~)I k n o w n t h a t s p a c e

0

{0} (cf. [5]).

6.4. W e n o w introduce some n o t a t i o n to be used henceforth. B y co X we denote t h e convex hull of a set X in a linear space E; a n d lin X will be t h e linear hull. I f E is a t v s , co X a n d lin X will s t a n d for t h e closed convex resp. linear hull. F u r t h e r , we will m a k e extensive use of t h e following simple consequence of H a h n - B a n a c h ' s theorem:

A point in a tvs E belongs to the convex hull of every O-neighbourhood i f and only if it is not separated from 0 by E' (LaSalle [4]).

Otherwise stated: L e t 9~ he a 0-neighbourhood base in E. T h e n [7 co U---- A E .

U~B

I n this connection, notice t h a t Definition 1 above m a y t h u s be rephrased in t e r m s of convex hulls of 0-neighbourhoods in subspaces:

6.5. PROPOSITION. Let E be a tvs. For a class ooi of subsets of E, write iced for the intersection of the convex hulls of the sets of d . Further, let ~ be a O-neigh-

bourhood base of E ; and define inductively

(8)

286 AYLKIV ~51~ MAT:EMATIK. Vol. 9. :No 2 icn 1 = i c ~

icn ~ : ic{ U f3 icnr l U C ~ for all ordinals v. T h e n

i e n ' = A~E for every ordinal v.

, ~ ' < v }

Proof. B y transfinite induction.

7. We now t u r n to the problem of finding tvs E with a(E) > 2. First we prove a general assertion on sufficient conditions for a given tvs to have a sub- space with a-value > 2.

7.1. T ~ E O R ~ . Let E be a metrizable tvs and K c E a closed subspace which E ~

is separable. S u p p o s e there is a decreasing sequence { i}i=l of closed subspaees of E such that

co

(i) f~ E~ = K

i = l

(ii) AE~ D K , i > l .

T h e n E has a closed separable subspace K 1 D K such that A K 1 = K .

I n particular, i f K is dual-separated, we get K 1 with a(K1) = 2; and, more generally, i f a ( K ) is finite, we get a(K1) = a ( K ) -~ 1.

Proof. Let {Vk}k~=l be a countable 0-neighbourhood base of E and {Zk}k~=l a sequence which spans K. B y condition (ii) and 6.4 above, we can take xq E E for i _> 1 and 1 < j < k~, say, so t h a t

1~ xq C E~ fl V~

2 ~ z,,Eco(xq}~=l, 1 < n < i , k i

for each i > 1 and suitable kl.

How t a k e K 1-~ lin ({xq} U K). B y construction, every point of K is in the convex hull of every 0-neighbourhood (for {zn} spans K and {Vn} is a base);

so b y 6.4, K C AK1. On the other hand, every point x in K1 ~ K is outside AK1; for, b y (i), the point x is outside E~ for some i > 2. B y construction, Ei/3 K1 has finite codimension in K1; so the dual of K~ separates x from 0, as required.

We will make particular use of a special case:

7.2. COROLLARY. I f E is a metrizable tvs and K a closed separable subspace which has separating dual and which is intersection of a decreasing sequence of sub- spaces E 1 D E 2 D . . . . each of which has dual {0}, then there is a closed (separable) subspace K 1 such that A K 1-~ K (and thus a ( K 1 ) ~ - 2).

(9)

O1~ T H E S E P A t C A T I O I ~ P R O P E R T I E S O F T t t E D U A L S 287 7.3. COROLLARY. Let E be a metrizable ,tvs such that for every closed subspace K which is an A-space, there is an (isomorphic) imbedding i : K - - > E such that E satisfies the conditions of 7.1 with i(K) in the place of K. Then, for any n < ~o, the space E has a closed subspace K~ with A ' K , one-dimensional (and thus o~(K~) =

n + 1).

Proof. Start with a one-dimensional subspace K and find K1; then take K 1 in the place of K to find Ks; and then go on step b y step.

7.4. Example. Consider the space S(0, l) of measurable functions (cf. 6.3 above).

We can then apply 7.2 in the case when K is the one-dimensional space of all constant functions. Namely, let E k be the subspace of all periodic functions with period 2 -k (/c ~ 1). Clearly, K is the intersection of all the Ek, and each Ek has dual {0} (since E k is essentially S(0, 2-k), which space is isomorphic to S(0, 1) and thus has dual {0}). Hence S(O, 1) has a closed subspace K 1 with A K 1 one- dimensional (and thus ~(K1) = 2).

(See also 7.9 below.)

7.5. Example. Similarly, LP(0, 1) with 0 < p < 1 has a closed subspace K 1 with A K 1 one-dimensional.

7.6. Examples (continuation). We will now proceed and show t h a t also the conditions of 7.3 are fulfilled for E = S(0, 1) [resp. LP(0, 1)].

T o that end, first notice that (0, I) h a s the s a m e m e a s u r e space structure as 12 = (0, 1)X(O, 1); so S(0, 1) [resp. LP(0, 1)] m a y be identified vcith the cor- responding space S ( I 2) [resp. LP(IP)] of measurable functions on 13. Thus, we can define the required imbeddings i : K - - > E of 7.3 as imbeddings S(0, 1) K • S(1 ~) [from now on we omit the phrase ~>resp. (corresponding for) Le~> after statements like this one].

So let K be a closed subspace of S(0, 1). We will find i : S(0, 1) --> S ( I 2) and subspaces E 1 D E 2 D . . . of S ( I 2) such t h a t their intersection equals i(K) and such t h a t each of them has dual {0}. Consider the elements of S(0, 1) as functions f(O) with 0 ranging over (0, 1) and the elements of S(F) as functions f(O1, 02) with 01 and 02 ranging over (0, 1). (Thus, we denote the coordinates of 12 b y

01 and 03 resp.) Whatever K m a y be, we define the imbedding i b y m e a n s of S(0, 1) = g ~f(O) J ~ f(01) e S(I2) ;

thus, we let i range in the subspace of functions t h a t are constant in the variable 03. Clearly i is an isomorphic imbedding. I t remains to give the Ek, which is done b y

Ek = lin {g(01) 9 h(02)[g e K ; h is periodic with period 2-k}.

