• Aucun résultat trouvé

A photonic quantum information interface

N/A
N/A
Protected

Academic year: 2021

Partager "A photonic quantum information interface"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-00511973

https://hal.archives-ouvertes.fr/hal-00511973

Submitted on 26 Aug 2010

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A photonic quantum information interface

Sébastien Tanzilli, Wolfgang Tittel, Matthaeus Halder, Olivier Alibart, Pascal

Baldi, Nicolas Gisin, Hugo Zbinden

To cite this version:

Sébastien Tanzilli, Wolfgang Tittel, Matthaeus Halder, Olivier Alibart, Pascal Baldi, et al.. A

pho-tonic quantum information interface.

Nature, Nature Publishing Group, 2005, 437, pp.116-120.

�10.1038/nature04009�. �hal-00511973�

(2)

arXiv:quant-ph/0509011v1 1 Sep 2005

S. Tanzilli, 1,

W. Tittel, 1 M. Halder, 1 O.Alibart, 2 P. Baldi, 2 Ni olas Gisin, 1

andHugoZbinden 1 1

Group of Applied Physi s, University of Geneva, 20 rue de l'É ole de Méde ine, CH-1211 Geneva 4, Switzerland

2

Laboratoire de Physique de la Matière Condensée,

Université de Ni eSophia Antipolis, Par Valrose, 06108 Ni e Cedex 2, Fran e

Quantum ommuni ation is the art of transferring quantum states[1℄, or quantum bits of information (qubits), from one pla e to another. On the fundamental side, thisallowsoneto distributeentanglementand demonstratequantumnonlo ality over signi ant distan es[2, 3, 4 ,5, 6℄. On the more applied side, quantum ryptography oers, for the rst time in human history, a provably se ure way to establish a on-dentialkey betweendistant partners[7℄. Photons represent the natural ying qubit arriers forquantum ommuni ation,andthe presen eoftele omopti al bresmakes thewavelengthsof1310and1550

nm

parti ularysuitablefordistributionoverlong dis-tan es. However,tostore and pro ess quantum information, qubits ouldbeen oded into alkaline atoms that absorb and emit at around 800

nm

wavelength[8, 9℄. Hen e, futurequantuminformationnetworksmadeoftele om hannelsandalkalinememories willdemandinterfa esabletoa hievequbittransfersbetweentheseusefulwavelengths while preserving quantum oheren e and entanglement[9,10, 11℄. Herewe reporton a qubit transfer betweenphotons at 1310 and 710

nm

via a nonlinear up- onversion pro esswith asu essprobability greaterthan5%. Inthe eventofa su essfulqubit transfer,we observestrongtwo-photoninterferen e betweenthe 710

nm

photon anda third photon at 1550

nm

, initially entangled with the 1310

nm

photon, although they neverdire tly intera ted. The orrespondingdelityishigher than98%.

PACSnumbers:

Superposition ofquantum statesandentanglementarethefundamental resour esofquantum ommuni ationand quantuminformation pro essing[1℄. Fromanabstra t pointof view,thenatureof the arryingparti leis irrelevant sin eonlyamplitudesandrelativephasesareexploitedtoen odetheelementaryquantumbitsofinformation(qubits). Histori ally, experiments have proven many times that the fas inating properties of quantum orrelations an be observedwithpairsof photons[1℄, trappedions[12, 13,14℄, trappedatoms[15℄,or oldgases[16℄. However,themost appropriate arrierandasso iateden odingobservabledependonthespe i task. Photonshavebeenprovensuitable to transmitquantuminformation[1, 2,3, 4,5, 6, 7℄,and atomsorionsto store[17℄ andpro ess[13, 14℄ it. Photoni entanglementoften relies on polarization[4, 5, 6, 18, 19, 20℄, energy-time[2℄, or time-bin[3℄ oding. Depending on thequantum ommuni ation hannel, thewavelengthof thephotoni arrieris also important. Theuse oftele om wavelengths (1310 and 1550

nm

) is parti ularly advantageous when employing opti al bres[2, 3℄ while free spa e transmissionismostlybasedonshorterwavelengths[5,6℄.

Future realizationsofquantum networks, ontainingelementaryquantumpro essorsandmemories, onne tedby ommuni ation hannels,requirequantuminterfa es apable oftransferring qubitstatesfrom onetypeof arrierto another. Thisdemandsthereversiblemappingbetweenphotonsandatomswhi halsoin ludesthemappingbetween photonsofdierentwavelengths[9℄. However,asopposedtothereprodu tionof lassi alinformationbetweendierent media,itisnotpossibletomerelymeasurethepropertiesofagivenquantumsystemandrepli atethema ordingly, asaresultoftheno- loningtheorem[21℄. Neverthelessitispossibletoresorttoatransferofthequantuminformation basedonanintera tionthat maintainsthe oheren epropertiesoftheinitialquantumsystem.

