• Aucun résultat trouvé

High-order DG-SE approximations of elastodynamic wave problems with stable Perfectly Matched Layers

N/A
N/A
Protected

Academic year: 2021

Partager "High-order DG-SE approximations of elastodynamic wave problems with stable Perfectly Matched Layers"

Copied!
69
0
0

Texte intégral

(1)

HAL Id: hal-02425960

https://hal.inria.fr/hal-02425960

Submitted on 7 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High-order DG-SE approximations of elastodynamic wave problems with stable Perfectly Matched Layers

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout

To cite this version:

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout. High-order DG-SE

approximations of elastodynamic wave problems with stable Perfectly Matched Layers. MATHIAS

2019, Oct 2019, Serris, France. �hal-02425960�

(2)

High-order DG-SE approximations of elsatodynamic wave problems with stable Perfectly Matched Layers

H´el`ene Barucq1, Henri Calandra2, Aur´elien Citrain3,1, Julien Diaz1and Christian Gout3

1 Team project Magique.3D, INRIA, E2S UPPA, CNRS, Pau, France.

2 TOTAL SA, CSTJF, Pau, France.

3 LMI, Normandie Universit´e, INSA ROUEN, 76000 Rouen, France.

Mathias 2019

The authors thank the M2NUM project which is co-financed by the European Union with the European regional development fund (ERDF, HN0002137) and by the Normandie Regional Council.

This work is dedicated to the memory of Dimitri Komatitsch.

(3)

Seismic imaging

(4)

Why using hybrid meshes?

Useful when the use of unstructured grid is non-sense (e.g. medium with a layer of water).

Well suited for the coupling of numerical methods in order to reduce the computational cost and improve the accuracy.

(5)

Why using hybrid meshes?

water

water sand

salt

sandstone

Useful when the use of unstructured grid is non-sense (e.g. medium with a layer of water).

Well suited for the coupling of numerical methods in order to reduce the computational cost and improve the accuracy.

(6)

Elastodynamic system

x∈Ω⊂Rd,t∈[0,T],T>0 :







 ρ(x)∂v

∂t(x,t) =∇ ·σ(x,t),

∂σ

∂t(x,t) =C(x)(v(x,t)).

With:

ρ(x) the density,

C(x) the elasticity tensor, (x,t) the deformation tensor, v(x,t), the wavespeed, σ(x,t) the strain tensor.

(7)

Elasticus software

Software written inFortranfor wave propagation simulation in thetime domain

Features

Simulation:

on various types of meshes (unstructured triangles and tetrahedra), onheterogeneousmedia (acoustic, elastic and elasto-acoustic).

Discontinuous Galerkin(DG) based onunstructured triangles and unstructured tetrahedra, with various time-schemes :Runge-Kutta (2 or 4), Leap-Frog,

withmulti-ordercomputation(p-adaptivity)...

(8)

Table of contents

1 DGm and SEm

2 DG/SEM coupling

3 Perfectly Matched Layer(PML)

(9)

Discontinuous Galerkin Method

Use discontinuous functions :

Degrees of freedom necessary on each cell :

(10)

Spectral Element Method

General principle

Finite Element Method (FEM) discretization + Gauss-Lobatto quadrature,

Gauss-Lobatto points as degrees of freedom (gives us exponential convergence onL2-norm).

Z

f(x)dx≈

N+1

X

j=1

ωjf(ξj), ϕij) =δij.

(11)

Advantages of each method

DG

Element per element computation (hp-adaptivity).

Time discretization quasi explicit (block diagonal mass matrix).

Simple to parallelize.

Robust to brutal changes of physics and geometry

SEM

Couples the flexibility of FEM with the accuracy of the pseudo-spectral method.

Simplifies the mass and stiffness matrices (mass matrix diagonal).

(12)

Hybrid meshes structures

Aim at couplingPk andQk structures.

Need to extend or split some structures (e.g. neighbour indices).

Define new face matrices:

MijK,L= Z

K∩L

φKi φLj, MijK,L= Z

K∩L

ψiKψjL, MijK,L= Z

K∩L

φKi ψjL.