(10)

288 AI~KIV F61~ 2'r Vol. 9. No 2

T h e n Ek has dual {0} (cf. 7.4); we m u s t show t h a t r l k E k = i(K). F i r s t , b y definitions, t h e intersection contains i(K); conversely, a n element f0(01, 02) o f t h e intersection will be shown to belong to i(K). Since a n y f u n c t i o n of E k has period 2 -4 in 02 (for almost all 01-values), t h e f u n c t i o n fo(OD 02) is essentially c o n s t a n t w i t h respect t o 02; so write fo(01, 02) = go(01). T h e n go -- regarded as a n element o f S(0, 1) -- is to be recognized as a n element of K . I t can be, for i f f(01, 02) belongs to E 1, say, then, for almost e v e r y f i x e d 0 ~ t h e f u n c t i o n 01-->

f(01,0~) - - regarded as an element of S(0, 1) -- belongs to K ; in particular, g o E K .

Thus, 7.3 applies a n d gives:

_For every positive integer n, the space S(O, 1) [resp. LP(O, 1)] has a closed sub- space K~ with A ~ K , one-dimensional (and thus ~ ( K ~ ) = n + 1).

7.7. Examples (continuation). We call n o w easily t a k e one more step: First, notice t h a t t h e spaces Sk ~ S(2 -k, 2-~+~), where k > 1, m a y be regarded as subspaees of S(0, 1); further, there are n a t u r a l continuous a n d open projections zk : N(0, 1) --> S k (defined as t h e restrictions of functions in S(0, 1) to (2 -k, :2 -k+l) [resp. corresponding for LP]. B y 7.6, t a k e for each /~ > 1 a space K2 ~ Sk such

k o

t h a t A Kk is one-dimensional; a n d let K ~ c S(O, 1) be t h e closed linear hull of t h e K2. Now, proposition 2 -- applied to ~k a n d to t h e i m b e d d i n g S k - + S(0, 1)

says t h a t ~k(A~K ~ ~ ~

-- ~ A K k for all v a n d k. This gives on one h a n d A ~ K ~ {0} for n < co, a n d on t h e other h a n d N n < ~ A " K ~ C n k ~k-l(0) = {0}. Thus we f i n d t h a t S(0, 1) [resp. LP(O, 1)] has a closed subspace K ~ with o~(K ~ = co.

7.8. _Remark. W h y are we p a r t i c u l a r l y interested in finding closed subspaces in 7.1--7.77 -- Because these are complete w h e n we s t a r t w i t h a complete space E (such as S(0, 1) or LP(0, 1)); a n d in general, ~(.) is not invariant under completion.

(See II.2.3 below.)

7.9. Remark. Consider t h e situation in 7.4. I t m i g h t be interesting t o see explicitly w h a t t h e f o u n d subspace K 1 m a y look like in this particular case. To t h a t end, let us go b a c k a n d e x a m i n e t h e p r o o f of 7.1. W h a t we w a n t is t h e n to give elements xq which are of t h e kited m e n t i o n e d there a n d which thus, t o g e t h e r w i t h K , span

K1.

Noticing t h a t K is g e n e r a t e d b y t h e c o n s t a n t f u n c t i o n 1 on (0, 1), we t h u s need functions xii(~) on (0, 1) which satisfy

(1') x~ i e El

(1") Xq-+ 0 ( i n d e p e n d e n t l y of j) as i--> ~ (convergence in measure) (2) 1 Eco{xii}i for e v e r y i ~ l ,

where t h e E~ are as d e f i n e d in 7.4. Denoting b y

(11)

ON- T I I E S E P A R A T I O N P R O P E R T I E S OF T H E :DUALS 2 8 9

N + I sin 2 - - v

1 2

- - , N > I

F N ( T ) N + 1 T - - '

sin e -- 2

t h e Fej6r kernel on the unit circle, we claim t h a t we m a y take

, ,

X q ( T ) = f ~ \ 2 ~ \ 2 ' ~ : @ , 1 ~ j ~ i , i 2 1.

Namely, (1') and (1") follow from well-known properties of the lq'ej6r kernel;

for (2), notice t h a t we have 1 = (1/i)(xa -[- 9 9 9 -]- xu) from the well-known relations

2 N

Fs(~) = 1 - 4 - N @ 1 ~ ( N + 1 - - n ) cosnT and

j = l

We have shown t h a t the space K 1 found in 7.4 [resp. 7.5] m a y be the space lin 1, F~ 2~ 2~W ~- / ~ l, 1 _~ j _< i .

I I . C o n s t r u c t i v e m e t h o d s

I n this chapter, we shall first give a general m e t h o d to construct p-normed spaces with certain properties. Then we will use this to get the announced example which will show t h a t definitions I 1 and I 1.2 are meaningful for all ordinals. The constructive m e t h o d to be employed will be presented in a somewhat stronger form t h a n required for our chief purpose. For the sake of completeness it m a y be remarked, t h a t to fulfil this purpose, we could have got away with a simpler but less illuminating device.

1. Suppose there to be given, for a fixed number p (0 < io < 1) (i) a set ~g of p-normed spaces,

(ii) for each E E ~ g , an element

eEEE,

(iii) a metric space M (with no linear structure), and

(iv) a function

}P:~--->M•

such t h a t d(prl~(E), p r 2 T ( E ) ) = ]]e~[l, and such t h a t I m ( p r l T ) U I m ( p r e T ) = M,

where

prk:MxM--->M

is the projection onto the first resp. second factor and where d(., .) is the distance on M.