Inthisletter,wedemonstrateadire tquantuminterfa eforphotoni qubitsatdierentwavelengths. Asillustrated ingure1,anarbitraryqubit arriedbyayingtele omphotonat 1310

nm

(

λ

B

),initiallyentangledwithaphoton at 1550

nm

(

λ

A

),is oherentlytransferredto anotherphotonat awavelength of710

nm

(

λ

B

)usingsumfrequen y generation(SFG).Thenalwavelengthis losetothat ofalkalineatomi transitions.

In the following, we rst present the theoreti al des ription of our quantum interfa e. We then re all how to reateand hara terizemaximallyenergy-timeentangledphoton-pairs. The oherentquantum informationtransfer, taking advantageof an up- onversionstage, is then introdu ed. Finally, we showhow this operationpreservesthe initial entanglement bymeasuringthe two-photoninterferen e betweenthe710and 1550

nm

photons, and thus we demonstrateauniversalqubit transfer.

(3)

oftheele tro-magneti eld inopti albers. Initially,B'isin theva uumstatedenoted

|0i

,whileAand Bmaybe entangled,withS hmidt oe ients

c

1

and

c

2

:

|Ψi

in

= c

1

1

i

A

⊗ |β

1

i

B

+ c

2

2

i

A

⊗ |β

2

i

B

 ⊗ |0i

B

(1)

Thepairsoforthogonalstates

j

i

and

j

i

,

j ∈ {1, 2}

, spanAli eandBob'squbit spa e,respe tively. Forexample,

j

i

ouldrepresentonephotonineither theverti al(j=1)orhorizontal(j=2)polarizationstate,or,asin our ase, onephotoninthe rst(j=1)or se ond (j=2)time-binstate. Thedesiredstateafter asu essful transferfrom Bto B'reads:

|Ψi

transf er

= |0i

B

⊗ c

1

1

i

A

⊗ |β

1

i

B

+ c

2

2

i

A

⊗ |β

2

i

B



(2) Su hatransferisa hievedbyanintera tiondes ribedbytheee tiveHamiltonian

H =

11

A



g

1

|0i

B

1

| ⊗ |β

1

i

B

h0| + g

2

|0i

B

2

| ⊗ |β

2

i

B

h0|



+ H.c.

(3)

where

g

1

and

g

2

are oupling onstants. The evolution aneasily be omputed (assumingan intera tion time of 1 unit):

e

−iH

|Ψi

in

= cos(|g

1

|)c

1

1

i

A

⊗ |β

1

i

B

⊗ |0i

B

− i

sin(|g

1

|)

|g

1

|

g

1

c

1

1

i

A

⊗ |0i

B

⊗ |β

1

i

B

(4)

+ cos(|g

2

|)c

2

2

i

A

⊗ |β

2

i

B

⊗ |0i

B

− i

sin(|g

2

|)

|g

2

|

g

2

c

2

2

i

A

⊗ |0i

B

⊗ |β

2

i

B

(5)

Note thatin these ond termsin (4)and(5), the oe ients

c

j

are multipliedby

g

j

. This impliesthat thetransfer preservesthequantum oheren e,i.e. isaQuantumInformation(QI)transfer,ifandonlyifthetwo oupling onstants areequal,bothinamplitudeandphase:

g

1

= g

2

≡ g

. Inotherwords,thetransfer anbea hievedwithperfe tdelity providedthis onditionissatised. Insu ha asetheevolutionsimpliesto:

e

−iH

|Ψi

in

= cos(|g|)|Ψi

in

− ig

sin(|g|)

|g|

|Ψi

transf er

(6)

Consequently,thetransferprobabilityis1for

|g| = π/2

.

Figure2presentsour2-photonsour e

S

. It onsistsofaCWpumplaserdiodewitha oheren elength

L

c

p

ex eeding 300

m

, attenuated down to a few

µW

at

λ

p

= 711.6

nm

, and of aquasi-phase mat hed periodi allypoled lithium niobatewaveguide[23,24℄(

P P LN/W 1

). Thepolingperiodis hosensoasto reatedown- onvertedpairsofphotons whose wavelengths are entered at 1312 and 1555

nm

, respe tively. After separation at a ber-opti wavelength divisionmultiplexer (WDM),the1555and1312

nm

photonsaresentto Ali eandBob,respe tively,using standard tele omopti albres.