(13)

Variational formulation

Global context

Domain in two parts : Ωh,1(structured quadrangles + SEM), Ωh,2(unstructured triangles + DG).

(14)

Variational formulation

Γint

K1

K2

Fluxes

Definitions

Jump and average.

[[u]] = (uK1nK1+uK2nK2)

{{u}}=1

2(uK2+uK1)

(15)

Variational formulation

SEM variational formulation :









 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1:∇w1+ Z

Γout,1

1n1)·w1,

Z

h,1

tσ11= Z

h,1

(Cξ1) :∇v1.

DG variational formulation :









 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2:∇w2+ Z

Γout,2

2n2)·w2+ Z

Γint

{{σ2}}: [[w2]],

Z

h,2

tσ22=−

Z

h,2

(∇ ·(Cξ2))·v2+ Z

Γout,2

(Cξ2n2)·v2+ Z

Γint

{{v2}} ·[[Cξ2]].

(16)

Variational formulation































































 Z

h,1

ρ∂tv1·w1+ Z

h,2

ρ∂tv2·w2=− Z

h,1

σ1:∇w1− Z

h,2

σ2:∇w2

+ Z

Γout,1

1n1)·w1+ Z

Γout,2

2n2)·w2+ Z

Γint

{{σ2}}: [[w2]]

+ Z

Γ1/2

[[σw]],

Z

h,1

tσ11+ Z

h,2

tσ22= Z

h,1

(Cξ1) :∇v1− Z

h,2

(∇ ·(Cξ2))·v2

+ Z

Γout,2

(Cξ2n2)·v2+ Z

Γint

{{v2}} ·[[Cξ2]]

+ Z

Γ1/2

[[(Cξ)v]].

(17)

Variational formulation































































 Z

h,1

ρ∂tv1·w1+ Z

h,2

ρ∂tv2·w2=− Z

h,1

σ1:∇w1− Z

h,2

σ2:∇w2

+ Z

Γout,1

1n1)·w1+ Z

Γout,2

2n2)·w2+ Z

Γint

{{σ2}}: [[w2]]

+ Z

Γ1/2

{{σ}}: [[w]] + [[σ]]· {{w}},

Z

h,1

tσ11+ Z

h,2

tσ22= Z

h,1

(Cξ1) :∇v1− Z

h,2

(∇ ·(Cξ2))·v2

+ Z

Γout,2

(Cξ2n2)·v2+ Z

Γint

{{v2}} ·[[Cξ2]]

+ Z

Γ1/2

{{v}} ·[[Cξ]] +{{Cξ}}: [[v]].

(18)

Variational formulation































































 Z

h,1

ρ∂tv1·w1+ Z

h,2

ρ∂tv2·w2=− Z

h,1

σ1:∇w1− Z

h,2

σ2:∇w2

+ Z

Γout,1

1n1)·w1+ Z

Γout,2

2n2)·w2+ Z

Γint

{{σ2}}: [[w2]]

+ Z

Γ1/2

{{σ}}: [[w]]

((

+[[σ]]

((

· {{w}},

( (

Z

h,1

tσ11+ Z

h,2

tσ22= Z

h,1

(Cξ1) :∇v1− Z

h,2

(∇ ·(Cξ2))·v2

+ Z

Γout,2

(Cξ2n2)·v2+ Z

Γint

{{v2}} ·[[Cξ2]]

+ Z

Γ1/2

{{v}} ·[[Cξ]]

((

+{{Cξ}}

((

: [[v]].

((

(19)
(20)
(21)
(22)
(23)
(24)
(25)

What is a PML and why using it?

(26)

What is a PML and why using it?

(27)

What is a PML and why using it?

Easy to implement

Not really adapted to the simulation of ”infinite” domain

(28)

What is a PML and why using it?

Easy to implement

Not really adapted to the simulation of ”infinite” domain

(29)

What is a PML and why using it?