(12)

290 ARKIV F6R MATEYIATIK. Vol. 9. No 2

W e i n t r o d u c e t h e following n o t a t i o n . F o r (m',m") C M x M , we w r i t e -- (m', m") = (m", m'). F u r t h e r , b y a cycle we u n d e r s t a n d a f i n i t e sequence o f ele- m e n t s in M • M o f t h e f o r m

(m o, ml), (ml, m2), (m2, m3) . . . (m,_l, mn), (mn, m0).

W e shall n o w d e f i n e a space H(Cg, {eE}, M, T), w h i c h we also d e n o t e 11(~) or H w h e n t h e r e is n o risk for confusion. ( F u r t h e r , if ~g' c ~E a n d if M ' = I m (prl T ) U I m (pr2 ~ ) , we d e n o t e also H(~g ', {eE}, M', T ) b y H ( ~ ') - - in spite o f t h e change f r o m M t o M ' . )

1.1. PROPOSITION. Given the objects of (i) to (iv), there is a unique complete p-normed space 11 ~ II(C~, {eE}, M, ~J) such that

1 ~ for each E C (g, there is an isometric imbedding i E : E - - > 171, 2 ~ there is an injection j : M - - > I I related to the iE as

iE(e~) ---- j(pr2 T ( E ) ) - - j(prl T ( E ) ) , and

3 ~ if 111 is an arbitrary complete p-normed space satisfying 1 ~ and 2 ~ with i 1 E

and j l , say, in the places of iE and j resp., there is a linear mapping ~ : 11--> 111 for which the diagram

E

H ) H 1

is commutative for each E C cc:, and which is continuous with operator p-norm not larger than one (i.e., supEl~ll= 1 ll~b(x)ll _~ 1). (Universal property.)

[Concerning 3 ~ also notice: if I m T is c o n n e c t e d as g r a p h (cf. 1.4), t h e d i a g r a m M

H ~b ) H1

is c o m m u t a t i v e u p t o t r a n s l a t i o n (i.e., jx ~ ~b o j ~- c for some c o n s t a n t e l e m e n t c in HX); this follows f r o m t h e condition t h a t t h e i~ a n d j l s a t i s f y 2~

B e f o r e p r o v i n g 1.1, we s t a t e some p r o p e r t i e s o f / / w h i c h will be consequences o f t h e c o n s t r u c t i o n .

(13)

O N T H E S E P A R A T I O N P R O P E I ~ T I E S O F T H E D U A L S 291 1.2. I)ROPOSITIO~. With notation and assumptions as in 1--1.1 and with E~, E 2 C ~ , we have

~{0} i f T(E~) =~ T(E2) and =~ -- ~J(E2) i(E1) N i(E2)

[lin {eE,} i f T ( E ~ ) = T(E2) or -~ -- T(E2).

1.3. 1)~O~OSITIO~. With notation and assumptions as in 1--1.1 (notice especially the last paragraph before 1.1), let ~d' be a subset of ~, consisting of all except finitely many of the elements of ~ Then there is a canonical imbedding g (which is iso- morphic but in general not isometric) of II(C8 ') onto a closed subspace of TI(~8).

(~)Canonicab) here means t h a t the diagram E

- C C /

1I( ~, ) > I m Z C 11(~8) Z

is commutative whenever E e ~;'.)

1.4. Remark. I n the sequel, we will not distinguish between E and i(E). Thus, the spaces of c~ will be regarded as subspaces of / / .

Notice t h a t it is an immediate consequence of the universal property (3 ~ of 1.1) t h a t

lin {i(E)IE 6 c8} = / / .

Intuitively, we m a y think of I m k~ as the set of edges of a graph in M. W h a t we intend to do is to paste the spaces of c+~ at this graph by identifying the vectors eE with the (oriented) edges T(E).

Notice t h a t in general the injection j : M -+ H is not isometric; however, we know t h a t the distances d(prl T(E), pr~ T(E)) are preserved, since these equal t h e p-norm values

Ileal] (of.

(iv) of 1 and 1 ~ of 1.1).

1.5. Proof of 1.1--1.3. To define TI(CS, {eE}, M, T), we start with the p-normed direct sum S (cf. I 6.2.d) of the spaces of c8. Consider the subspace H c S given b y

H = lin { ~ ekeEk]elT(E1) , . . . , snT(En) is a cycle for some s k = ~= 1, n _~ 2}. (a)

k ~ l

Then we take H as the completion of the p-normed quotient space S/H.

(14)

292 AttIs FSR 2r Vol. 9. ~No 2

To give t h e p - n o r m ]I'll~ on S / H more explicitly, we denote b y x t h e canonical image in S / H of a n element x E S. (This tilde n o t a t i o n will n o t be used except in this proof.) T h e n I['II_ is d e f i n e d b y

]]~xk[ I = i n f (~ltyk][ ] ~ x k ~- ~Yk) (b)

where t h e xk a n d yk belong to different spaces of c3, a n d where t h e i n f i m u m is t a k e n over all preimages of ~ x ~ u n d e r t h e canonical m u p p i n g S ----> S/H. (Cf.

the definitions in I 6.2.)

F r o m this construction, we see a t once h o w to define t h e iE o f 1~ for each E C ~;, let i~ be t h e composition of t h e inclusion m a p E --> S a n d t h e canonical m a p p i n g S ~ S/H. Before t h e s o m e w h a t l e n g t h y verification t h a t these iE are isometric, we prove t h e other s t a t e m e n t s .

First, 1.2 follows f r o m this definition; for, t h a t siT(E1), s2T(E~) is a cycle m e a n s precisely t h a t sl~rl(E1)= --s2~(E2). B y t h e definition of H , it m e a n s also precisely t h a t sle~, = --S2eE. A n d (a) f u r t h e r shows t h a t for xk E Ek, we can h a v e x l = x 2 only if x k = • ~e~ k for k = 1 , 2 a n d some ~.