The long oheren e length of the pump laser implies that ea h pump photon has a very well dened energy. A ordingly, thedown- onversionpro ess yields pairsof photons that are energy orrelated asgoverned byenergy onservation: ea hphotonfromapairhasanun ertainenergy,un ertainintheusualquantumsense,butthesumof theenergiesofthetwophotonsfromapairisverywelldened. Inaddition,thetwophotonsarealsotime orrelated, sin etheyareemittedsimultaneouslywithin their oheren etime. However,theemissiontimeofapairisun ertain within thepump laser oheren e. Hen e thepairedphotonsare entangled àlaEPR[25℄, energyand timerepla ing thehistori alpositionandmomentumvariables,respe tively. Morepre isely,thepro essesofphoton-pair reationat dierenttimesseparatedby

∆τ

are oherentaslongas

∆τ << L

c

p

/c

,where

L

c

p

isthepump laser's oheren elength. Theunderlyingquantum oheren eofthephoton-pairstherefore omesfromthepumplaseritself.

Inordertorevealand hara terizethe oheren e arriedbytheseenergy-timeentangledphoton-pairsweperforma Franson-typeexperiment[22℄andinferthedegreeofentanglementfromthemeasuredtwo-photoninterferen evisibility. Forthispurposethetwophotonsaresenttotwoanalyzers,oneonAli e'sandtheotheronBob'sside,that onsist,in our ase,ofunbalan edMi helsoninterferometersmadefromstandardtele ombres,ber-opti beam-splitters,and Faradaymirrors[1℄ asdepi tedin gure 2. Toprevent singlephotoninterferen e, theopti alpath lengthdieren e in ea hinterferometer (

∆L

A

and

∆L

B

, respe tively) hastobemu h greaterthan the oheren e lengthofthesingle photons,

L

c

s,i

≃ 150 µm

,dedu edfromthe15

nm

spe tralbandwidthofthedown- onvertedlight. Ea hsinglephoton thereforehasanequalprobabilityof

1

(4)

interferen e,these analyzershavetobeequallyunbalan ed,

∆L

A

≃ ∆L

B

= ∆L

,within the oheren elengthofthe singlephotons. Atthe sametime, however,sin ean entangled pair representsthequantum obje tto beanalyzed, both

∆L

(

∼ 20 cm

in our ase)havetobemu h smallerthanthe oheren elengthofthepairwhi hisgivenbythe pumplaser(

L

c

p

> 300 m

).

Attheoutputofea hinterferometer,thesinglephotonsaredete ted. Usingatime-resolved oin iden edete tion between Ali eand Bob as depi ted in gure 2, one anpost-proje tthe initial energy-time entangled stateonto a time-binentangledstateoftheform

|Ψi

post

=

1

2



|s

A

, s

B

i + e

i(φ

A

B

)

|l

A

, l

B

i



(7) where

φ

A

and

φ

B

arephasesasso iatedwiththepathlengthdieren e

∆L

A

and

∆L

B

oftherelatedinterferometers. The state (7) orrespondsto the eventswhere the down- onverted photons both travel through the samearms of theinterferometers,i.e.

s

A

, s

B

or

l

A

, l

B

,these twopossibilitiesbeingundistinguishable. Thus,varying the ombined phase(

φ

A

+ φ

B

),weobservesinusoidalinterferen efringesinthe oin iden eratewithnet(a idental oin iden es dis arded) andrawvisibilitiesof97.0

±1.1

%and87.4

±1.1

%,respe tively(seeFig. 2). Be ause almostalla idental oin iden esareduetodete tordark ounts,thepurityofthe reatedstate,andhen etheperforman eofthesour e, shouldbe hara terizedbythenetvisibility. Sin ethisgureofmeritisvery losetothe100%predi tedbyquantum theory,we on ludethatoursour eprovidesastate losetoapuremaximallyentangledstate,in parti ularsuitable toviolatetheBellinequalities[25℄. Notethatthemissing3%inthenetvisibilityismostlikelyduetothemeasurement te hniqueratherthanthestatepreparation[1℄.