Easy to implement

Not really adapted to the simulation of ”infinite” domain

(30)

What is a PML and why using it?

(31)

What is a PML and why using it?

(32)

What is a PML and why using it?

Possibility to simulate an infinite domain

Complicated to implement when the order of the condition increase

(33)

What is a PML and why using it?

Possibility to simulate an infinite domain

Complicated to implement when the order of the condition increase

(34)

What is a PML and why using it?

Possibility to simulate an infinite domain

Complicated to implement when the order of the condition increase

(35)

What is a PML and why using it?

Possibility to simulate an infinite domain

Complicated to implement when the order of the condition increase Apparition of reflection when it comes to waves with grazing incidence

(36)

What is a PML and why using it?

(37)

What is a PML and why using it?

Possibility to simulate an infinite domain

(38)

What is a PML and why using it?

Possibility to simulate an infinite domain

(39)

What is a PML and why using it?

Possibility to simulate an infinite domain

(40)

What is a PML and why using it?

Possibility to simulate an infinite domain

Some stability problems on elastic case using DGM

(41)

Classic PML formulation

Step 1: Rewrite the system in the frequency domain





iωρv=∇ ·σ

iωσ=C:∇v

Step 2: Introduce a new system of complex coordinates Definedz the damping :

(dz>0 if z∈ΩPML

dz= 0 if z∈/ΩPML

(42)

Classic PML formulation

Step 1: Rewrite the system in the frequency domain





iωρv=∇ ·σ

iωσ=C:∇v

Step 2: Introduce a new system of complex coordinates Definedz the damping :

(dz>0 if z∈ΩPML

dz= 0 if z∈/ΩPML

(43)

Classic PML formulation

Step 2: Introduce a new system of complex coordinates Definedz the damping :

(dz>0 if z∈ΩPML

dz= 0 if z∈/ΩPML

˜

z(z) =z− i ω

Z z 0

dz(s)ds

Define the associate differential operator :

˜z= iω iω+dz

z= 1− dz

iω+dz

z

(44)

Classic PML formulation

Step 2: Introduce a new system of complex coordinates Definedz the damping :

(dz>0 if z∈ΩPML

dz= 0 if z∈/ΩPML

˜

z(z) =z− i ω

Zz 0

dz(s)ds

Define the associate differential operator :

˜z= iω iω+dz

z= 1− dz

iω+dz

z

(45)

Classic PML formulation

Step 2: Introduce a new system of complex coordinates Definedz the damping :

(dz>0 if z∈ΩPML

dz= 0 if z∈/ΩPML

˜

z(z) =z− i ω

Zz 0

dz(s)ds

Define the associate differential operator :

˜z= iω iω+dz

z= 1− dz

iω+dz

z

(46)

Classic PML formulation

Step 3: Rewrite the system

iωρvx = ∂xσxx+∂˜zσxz, iωρvz = ∂xσxz+∂˜zσzz, iωσxx = (λ+ 2µ)∂xvx+λ∂z˜vz, iωσzz = λ∂xvx+ (λ+ 2µ)∂z˜vz, iωσxz = µ(∂xvz+∂˜zvx).

(47)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(48)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(49)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates

iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(50)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(51)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain

ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(52)

ADE-PML (Auxiliary Differential Equation)

Martin, Roland and Komatitsch, Dimitri and Gedney, Stephen D and Bruthiaux, Emilien and others

A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)

Computer Modeling in Engineering and Sciences (CMES),2010

Introduction of 2d+ 1 new variablesψ?∈H1→Simplify the implementation BUT add new equation to the linear system

iωρvz =∂xσxz+∂˜zσzz

↓ Back to original coordinates iωρvz=∂xσxz+∂zσzz− dz

dz+iω∂zσzz

↓ Back to time domain ρ∂tvx =∂xσxz+∂zσzz− dz

dz+∂t

zσzz

(53)

ADE-PML (Auxiliary Differential Equation)

Definition of the memory variableψσzz:

ψσzz =− dz

dz+∂t

zσzz

ρ∂tvz=∂xσxz+∂zσzzσzz

tψσzz=−dzzσzz−dzψσzz

ADE with C-PML (Convolutional PML)

˜z=

1− dz

αz+iω+dz

z

tψσzz =−dzzσzz−(dzzσzz

(54)

ADE-PML (Auxiliary Differential Equation)

Definition of the memory variableψσzz:

ψσzz =− dz

dz+∂t

zσzz

ρ∂tvz=∂xσxz+∂zσzzσzz

tψσzz=−dzzσzz−dzψσzz

ADE with C-PML (Convolutional PML)

˜z=

1− dz

αz+iω+dz

z

tψσzz =−dzzσzz−(dzzσzz

(55)

ADE-PML (Auxiliary Differential Equation)

Definition of the memory variableψσzz:

ψσzz =− dz

dz+∂t

zσzz

ρ∂tvz=∂xσxz+∂zσzzσzz

tψσzz=−dzzσzz−dzψσzz

ADE with C-PML (Convolutional PML)

˜z=

1− dz

αz+iω+dz

z

tψσzz =−dzzσzz−(dzzσzz

(56)

ADE-PML (Auxiliary Differential Equation)

Definition of the memory variableψσzz:

ψσzz =− dz

dz+∂t

zσzz

ρ∂tvz=∂xσxz+∂zσzzσzz

tψσzz=−dzzσzz−dzψσzz

ADE with C-PML (Convolutional PML)

˜z=

1− dz

αz+iω+dz

z

tψσzz =−dzzσzz−(dzzσzz

(57)

ADE-PML (Auxiliary Differential Equation)

Definition of the memory variableψσzz:

ψσzz =− dz

dz+∂t

zσzz

ρ∂tvz=∂xσxz+∂zσzzσzz

tψσzz=−dzzσzz−dzψσzz

ADE with C-PML (Convolutional PML)

˜z=

1− dz

αz+iω+dz

z

tψσzz =−dzzσzz−(dzzσzz

(58)

DG and DGSEM comparison

(a) t=1.5s (b) t=1.5s

(59)

DG and DGSEM comparison

(c) t=3s (d) t=3s

(60)

DG and DGSEM comparison

(e) t=5s (f) t=5s

(61)

DG and DGSEM comparison

(g) t=8s (h) t=8s

(62)

DG and DGSEM comparison

(i) t=10s (j) t=10s

(63)

Salt dome surround by SEM-PML

(64)

Salt dome surround by SEM-PML

(65)

Salt dome surround by SEM-PML

(66)

Salt dome surround by SEM-PML

(67)

Salt dome surround by SEM-PML

(68)

Conclusion and perspectives

Conclusion

1 SEM is more efficient on structured quadrangle mesh than DG

2 Build a variational formulation for DG/SEM coupling and find a CFL condition that ensures stability

3 Show the utility of using hybrid meshes and method coupling (reduce computational cost,...)

Achievements

Implement DG/SEM coupling on the code (2D)X Develop DG/SEM coupling in 3DX

Develop PML in the hexahedral partX

(69)

Thank you for your attention !

Questions?

Références

Documents relatifs

The proposed measurement models support the analysis of six process flows within a manufacturing enterprise including activity flow, information flow, resource flow, cost flow,

The particle flux from FPPRF was also used to determine the counting rates which the analyzer detectors would show by taking into account the stripping

Erica Lehrer, Canada Research Chair in Post-Conflict Memory, Ethnography & Museology, offers specialty courses involving digital representation including “Curating

While having a link to the AHA register on the CHA website is certainly a good idea in the meantime (and even when the CHA register is updated), the students overwhelmingly

En  effet,  ces  acteurs  clés  permettent  d’intégrer  la  normativité  traditionnelle  et 

Présidé par M c Anton Cottier - une personnalité qui pourrait bien être appelée en qualité de président de la Ligue suisse du hockey sur glace en juin prochain - le

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE

The strength and extent of the bond between masonry units and mortar depends on several factors, two of the most important being the rate of water absorption or suction of