Second, for 1.3 we consider t h e case w h e n ~ ~ ~ ' is a singleton {E0}, say;

t h e general assertion t h e n follows b y induction. L e t So be t h e snbspace of S which is s p a n n e d b y t h e spaces of ~ ' , a n d let H 0 C So be t h e subspace defined b y (a) w i t h t h e spaces El, . . . , E , ranging over ~ ' . D e n o t e b y q~ : S ~ S / H t h e cano- nical mapping. Since H 0 = S o n H , t h e i d e n t i t y m a p p i n g S----~S induces a bijective linear m a p p i n g Zo:So/Ho--~ ~(So) , which will be shown to be a n iso- morphism. I f x C S o a n d i f 7x a n d H'H= is t h e canonical image of x in, resp. t h e q u o t i e n t p - n o r m on, So/Ho, we h a v e b y (b)

l l x l l = inf( ~. ]]Ykl] ]Yk in spaces of ~ ) a n d

x ~ - ~ Y k rood H

IIx[I z = inf( ~ ]lYkll I Y~ in spaces of ~ ' ) .

x ~ X y k rood//o

Since t h e first i n f i m u m is t a k e n over a larger set, it is smaller, so ]]s < [[x][=.

Conversely, let Yk be vectors in spaces of ~ so t h a t x ~ ~. Yk m o d H . Two cases m a y occur: (1) all Yk are in spaces of ~g', a n d t h e n x ~ ~ y k m o d H o (since H 0 = S 013H); a n d (2) ~ Y k = S 0 ~ - A e a , where s 0 e S 0 a n d A 4 0 a scalar.

I n ease (2), ~v(E0) m u s t be an element of a cycle ~ of which all t h e other elements are in 4- T(~;'). (The last s t a t e m e n t s are consequences of the definition o f H.) So

So 4- ~eE0 ~ So + A ~ ekeE~ rood H ,

~k w(ED e J.

E k ~ E 0

wherein t h e second m e m b e r is an element in So which is congruent m o d u l o H o to x (since H o = S o 13 H). L e t t h e s u m in t h e second m e m b e r h a v e t h e length clIeEoll. Then, for a n y x C So, a n d ~Yk ~ x m o d H t h e second m e m b e r has length

(15)

O N T H E S E P A R A T I O N P R O P E R T I E S O F T H E D U A L S 293 at m o s t c t i m e s t h e l e n g t h of t h e first m e m b e r . S o in case (2) as in ease (I), it is seen t h a t for e v e r y x ' ~ x m o d H , there is x " E S O w i t h x " ~ - x m o d H o a n d IIx"II <_ c'[Ix'll for some c o n s t a n t c ' > 0 (which is i n d e p e n d e n t o f x); a n d so I1"1I: _< c ' i l l l 9

T h e n we e x t e n d ~/o b y c o n t i n u i t y t o a n i m b e d d i n g Z : H(cE ') --> H ( ~ ) ; clearly

H ( ), for is

I m Z is closed in cg H(Cs ') complete.

Finally, we v e r i f y l ~ ~ of 1.1.

F o r 2~ T a k e j(mo) = 0 for some m o C M. T o define j for t h e o t h e r p o i n t s in M , we use t h e following n o t a t i o n : B y a T-path f r o m m 1 t o mn we u n d e r s t a n d a sequence

(ml, m2), (m2, ma) . . . . , (mn_2, ran_l), (ran_l, ran)

where all t h e (ink, ink+i) belong to I m T U ( - - I m T ) a n d w h e r e n > l . L e t m C M be a n y e l e m e n t for which t h e r e is a T - p a t h f r o m m o t o m - - or, as we can say, t h a t lies in t h e same T-path-component o f M as m 0. L e t e , T ( E 1 ) , . . . , e~T(E~) (ek = i 1, n _> l) be a T - p a t h f r o m m0 to m. T h e n we d e f i n e j(m) = ~ = 1 ekeE k.

This d e f i n i t i o n is consistent. For, let s11T(E~), . 9 . , s , I T ( E , , ) be a n o t h e r T - p a t h 1 1 f r o m n~0 t o m; t h e n

s i T ( E 1 ) , 9 .. , s n T ( E ~ ) , - - s~T(E~) ~ 1 . . . -- s , , , T ( E , , , ) 1 (c) is a cycle, so b y c o n s t r u c t i o n (cf. (a) above) we h a v e

n~ 1

8 k % - - ~ 8neE~ k = 0 . (C')

1 1

This r e l a t i o n says t h a t t h e d e f i n i t i o n o f j(m) is i n d e p e n d e n t o f t h e choice o f p a t h f r o m mo t o m. So, if C o is t h e T - p a t h - c o m p o n e n t o f m o in M , we h a v e con- sistently d e f i n e d Jco : Co---> Tl -- t h e r e s t r i c t i o n t o C o of t h e r e q u i r e d j . A n d jco is injective; for if j(m') = j(m") a n d i f s i T ( E l ) , . . . , s~T(E~) a n d siT(E1)1 1 . . . . ,

1 1 tt

s,#T(E~) are T - p a t h s f r o m m 0 t o m' resp. m , r e l a t i o n (e') is satisfied. B y c o n s t r u c t i o n , (c) m u s t be a cycle, w h i c h m e a n s t h a t t h e t w o p a t h s go f r o m m o to t h e same p o i n t , i.e., m ' = m".

W e h a v e t o e x t e n d Jc~ to all o f M . So, for each T-path-component C we define a n i n j e c t i o n j c : C - - ~ I I in precisely t h e same m a n n e r as before 9 B u t t h e d e f i n i t i o n o f / / (cf. (a)) shows t h a t for a suitable class o f subspaces each t w o o f w h i c h m e e t o n l y in {0}, each space o f t h e class contains precisely one set I m j c as a p r o p e r subset. So b y composing each Jc w i t h a suitable t r a n s l a t i o n , we get i n j c c t i v e m a p p i n g s Jc w i t h disjoint images; these t o g e t h e r d e f i n e a n i n j e c t i o n j on all of M .