Now thatwehave hara terizedour entanglementresour e,wepro eed tothe quantum information transfer,i.e. thetransferofthequbit arriedbyBob'sparti leto anotherphotonofshorter wavelength. Tothisend, werepla e theber-opti interferometerandtheGe-APDonBob'ssidebyanothernonlinearPPLNwaveguide(

P P LN/W 2

),a bulk-opti Mi helsoninterferometer,andaSili on avalan hephotodiode(Si-APD,D

B

)asdepi tedin gure3. This se ondnonlinear rystal,togetherwithapowerreservoir(PR) onsisting ofaCW oherentlaserat

λ

P R

= 1560 nm

and an erbium-doped ber amplier (EDFA), servesas an up- onversion stage for the in oming 1312

nm

photons produ edbythepreviouslydes ribedsour e

S

. Asaresultofthisoperation,whi histheoppositepro ess to down- onversion,photonsat 1312 and 1560

nm

are annihilated and photonsat 712.4

nm

are reatedon Bob'sside. The oheren eofthePRdire tlyrelatesto thephasedieren ebetweenthe oe ientsintheee tiveHamiltonian(3):

g

1

= ξ(t

l

)

and

g

2

= ξ(t

s

)

, where

ξ(t)

is proportional to the PR ele tri eld at times

t

l

and

t

s

, respe tively. The quantity

c · (t

l

− t

s

)

orrespondsto the imbalan e of theinterferometers, using thenotation of equation (7). The previousgeneral ondition

g

1

= g

2

ofequation(6)thereforetranslates,inthe aseofup- onversion,asa onstrainton thePR's oheren e:

L

P R

c

/c ≫ t

l

− t

s

. Inourexperimentthis onditionisdenitelysatisedas

L

P R

c

> 1 km

,whi his learlymu hgreater thanthe

20 cm

path lengthdieren eofBob'sanalyzer. A ordingly, theresultingphotonsat

λ

B

shouldbe omeentangled withAli ephotonsat

λ

A

,althoughtheyneverdire tlyintera ted.

ThePRdelivers700

mW

in astandardtele omber. Wemeasured,with lassi alelds, aninternalup- onversion e ien y of 80%/Watt of reservoirpowerat optimum phase-mat hing[27, 28, 29℄. Note that this valueis underes-timatedsin ethe lossesin thewaveguideitself arenegle ted. Thisup- onversione ien y de reasesby afa torof 2when hangingthe singlephoton wavelengthby

±1 nm

. Taking advantageofthe energy orrelationbetweenthe photonsofapair,weredu edthebandwidthbylteringthespe trumof thephotonsat1555

nm

travellingtoAli e to 1.5

nm

(

BP F

A

)[1℄ and in reased the powerof the sour e pump laser in order to haveareasonable photon-pair produ tionrateinthisbandwidth. Hen e,theoverallup- onversionprobabilityisonlylimitedbytheavailablepump power and oupling losses between the waveguideand single mode opti al bers at input and output fa es. From this lassi al onversione ien y,takingintoa ountthereservoirpower,arealisti 40% ouplinge ien y intothe waveguide(bothforthePRandthequbit tobetransferred)andtheratiobetweentheinitialandnalwavelengths, weestimatetheprobabilityofasu essfulQItransfertobe:

P

success

= 80% W

1

·0.7 W ·(0.4)

2

·

712 nm

1312 nm

≈ 5%

. Letus mentionthatindire tqubittransfer analsobea hievedviateleportation[26℄. However,in ontrasttoteleportation, QItransferisa hievedwithamu hhighersu essprobability.

Aftertheup- onversionstage,weneedtoseparatethe

λ

B

photonsfromthehugeowofPRphotonsat1560

nm

, about

5 · 10

9

photonsper

ns

,andmeasurethetransferdelity. Forthis,weuseabandpasslter enteredat712

nm

(

BP F

B

,

∆λ = 10 nm

,morethan30

dB

attenuationaround1550

nm

),asdepi tedingure3. Wealsotakeadvantage of thefa t that the Si-APD(

D

B

)is essentiallyinsensitiveto the1560

nm

wavelength. The 712.4

nm

photonsthen enterthetemperaturestabilizedbulk-opti Mi helsoninterferometer. Attheoutportofthis interferometertheyare oupled, for optimal mode overlap, into a single-mode bre adapted to visible light. The orresponding oupling e ien y is greater than 60%. Finally these photons are sent to the dete tor

D

B

. The ele troni signal from this

(5)

APD triggersthedete tor of the 1555

nm

photons that arriveon Ali e's side (InGaAsAPD previouslyintrodu ed andoperatedingatedmode). Finallywere ordthe oin iden eevents.