F o r 3~ T h e m a p p i n g s i~ t o g e t h e r i n d u c e a linear m a p p i n g ~ : S --> H 1 (defined b y il--(~Xk)=~i~k(Xk) for ~ x k C S , xk EEk). F i r s t n o t i e e t h a t ~ i s c o n t i n u o u s w i t h o p e r a t o r p - n o r m a t m o s t l, for

(16)

294 AttKXV 1~61~ MATEMATIK. Vol. 9. No 2

where ~x~ C S, w i t h xk E E k a n d t h e spaces Ek distinct.

Now, if sxT(Ex) . . . . , s,T(E~) (sk = ~ 1, n >_ 1) is a cycle, we h a v e for a n y m o E M occurring in a n y T(Ek) ,

0 = ix(too) -- jl(mo) = ~ ej~k(eEk),

k = l

since t h e i~ a n d j l are s u p p o s e d t o satisfy 2 ~ T h u s , a n y e l e m e n t in t h e set spanning H a n d given in t h e second m e m b e r o f (a) a b o v e is m a p p e d t o 0 b y il; h e n c e iX(H) = 0. T h e m a p p i n g ~b : II----~II 1 is t h e n d e f i n e d as t h e m a p p i n g which is i n d u c e d b y iL F r o m t h e d e f i n i t i o n o f q u o t i e n t p - n o r m we see t h a t ~b has o p e r a t o r p - n o r m a t m o s t 1, for ~-x has. T h e c o m m u t a t i v i t y o f t h e diagrams, finally, is an i m m e d i a t e c o n s e q u e n c e of t h e d e f i n i t i o n o f r

F o r 1 ~ at last, let x be an e l e m e n t in E 0, say, E 0C~2. B y definition, [lxl[_ ~ Ilxl]. T o show t h a t ]]x]l >-- ][x]l, on t h e o t h e r h a n d , let an a r b i t r a r y c~nonical pre-image o f ~ in S be w r i t t e n

x ' = y ~ - 2 r ,

w h e r e y = x - - Xe 0 (notice t h a t y e E0), 2 is a scalar, a n d r = ~ r e z ~ F e F ~ e o m o d H , for a suitable f i n i t e subset ~ C ~c~{Eo} a n d suitable n u m b e r s y~, n. W e m u s t t h e n show t h a t ]]x'[] > ][x][. N o t i c e t h a t , b y definition, ][x'[l --~ ]]Yll ~- l ~ l ~ l l r l l 9 Now, b y t h e d e f i n i t i o n o f H , we k n o w t h a t r is a linear c o m b i n a t i o n of n, say, sums

n k

/ = 1

such t h a t

-- T(Eo), ~klT(Ekl) . . . . , ~k%T(Ek%)

is a cycle ~ k for each k. Or, if T(Eo) = (mo, ml) say, we m a y express this in t e r m s of t h e n o t a t i o n o f t h e p r o o f o f 2~ for e v e r y k, ~ k l T ( E k l ) , . . . , ek%T(E~n k) is a T - p a t h f r o m m 0 to m r Also notice t h a t e 0 = - ~ t ek~ekt m o d H . To a v o i d trivial complications, we e x c l u d e t h e case w h e n some Ekl equals E o (notice t h a t E o ~ ~3).

W e f i r s t t r e a t t h e case w h e n t h e r e is o n l y one such s u m (i.e., n = 1) a n d w h e n no t w o t e r m s o f this s u m are multiples o f the same v e c t o r eE. I n o t h e r words, we suppose t h a t r --~ s 1 a n d t h a t T(Ell. ) # • T(Elt~ ) w h e n l' # l". A s s u m p t i o n

(iv) a n d t h e triangle i n e q u a l i t y in M give

n~

ILx'II = Ily]L § lXlPllr]l = ]ly/I-~ ]A[P~ II%1tl]

l = l n l

--~ ]]Yll 9 ]~l p ~ g(Prx T(Ex,), pr~ T(Elt))

l = l

(17)

O1~ T H E S E P A R A T I O N P R O P E R T I E S O F T H E D U A L S 295

I t 9

= Ilyll + I~[P(d(mo, ml) -~ d(m 1, ms) -~ . . . +

d(m'n,_l, ml)), suitable ink; t mo, m 1 as a b o v e IJY[I § I~]Pd(m0, rex) = I[YI] § ][~e01l

[]Y + ~e01l = Ilxll,

since, b y a s s u m p t i o n , ~ilT(E11) . . . . , e l n T ( E l , , ) is a U - p a t h f r o m m o r m l ; so t h e assertion follows in this case.

I n t h e general case (n > 1), we w a n t t o r e d u c e t h e p r o b l e m t o t h e case n = 1.

T h a t is, i f x ' = y ~ ~r is a n a r b i t r a r y canonical p r e - i m a g e in S o f x, we w a n t t o f i n d a n o t h e r p r e - i m e g e x" = y ~- ks', w h e r e s' is a s u m o f t y p e (d), such thaV ]]x'll ~ [Ix'][. Since we a l w a y s h a v e ][y -~ 2rl] =

IlylI § IAIP]IrI[

(by t h e d e f i n i t i o n o f H'H o n S), this m e a n s t h a t we m u s t f i n d s' w i t h

lls'll

_<

llrII.

This is done in five.

steps.

F i r s t step: W e show t h a t if we are g i v e n r ~-- e o rood H a n d write r = ~ F e F Y~eF as a b o v e , t h e n there is a U-path from m o to ml, consisting of elements in 4- T ( ~ ) only. This is n o t quite obvious; t h o u g h we k n o w - - f r o m d e f i n i t i o n o f sk - - t h a t t h e r e arre such U - p a t h s consisting o f e l e m e n t s in ~- T({Ekz}~l). F o r , one m i g h t ask: can it h a p p e n t h a t so m a n y eEk-terms are cancelled in t h e linear c o m b i n a t i o n o f t h e s k t h a t a U - p a t h o f t h e r e q u i r e d k i n d is impossible (since we can t a k e s o small t h a t YF ~= 0 for e v e r y Y)? W e will show t h a t i t c a n n o t .

W e w r i t e r = ~=10ksk. T h e n

~

0k = 1 , (e)

k = l

for r ---~ sk ~ e o m o d H . T o proceed, we n e e d a simple g r a p h - t h e o r e t i c device. L e t Z b e a subset o f M , a n d t a k e ~ = {(m',m")[m' e Z a n d m" E CZ}. ( T h u s , consists o f t h e edges c o n n e c t i n g Z a n d C Z in t h e g r a p h d e f i n e d b y I m T a n d m e n t i o n e d in 1.4 a b o v e . F u r t h e r , t h e o r i e n t a t i o n o f t h e edges o f ~ is in t h e d i r e c t i o n o u t f r o m Z.) F o r e a c h cycle ~-5~k (defined in c o n n e c t i o n t o (d)), we i n t r o d u c e a scalar v a l u e d f u n c t i o n fk d e f i n e d on Z. I f a n e l e m e n t z C ~ occurs r t i m e s in

~ k , a n d if - - z occurs s times, we d e f i n e f (z) = (r - s)O ;

n o t i c e t h a t this s i t u a t i o n m a y b e described i n t u i t i v e l y as follows. W h e n we go a r o u n d one r o u n d in ~ k (in t h e n a t u r a l direction), we pass s t i m e s into Z t h r o u g h z, a n d r t i m e s o u t o f Z t h r o u g h z. A n e l e m e n t a r y c o n s i d e r a t i o n shows t h a t

5fk( ) = 0 ze2

(for, loosely spoken, w h e n we m a k e o u r r o u n d in ~ k , we m u s t , t o t a l l y , pass into, Z precisely as m a n y t i m e s as we pass o u t t h e r e of). ~ o w d e f i n e f(z) = ~ = l f k ( z ) ; s u m m i n g t h e relations j u s t s t a t e d , we get

(18)

2 9 6 ARXIV FOR MATEMATIK. V o l . 9. N o 2

f ( z ) = 0 . (f)

z e 2

W e will n o w use this result. Assume, for a while, t h a t k~ is a n injection. T h e n , i f T ( E ) = ~z, w r i t e e~ = ees (where E E ~ , e = - } - 1 , z C Z). B y definitions, we see t h a t t h e p r o d u c t o f Ok a n d t h e coefficient o f e', in sk is precisely fk(z);

a n d t h e coefficient o f e'= in r is f ( z ) (or m o r e strictly, r : ~ y~e F • f(z)e:).

F e F eF # :s z

Also, if z0 : (too, ml) e Z, we get f(Zo) = ~ k Ok : - - 1, b y (e), since - - z 0 a p p e a r s e x a c t l y once in e a c h ~ k , a n d z 0 in n o ~ k . Now, let Z be t h e set o f p o i n t s in M w h i c h c a n b e r e a c h e d f r o m m o b y a W-path, all o f w h o s e e l e m e n t s are in =k W(~). I f t h e assertion t o b e s h o w n were n o t vaIid, m x w o u l d be outside Z.

^

Aiming a t a c o n t r a d i c t i o n , we a s s u m e it t o b e so. T h e n z 0 : (m0, zrh) e Z, a n d f(Zo) ~- - 1, as we j u s t r e m a r k e d . L e t z I e Z be d i s t i n c t f r o m %; i f z x is outside

• I m k~, we h a v e d e f i n e d f ( z l ) : O, a n d if z 1 belongs t o • I m T , t h e d e f i n i t i o n o f Z says t h a t e~, is c e r t a i n l y outside {-~ er}geZ, so t h e coefficient f ( z l ) o f e:, m u s t vanish. Thus, f ( z ) -~ 0 w h e n e v e r z ~e zo, so t h a t

f ( z ) -~ f(Zo) = - - 1 , c o n t r a d i c t i n g (f).

S e c o n d step: N o t i c e t h a t t h e a s s u m p t i o n t h a t W is i n j e c t i v e is n o t essential.

For, d e f i n e H 1 r- S as H 1 : Iin{eE, - - eeE~.]T(E1) -= ~ T ( E 2 ) , e = • 1). T h e n t h e canonical m a p p i n g S ~ S / H 1 is i m m e d i a t e l y seen t o p r e s e r v e l e n g t h of v e c t o r s in spaces o f ~ (regarded as subspaces o f S). W e n o w r e g a r d S / H as a q u o t i e n t space of S / H 1 - - i n s t e a d o f r e g a r d i n g it as a q u o t i e n t space o f S. A n d n o w t h e canonical images of t h e es in S / H 1 are in b i u n i v o c a l c o r r e s p o n d e n c e w i t h t h e v a l u e s k~(E), so t h e a r g u m e n t m a y be carried o u t as before.

T h i r d step: W e show t h a t either r ~nay be written as j u s t one s u m of t y p e (d), or the ~F w i t h F C ~ are linearly dependent. B y w h a t was s h o w n in t h e f i r s t step, t h e r e is a p a t h elT(F1) . . . e,.T(F~.), Fk E ~ , ek ~ • l, n ' ~ 1, f r o m m o t o ~n 1. T h e n we can f o r m a s u m o f t y p e (d), n a m e l y s = ~kek~Fk, all o f whose t e r m s are in {=~eF}FeF. Since n o w c o = ~ = s , we g e t ~ - - s ~ - 0 , so t h a t e i t h e r r = s or ~ F e / f l ~ F : 0, for some fl~ w h i c h do n o t all vanish.