Figure 3showstheinterferen e patternof the oin iden e eventsasafun tion of the ombined phase(

φ

A

+ φ

B

) obtainedwithourtime-resolved oin iden edete tion. Weobserveasinusoidalos illationwithnetandraw visibili-tiesof 96.2

±0.4

% and86.4

±0.4

%,respe tively, representinga learsignatureof thepreserved oheren e duringthe quantuminformation transfer. Thenetvisibility

V

net

is againvery loseto the100%predi tedbyquantumtheory. Assumingthattheentireredu tionofthisvisibility anbeattributedtoanimperfe tquantumstatetransfer,wend adelity

F =

1 + V

net

2

of98.5%. Notehoweverthat thisestimationisvery onservativesin ethevisibilityobserved beforetransfer(seegure2)ishardlyhigher.

Notethatthequantuminterfa edemonstratedinthisletterisnotlimitedtothespe i wavelengths hosen.Indeed, suitablemodi ationsofphase-mat hing onditionsandpumpwavelengthsenabletuningtoanydesiredwavelengths. Inparti ularitallowsmappingoftele ommuni ationphotoni qubitsontoqubitsen odedatawavelength orrespond-ing toalkalineatomi transitions. It isparti ularly interestingto takeadvantageof periodi ally poledwaveguiding stru tures, asemployed here. Firstly, phase mat hing onditions aneasily be tuned overabroadrange by hang-ing thegratingperiod. Se ondly, these omponentsyield veryhigh upand down- onversione ien ies[23, 24, 27℄. This permits the use of a modest reservoir power to a hieve a reasonable qubit transfer probability. In the ase ofappli ations requiringverynarrowphotonbandwidths, forinstan ewhen transferring quantum informationonto atoms[9℄, bright down- onverters make very narrow spe tral ltering possible while maintaining high photon-pair reationrateswith reasonablepump powers. Inaddition, thenarrowlteringensures optimalphase-mat hingover thewholebandwidthofthephotonstobeup- onverted,hen emaximizingthispro ess.

Inthisworkwedemonstrated,inthemostgeneralway,therstdire tquantuminformationinterfa ebetweenqubits arriedbyphotonsofwidelydierentwavelengths. Tothisend,weveriedthatentanglementremainsunae ted,even thoughoneofthetwoentangledphotonsissubmittedtoawavelengthup- onversionpro ess. Thisinterfa emaynd appli ations inquantum networks,where mappingoftravellingqubits, e.g. qubits en oded onto tele ommuni ation photons,andstationaryatomi qubitsfeaturingresonan eatmu hshorterwavelengths,isne essary.

WethankD.B. Ostrowskyforvaluabledis ussions.

Finan ialsupportsbytheSwissNationalCenterforQuantumPhotoni sandtheEuropeanIST proje tRamboQare a knowledged.

S.T.a knowledgesnan ialsupportfromtheEuropeanS ien eFoundationprogram"QuantumInformationTheory andQuantum Computation".

Theauthorsde larethattheyhaveno ompetingnan ialinterests. Corresponden e andrequestsformaterialsshouldbeaddressedtoS.T.

(6)

Ele troni address: sebastien.tanzilliphysi s.unige. h

[1℄ Tittel,W.&Weihs,G., Photoni entanglementforfundamentaltestsandquantum ommmuni ation,Quantum Informa-tionandComputation1,3-56(2001)

[2℄ Tittel,W.,Brendel,J.,Zbinden,H.&Gisin, N.,ViolationofBell inequalitiesbyphotonsmorethan10kmapart,Phys. Rev.Lett.81,3563-3566(1998).

[3℄ Mar iki ,I.,DeRiedmatten,H.,Tittel,W.,Zbinden,H.,Legré,M.&Gisin,N.,Distributionoftime-binentangledqubits over50kmofopti alber,Phys.Rev.Lett.93,180502(2004).

[4℄ Weihs,G.,Jennewein,T., Simon,C., Weinfurter,H.,&Zeilinger,A.,Violation ofBell'sinequalityunderstri tEinstein lo ality onditions,Phys.Rev.Lett.81,5039-5043(1998).

[5℄ Res h,K.J.,Lindenthal,M.,Blauensteiner,B.,Böhm,H.R.,Fedrizzi,A.,Kurtsiefer,C., Poppe,A.,S hmitt-Manderba h, T., Taraba, M., Ursin,R.,Walther, P.,Weier, H., Weinfurter,H. &Zeilinger,A., Distributingentanglement andsingle photonsthroughanintra- ity,free-spa equantum hannel,Opt.Express13,202-209(2005).