F o u r t h step: W e show t h a t i f the eF w i t h ~' E ~ are linearly dependent, then there

! !

is a n r' ~ ~ e ~ y~e~ ~- e o rood H such that at least one coefficient y~ vanishes a n d such that [lr'[I ~

[Ir[I.

T h u s , m o r e expressively, we can change r in such a w a y t h a t t h e n u m b e r o f t e r m s in t h e e~-exl~ansion o f r is r e d u c e d b y one u n i t , a n d t h a t t h e l e n g t h does n o t increase.

So let ~ e F f l ~ = 0 for some fi~ w h i c h do n o t all vanish. F o r a n y scalar ~, d e f i n e

F e F F e F

(19)

ON T H E S E P A R A T I O N P R O P E R T I E S O F T H E D U A L S 2 9 7

l~otice t h a t r(0) = r a n d t h a t r(~) ~ e 0 rood H for a n y ~. W e will show t h a t r(~) assumes minimal l e n g t h w h e n some coefficient ~F -~ vile vanishes; this will give t h e assertion. B y definition of t h e p - n o r m on S,

Since t h e f u n c t i o n z--> lz] p is concave for z r 0 (since p < 1), t h e f u n c t i o n A --> ][r(2)] l is concave in t h e d o m a i n where all coefficients are distinct f r o m zero;

so t h e m i n i m u m m u s t be a s s u m e d in t h e c o m p l e m e n t of this domain, as required.

(For t h e real case, cf. fig. 1.).

' llr( )Ll

T

Fig. 1.

( p < l )

F i f t h step: W e conclude: L e t t h e canonical pre-image x' = y + 2r, r = ~.Fe F ?Fer, o f ~ be given. I f t h e vectors eF, F E 7, are linearly dependent, we can, b y w h a t was shown in t h e f o u r t h step, f i n d a n o t h e r pre-image Xl ---- y + ~rl, for which rx =

~.Fe f~ ~E F w i t h 71 consisting of t h e elements in 7 except one a n d such t h a t ]frill _< 1 e

[[r[[, i.e., [[Xl] ] < [Ix']]. N o w we a p p l y t h e same a r g u m e n t to x 1 as we d i d to x';

a n d t h e n we proceed step b y step. Thus, we get successively n e w pre-images o f in such a w a y t h a t 7 is replaced b y smaller a n d smaller subsets; a n d a n e w pre- image is never longer t h a n a n y of t h e previous ones. Since 7 is finite, t h e procedure m u s t stop some time. So, u l t i m a t e l y , we get x" = y + Xr", where r" is a linear c o m b i n a t i o n of linearly independent vectors eE, a n d ][x"l] < Nx']]. B y w h a t was shown in t h e t h i r d step, r" can be w r i t t e n as one s u m of t y p e (d). Since t h e t e r m s o f this s u m are linearly i n d e p e n d e n t , a n y t w o of t h e m are certainly n o t proportional to each other; a n d we are b a c k to t h e case first t r e a t e d . Hence, we k n o w t h a t ][x"[] ~_

[Ixl[, a n d a fortiori [[x'[] ~_ ][x]].

W e s t a t e explicitly y e t a n o t h e r p r o p e r t y of / / to be used in t h e sequel.

1.6. P~OPOSITION. With notations and assumptions as in 1--1.1, let El, E 2 be distinct spaces of ~ such that the pairs ~P(E1) and ~(E~) of elements of 2 I have one element, m ~ pr~ ~(E1) ---- p r 1 ~(Ez), say, in common, such that it belongs

(20)

298 ARKIV FOR YIATEi~ATIK. VO1. 9. No 2

to no other element pair ~(E). Let f~ be continuous linear forms defined on subspaces K~ ~ E~ with e~ ~ E~ for Ir = 1, 2. _Further, let ~ be the set obtained by replacing E~ by K~ in ~ , k ~ - 1 , 2 . Then, i f f l ( e E , ) + f 2 ( e s , ) = O , the forms f~ have a common extension to II(5~). (Notice that by 1.3, II(~X) may be regarded as a subspaca of the tvs

II(~).)

Proof. F i r s t e x t e n d f l a n d f2 t o forms f l a n d f2 on K 1 (~ K 2 which are 0 on K z resp. K 1. B y 1.3, K a --~ I I ( ~ { K 1 , K2} ) can be considered as a closed subspace of //(~.). So t h e f o r m h = f l + f 2 on _K 1 G K2 c / / ( ~ ) m a y be ex- t e n d e d to t h e l a t t e r space b y m e a n s of an extension ~ which is 0 on K 3. This definition is consistent, since )~(eE, + es,) = fl(eE,) + f2(eE,) = 0 a n d eE, + e~, spans t h e space ( K 1 $ K2) fl K3 if this is =~ {0). F o r first, L e m m a 1.7 below will show t h a t lin {eEl} D K~ fl K a (k = 1, 2). F u r t h e r , since m is in no other pair 7t(E) t h a n ~(E~) a n d 7t(E2), t h e defining relation (a) in t h e beginning of 1.5 gives lin {eE., eE,} fl K a ~ lin {e~ + eel}, whence t h e assertion.

1.7. LEM~A. With notation and assumptions as in 1.3, we have for any E o C o~,~ ~,, that

I m (g) rl i s ( G ) = {

lin {i~o(eEo)) i f there is a cycle, one element of which is and the others belong to =J= ~ ( ~ ' )

(0) otherwise.

~(Eo)

Proof. B y 1.2 a n d 1.3, we see t h a t t h e intersection is contained in lin (i~o(eEo)).

F u r t h e r , (a) in t h e beginning o f 1.5 shows t h a t iEo(e~o) is outside I m g0 (notation as in t h e p r o o f o f 1.3 in 1.5) if a n d o n l y i f T(Eo) fails t o be in a n y cycle of w h i c h t h e other elements are in =~ ~ ( ~ ' ) . B u t b y construction we clearly h a v e i~o(eE.) a t t h e same distance f r o m I m go as f r o m lin {iE(eE)[E e ~ ' ) ( C I m go). B u t since this space has finite codimension in lin {is(eE)[E e "~}, t h e v e c t o r i~o(eE,) is seen to be outside t h e r e o f -- i.e., outside I m go -- if a n d o n l y if t h e m e n t i o n e d distance is positive, t h a t is, if a n d o n l y if iE0(eEo ) is outside I m 20 = I m g. So t h e assertion follows.

2. Example. W h e n given a n y ordinal v a n d a n y n u m b e r p, 0 < p < 1, we are n o w r e a d y for t h e actual construction of a p-normed and complete tvs E such that A~E is one-dimensional.

W e use t r a n s f i n i t e induction.

A. Assume t h a t v --- v' + 1 is a n y ordinal which is of t h e first k i n d a n d ~ 2, a n d t h a t we h a v e a space E ~ for which A~'E ~ is one-dimensional. W e are going r f o r m E b y m e a n s o f t h e m e t h o d of 1. L e t Ekl, 1 ~ / c < l , l ~ l , be copies o f E ~ a n d let, for all /c, l, t h e v e c t o r ekl be a generator of l e n g t h 1/l of A"Ekl.

F u r t h e r , let M be a metric space w i t h points m0, ml, a n d mk~ for all k, l w i t h

(21)

O ~ T H E S E P A R A T I 0 1 ~ P R O P ] ~ R T I E S O F T H E D U A L S 299 l _ _ < k < l . W r i t e m o=mo~, m ~ = m u , l > l ; t h e n ff d ( . , . ) is t h e distance, a s s u m e t h a t d ( m ~ _ ~ . t , m ~ ) = l / l for all k a n d 1. Define ~ : { E ~ } ~ - - - > M • b y ~ ( E ~ ) = (m~_~,t, m~). W e m a y describe this as follows: M is t h e set o f nodes ,of t h e infinite g r a p h in fig. 2, a n d I m ~ consists o f those pairs which f o r m end- points of some edge.

~ig. 2.

m0 m I

Notice t h a t we h a v e n o t d e f i n e d M uniquely. However, this is inessential;

~cf. 1.4.

W e n o w t a k e E ~ H({Ekt}, {ekt}, M , T). W e w a n t t o show t h a t A ' E is the one-dimensional space which is spanned by ell (the v e c t o r corresponding to t h e pair (m 0, ml) ). First, e n ~ (l/l) (lell ~- . . . -~ letl), wherein I[lekt[I = Ill p . [[e~lll-= 1P-1--~ 0 as l--> ~ . B u t we also k n o w t h a t ekl E A t E , since AtEkz r (cf. 1.2).

T h u s e n E co (U N A t E ) for e v e r y 0-neighbourhood U; so ell E A A t E = AYE.

Conversely, we h a v e to show t h a t a n y point outside t h e linear hull o f e n is also outside A~E. First, we h a v e EkaN A t E ~ AtEkt = lin{ekl}. F o r t h e f i r s t e q u a l i t y is shown b y t r a n s f i n i t e induction; suppose t h a t we k n o w t h a t

Nr (Ekt N At"E) ~ Nr A'"'Ekt a n d w a n t to show t h a t Eu N A~'E ~ Ar for some v" < v'. Now, a n y given point in nr A k l ~ A Ekt m a y be s e p a r a t e d f r o m A~"Ekt b y a continuous linear form f on Nr A'"Ekt. Since ekt E A~'Ez, we h a v e f(ekO = 0; b u t E ~ has intersection lin {ekl} w i t h t h e closed linear hull of all t h e Ek, l, w i t h (k', l') # (k, l). (This follows from L e m m a 1.7.) So we m a y

9 ytrs

,extend f linearly to f , say, on h n (rlr A Ekz, E ~) c E, b y t a k i n g f ( E ~) ---- 0. The h y p o t h e s i s n o w shows t h a t t h e d o m a i n of f includes Nr Ar Since t h u s a n y p o i n t in t h e intersection o f t h e l a t t e r space w i t h Ekz can be s e p a r a t e d f r o m A~'Ekt, as :soon as it is outside this space, b y such an f , it follows t h a t Ekt ['l A ( N , , , < , , A r Ekt fl A " E ~ A~'Ekz. The converse inclusion follows, however, f r o m 1.2 applied t o the inclusion map.

Thus, since n o w Ek~ N A t E = lin {ekl}, it remains to show t h a t a n y ek~ w i t h (k, l) # (1, 1) is s e p a r a t e d f r o m 0 b y a continuous linear f o r m which is d e f i n e d on some space containing A " E - i.e., containing all t h e e~,t, w h e n k' a n d l' r a n g e over all possible values. B u t notice t h a t t h e indices (k, l) # (1, 1) are those

Références

Documents relatifs

We define “tangent” spaces at a point of a metric space as a certain quotient space of the sequences which converge to this point and after that introduce the “derivatives”

Necessary and sufficient conditions are given so that the space C(X, E) of all continuous functions from a zero-dimensional topological space X to a non- Archimedean locally

We recall there are three classical definitions of the topological dimension : the small inductive dimension, denoted by ind, the large inductive dimension, denoted

can indicate that the notion of locally vaguely separable space applies to the spaces of arithmetic almost-periodic functions which constitute an other family of

In this paper it is esta- blished that the spaces of linear functionals on dual spaces are dual spaces and that the space of linear functionals on a self-dual space is self-dual and

gested to study topologies on totally convex spaces in the same way as it has been done for Banach spaces, endowing them with a Saks space structure.. We have

In this paper with a further modification of Artin’s defi- nition of n-polygon we will prove the following property: let X be a topological space with finitely

To avoid confusion, for any space X the set of continuous real-valued bounded functions on X endowed with the topology of point-wise convergence shall be denoted by