[6℄ Peng,C.-Z.,Yang,T.-Y.,Bao,X.-H.,Jun-Zhang,Jin, X.-M.,Feng,F.-Y.,Yang,B.,Yang,J.,Yin,J.,Zhang, Q.,Li,N., Tian,B.&Pan,J.-W.,Experimentalfree-spa edistributionofentangledphotonpairsoveranoisygroundatmosphereof 13km,Phys.Rev.Lett.94,150501(2005).

[7℄ Gisin,N.,Ribordy,G.,Tittel,W.&Zbinden,H.,Quantum ryptography,Rev.Mod.Phys.74,145-195(2002).

[8℄ Blinov, B.B., Moehring, D.L.,Duan,L.-M. &Monroe, C., Observationof entanglement betweena singletrapped atom andasinglephoton,Nature428,153-157(2004).

[9℄ Lloyd,S.,Shahriar,M.S.,Shapiro,J.H.&Hemmer,P.R.,Longdistan e,un onditionalteleportation ofatomi statesvia ompleteBellstatemeasurements,Phys.Rev.Lett.87,167903(2001).

[10℄ Huang,J.&Kumar,P.,Observationofquantumfrequen y onversion,Phys.Rev.Lett.68,2153-2156 (1992).

[11℄ Mataloni,P.,Giorgi, G.& DeMartini, F., Frequen yhopping inquantuminterferometry, Forts hr.Phys.51, 435-441 (2003).

[12℄ Rowe,M.A.,Kielpinski,D.,Meyer,V.,Sa kett,C.A.,Itano,W.M.,Monroe,C.&Wineland,D.J.,Experimentalviolation ofaBell'sinequalitywithe ientdete tion,Nature(London)409,791-794(2001).

[13℄ S hmidt-Kaler,F.,Häner,H.,Riebe,M.,Gulde,S.,Lan aster,G.P.T.,Deus hle,T.,Be her,C.,Roos,C.F.,Es hner,J. &Blatt,R.,RealizationoftheCira -Zoller ontrolled-NOTquantumgate,Nature(London)422,408-411(2003). [14℄ Leibfried, D., DeMar o, B., Meyer, V., Lu as, D., Barett, M., Britton, J., Itano, W.M., Jelenkovi¢, B., Langer, C.,

Rosenband,T. &Wineland, D.J., Experimental demonstrationof a robust, high-delity geometri two ion-qubitphase gate,Nature(London)422,412-415(2003).

[15℄ Mandel,O., Greiner,M., Widera,A.,Rom,T., Häns h,T.W.&Blo h,I.,Controlled ollisions formulti-parti le entan-glementofopti allytrappedatoms,Nature(London)425,937-940(2003).

[16℄ Julsgaard, B., Kozhekin, A. & Polzik, E.S., Experimental long-lived entanglement of two ma ros opi obje ts, Nature (London)413,400-403(2001).

[17℄ Julsgaard, B.,Sherson, J.,Cira ,J.I., Fiurásek, J.&Polzik, E.S., Experimentaldemonstrationof quantummemoryfor light,Nature(London)432,482-486(2004).

[18℄ Aspe t, A., Grangier, P.& Roger, G., Experimentaltest of Einstein-Podolski-Rosen-Bohmgedankenexperiment: anew violationofBell'sinequalities,Phys.Rev.Lett.49,91-94(1982).

[19℄ Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I. & Eberhard, P.H., Ultrabright sour e of polarization-entangled photons,Phys.Rev.A60,R773-R776(1999).

[20℄ Kuklewi z,C.E., Fiorentino, M., Messin, G., Wong, F.N.C.& Shapiro,J.H., High-ux sour eof polarization-entangled photonsfromaperiodi allypoledKTiOPO

4

parametri down- onverter,Phys.Rev.A69,013807(2004).

[21℄ Wootters,W.K.&Zurek,W.H.,Asinglequantum annotbe loned,Nature(London)299,802-803(1982). [22℄ Franson,J.D.,Bellinequalityforpositionandtime,Phys.Rev.Lett.62,2205 (1989).

[23℄ Tanzilli,S., Tittel,W.,DeRiedmatten,H.,Zbinden,H.,Baldi,P.,DeMi heli, M.,Ostrowsky,D.B.&Gisin,N.,PPLN waveguideforquamtum ommuni ation,Eur.Phys.J.D18,155-160(2002).

[24℄ BanaszekK.,U'Ren,A.B.&Walmsley,I.A.,Generationof orrelatedphotonsin ontrolledspatialmodesby down onver-sioninnonlinearwaveguides,Opt.Lett.26,1367-1369(2001).

[25℄ Aspe t,A.,Bell'sinequalitytest: moreidealthanever,Nature(London)398,189-190(1999).

[26℄ Mar iki ,I.,DeRiedmatten,H.,Tittel,W.,Zbinden,H.&Gisin,N.,Long-distan eteleportationofqubitsat tele ommu-ni ationwavelengths,Nature(London)421,509-513(2003).

[27℄ Roussev, R.V., Langro k, C., Kurz, J.R. & Fejer, M.M., Periodi ally poled lithium niobate waveguide sum-frequen y generatorfore ientsingle-photondete tionat ommuni ationwavelengths,Opt.Lett.29,1518-1520(2004).

[28℄ Albota,M.A.&Wong,F.N.C.,E ientsingle-photon ountingat1.55

µm

bymeansoffrequen yup onversionOpt.Lett. 29,1449-1451(2004).

[29℄ Vandevender,A.P.&Kwiat,P.J., Highe ien ysinglephotondete tionviafrequen yup- onversion,J.Mod.Opt.51, 1433-1445(2004).

(7)

Q-Interface

(c

(2)

- SFG)

power reservoir

photon-pair source

(CW laser +

c

(2)

- SPDC)

Final entanglement tested

with 2 interferometers

l

A

l

B

l

A

l

B’

l

PR

Alice

quantum channels

Bob

FIG.1: S hemati illustration ofthe experiment on ept. First,aphoton-pairsour eprodu es,by spontaneous parametri down- onversion(SPDC),energy-timeentangledphotonsatwavelengths

λ

A

and

λ

B

thataresenttoAli eandBob,respe tively. Next,thequbittransferisperformedatBob'spla efromphoton

λ

B

tophoton

λ

B

usingsumfrequen ygeneration(SFG).The nalentanglementbetweenthenewly reatedphoton

λ

B

andAli e's photon

λ

A

istestedusingtheFranson onguration[22℄ (seegure2).

0

50000

100000

150000

200000

250000

300000

350000

400000

170

171

172

173

174

175

delay between start and stop (ns)

n

u

m

b

e

r

o

f

c

o

in

c

id

e

n

c

e

s

/5

s

Legend

free space

sm fibre

lenses

electronics

PPLN/W1

lp=

711.6 nm

Pump CW

Laser

WDM

SPDC

TDC

HPF

D

B

f

A

D

A

FM

DF

ISO

L

L

L

Alice

1555 nm

1312 nm

coincidences

InGaAs-APD

Ge-APD

DLA

S

s /l

A

B

l /s

A

B

s /s

+ l /l

A

B

A

B

start

stop

elec.delay

FM

fiber interf.

100

150

200

0

100

200

300

400

500

n

u

m

b

e

r

o

f

c

o

in

c

id

e

n

c

e

/5

s

f

A

+f

B

R

C

time-window

f

B

FM

Bob

DLB

FM

fiber interf.

f +

A

f

B

(mod 2 )

p

p

0

2p

3p

-p

FIG.2: ExperimentalFranson-typesetup usedforthe reationandanalysisofenergy-timeentangledpairsofphotons. Ali e andBob'sanalyzersare equallyunbalan edMi helsoninterferometers.

Thesour eis omposedofaCWlaser(Topti aPhotoni s DL100),anonlinearPPLNwaveguide,aWDM andsuitableber ouplinglenses. Italsoin ludesahigh-passwavelengthlter(

HP F

)behindthe rystaltodis ardtheremainingpumpphotons, andlenses(

L

)to ouplethe reatedphotonsintoasinglemodebre. Thedown- onversionquasi-phasemat hingisobtained withaspe i polingperiod

Λ

of14.1

µm

andatatemperatureof85

o

C

. This1

cm

longwaveguidefeaturesadown- onversion e ien ygreaterthan10

−7

. AtBob'spla etheGe-APD(NEC,

D

B

)isliquidNitrogen ooledandpassivelyquen hed,whilethe InGaAs-APD(idQuantiqueid200,

D

A

)atAli e'sisoperatedingatedmode. TheAPDsshowquantumdete tione ien ies ofabout10%and14%andprobabilitiesofdark ountsofaround

3

· 10

−5

and

10

−5

pernanose ond,respe tively.

TheoutputsfromtheseAPDsprovidethestartandstopsignalsforatime-to-digital onverter(TDC)thatre ordsa oin iden e histogram(lefthandside)asafun tionofthetimedieren ebetweenitstwoinputs. Thispi tureis omposedofthreedierent peakswhi harisefromdierent ombinationsofphotontransmissionstroughtheir respe tiveinterferometer,eithertheshort (

s

)orthelong(

l

)arm.Theeventswherebothphotonstakethesamearms(

s

A

/s

B

and

l

A

/l

B

)areindistinguishableasdes ribed byequation(7),leadingtophoton-pairinterferen e. They anbedis riminatedfromtheotherpossibilities(

l

A

/s

B

and

s

A

/l

B

) bymeansofatime-resolved oin iden edete tion. The orresponding oin iden e ountrate

R

C

asafun tionofthe ombined phase(

φ

A

+

φ

B

) isshownintheright handinset. Wendsinusoidalinterferen efringeswithmore than97%net visibility. Notenallythatthevariationofthe ombinedphaseisobtainedby hangingthetemperatureinBob's interferometer.

(8)

TDC

D

B

f

A

D

A

FM

Alice

1555 nm

1312 nm

coincidences

InGaAs-APD

Si-APD

DL

A

start

stop

elec.delay

S

712.4 nm

PPLN/W2

WDM

f

B

SFG

bulk interf.

Quantum Interface

Bob

DLB

M

M

BPF

B

BPF

A

FM

l

PR

=1560 nm

Power Res.

CW laser

EDFA

fiber interf.

200

300

0

100

200

300

400

500

600

700

800

n

u

m

b

e

r

o

f

co

in

ci

d

e

n

ce

s

/1

0

0

s

f

A

+ f

B

R

C

p

0

2p

3p

4p

5p

6p

7p

f +

A

f

B

(mod 2 )

p

FIG.3: Experimental setup for the oherent transfer of quantumentanglement. OnBob's side, PPLN/W2, pumpedbya high- oheren eCW700

mW

powerreservoirat1560

nm

(laser8168AfromHP+EDFAfromKeopsys),ensuresthetransferof thequbitfrom1312to712.4

nm

viatheup- onversionpro ess. Thisse ond1

cm

longPPLNwaveguideisofthesamekindas theoneusedfor thedown- onversion. Theywerebothfabri atedusingthe te hniqueofsoftprotonex hange[23 ℄andfeature almostidenti alphase-mat hing onditions. Both1312 and1560

nm

wavelengthsare mixedatase ondWDMwhoseoutput portisdire tlybutt- oupledto theinput fa eof PPLN/W2withoutanyadditional opti s. At theoutputofthe waveguide, thenewly reatedphotonsat712.4

nm

are oupledintoasinglemodeberanddete tedusingaSili onavalan hephotodiode (EG&GAQ-141-FC,

D

B

).

The oheren eofthetransferisveriedbymeasuringphoton-pairinterferen ebetweenthe712.4and1555

nm

photonsinthe Franson onguration. TheanalysisonBob'ssideutilizesanunbalan ed,bulk-opti interferometerthatisalignedwithrespe t toAli e's. Althoughthe oin iden erateissubstantiallyredu edduetoalimitedup- onversionprobability andlossesinthe interferometers, theanalysis ofthe oin iden eeventsyieldsinterferen e fringeswithnet andrawvisibilities of 96and 86%, respe tively.This onrmsthepreviouslyobtainedresultwithoutthequantuminterfa eanddemonstrates,inthemostgeneral way, oherenttransfer ofquantuminformationbetweentwophotons.

Figure

FIG. 2: Experimental Franson-type setup used for the reation and analysis of energy-time entangled pairs of photons
FIG. 3: Experimental setup for the oherent transfer of quantum entanglement. On Bob's side, PPLN/W2, pumped by a

Références

Documents relatifs

Following the literature review and consultations with the Perinatal Program of Eastern Health and Baby-Friendly Newfoundland and Labrador, a questionnaire was developed to

Consequently, we try the upwind diffusive scheme associated to (1) and (7), and explain how we can obtain a good numerical approximation of the duality solution to the

We prove that there exists an equivalence of categories of coherent D-modules when you consider the arithmetic D-modules introduced by Berthelot on a projective smooth formal scheme X

Catholic voters who were more fearful of a loss of denominational rights through education reform were more likely to vote &#34;No&#34; in both referendums.. Catholic voters who

During this 1906 visit, Rinpoche’s father met the 8 th Khachoed Rinpoche, Drupwang Lungtok Tenzin Palzangpo of Khachoedpalri monastery in West Sikkim, and from

In this exercise sheet, we work out some of the details in the proof of the Poincar´ e Duality Theorem..

4 Next, in the first chapter, we respond directly to the devil’s advocate, by experimentally testing whether a constrained set of evidence (i.e., a handful of known words and

From our point of view, this shows first that spacetime emergence could, in principle, be more radical than what we actually find in current approaches to QG, and second that