• Aucun résultat trouvé

ON THE MICROSTRUCTURE OF PLASMA-SPRAYED CHROMIUM OXIDE

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE MICROSTRUCTURE OF PLASMA-SPRAYED CHROMIUM OXIDE"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225553

https://hal.archives-ouvertes.fr/jpa-00225553

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE MICROSTRUCTURE OF

PLASMA-SPRAYED CHROMIUM OXIDE

L. Hermansson, L. Eklund, L. Askengren, R. Carlsson

To cite this version:

L. Hermansson, L. Eklund, L. Askengren, R. Carlsson. ON THE MICROSTRUCTURE OF PLASMA- SPRAYED CHROMIUM OXIDE. Journal de Physique Colloques, 1986, 47 (C1), pp.C1-165-C1-169.

�10.1051/jphyscol:1986124�. �jpa-00225553�

(2)

JOURNAL DE PHYSIQUE

Colloque Cl, supplément au n°2, Tome 47, février 1986 page cl-165

ON THE MICROSTRUCTURE OF PLASMA-SPRAYED CHROMIUM OXIDE

L. HERMANSSON, L. EKLUND, L. ASKENGREN* and R. CARLSSON

Swedish Institute for Silicate Research, Box 5403, S-402 29 Gothenburg, Sweden

*IVF, MdlndalsvSgen 85, S-412 85, Gothenburg, Sweden

Résumé - On a étudié l'effet des variations des paramètres du procédé sur la microstructure des revêtements de Cr„0 . Ces variations, ainsi que les paramètres des poudres affectent curieusement très peu la microstructure.

On postule que la décomposition de Cr„0, qui semble inévitable eu égard aux hautes températures du procédé, est le facteur qui contrôle l'évolu- tion de la microstructure.

Abstract - The effect of variations in process parameters on the microstruc- ture of chromium oxide coatings was studied. Changes in process parameters and powder parameters affect the microstructure to a surprisingly small extent. It is postulated that decomposition of Cr„0 - which seems, inevit- able due to the high temperature process - is the factor that controls the microstructure development.

I - INTRODUCTION

Erosion is causing society enormous costs due to material losses.To reduce this spoilage, materials are often covered with erosion resistant layers. These may be applied by using techniques such as chemical vapour deposition and plasma or flame spraying. A complete replacement of metallic materials by polymers or ceramics may be preferable in some situations.

Plasma-spraying is being used for application of several oxide materials on metals.

Examples are alumina, titania, zirconia and chromia. The latter oxide is very inte- resting due to its relatively high hardness and high melting temperature. An impor- tant application for plasma-sprayed chromium oxide coatings is in pump components for improved surface fittings.

In order to optimize the process conditions for plasma spraying of chromium oxide layers on stainless steel, a study was undertaken to investigate the relationship between the process parameters selected, the microstructure developed and erosion properties achieved /T/. Surprisingly, very small effects of the process parameters variation on the resulting microstructure were found. Thus considerable changes in spray distance, electrode condition, plasma gas and power as well as powder quality and layer thickness influenced the microstructure to an extremely small extent.

Chromium oxide layers from different process conditions are very similar and charac- terised by populations of large and small cracks and some limited porosity. This paper will discuss in detail the development of this characteristic microstructure of plasma-sprayed chromium oxide.

(1) Now with ASEA CERAMA AB, S-915 00 Robertsfors

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986124

(3)

JOURNAL DE PHYSIQUE

I 1 - EXPERIMENTAL

The b a s i c m a t e r i a l i n t h i s s t u d y was chromium o x i d e powders from METCO C o r p o r a t i o n . Major a d d i t i v e s i n t h e powders 1 3 6 F and 136 CP a r e s i l i c o n d i o x i d e and t i t a n i u m d i o x i d e . F o r c o m p a r i s o n powder 1 0 6 w i t h no a d d i t i v e s was a l s o u s e d . C h a r a c t e r i s - t i c s o f t h e s e o r i g i n a l powders a r e shown i n t a b l e 1 . I n a d d i t i o n t o t h e s e p o w d e r s , g r a i n - s i z e c l a s s i f i e d p o w d e r s ,

>

3 8 pm o r

<

3 8 )urn were a l s o plasma-sprayed.

T a b l e 1 : S e l e c t e d p r o p e r t i e s o f chromium o x i d e p o w d e r s

Powder P a r t i c l e s i z e d i s t r i b u t i o n (w/o) A d d i t i v e s (w/o)

>

9 0 pm

>

6 3 p m

>

4 5 pm

>

3 8 pm

>

20 p m S i 0 2 T i 0 2

1 3 6 F < l 3 1 6 4 0 8 5 4 . 4 2 . 4

1 3 6 C P < 2 28 6 0 70 9 4 5 . 0 2 . 8

1 0 6

<

2 3 7 4 9 6 0 n d 0.2 -

The p l a s m a s p r a y i n g was p e r f o r m e d u s i n g a n e q u i p m e n t METCO 7 MB. The p r o c e s s p a r a - m e t e r c h a n g e s u s e d a r e summarized i n t a b l e 2. P r e t r e a t m e n t o f t h e s t e e l s u b s t r a t e i n c l u d e d d e g r e a s i n g and g r i t b l a s t i n g w i t h a l u m i n a .

T a b l e 2: P r o c e s s p a r a m e t e r v a r i a t i o n s i n t h i s s t u d y

The e v a l u a t i o n o f m i c r o s t r u c t u r e a n d p h a s e d e v e l o p m e n t d u r i n g p l a s m a - s p r a y i n g was p e r f o r m e d u s i n g SEM-EDS and X-ray d i f f r a c t o m e t r y .

P r o c e s s P a r a m e t e r S p r a y d i s t a n c e E l e c t r o d e c o n d i t i o n P l a s m a g a s

Power

Powder q u a l i t y

T h i c k n e s s of l a y e r

L

I 1 1

-

RESULTS a n d DISCUSSION

V a r i a t i o n 5 0 - 1 0 0 mm

N e w a n d o l d e l e c t r o d e s Nz/H2 and A r / H 2

38 kW a n d 61 kW

D i f f e r e n t p a r t i c l e s i z e d i s t r i b u t i o n s a n d a d d i t i v e s

200 - 6 0 0 pm

The main f i n d i n g i n t h i s work i s t h e r e m a r k a b l e i n d e p e n d e n c e o f p r o c e s s p a r a m e t e r s on t h e r e s u l t i n g m i c r o s t r u c t u r e . P l a s m a s p r a y e d chromium o x i d e l a y e r s p r o d u c e d u n d e r d i f f e r e n t p r o c e s s c o n d i t i o n s h a v e a l l v e r y s i m i l a r m i c r o s t r u c t u r e s , c h a r a c - t e r i s e d by p o p u l a t i o n s o f l a r g e a n d s m a l l c r a c k s i n a m a t r i x o f v a r y i n g g r e y l e v e l . T y p i c a l m i c r o s t r u c t u r a l f e a t u r e s a r e p r e s e n t e d i n f i g u r e s 1 and 2. The r e s u l t a n t c h a r a c t e r i s t i c m i c r o s t r u c t u r e i s d i s c u s s e d i n t e r m s o f e l e c t r o n d e n s i t y v a r i a t i o n s and p h a s e s o b t a i n e d .

E l e c t r o n D e n s i t y - - -

- - -

The c r a c k p a t t e r n d e v e l o p e d i n t h e chromium o x i d e l a y e r i s s t r o n g l y r e l a t e d t o t h e g r e y l e v e l o f t h e m a t r i x , i . e . t o t h e e l e c t r o n d e n s i t y . T h i s i s c l e a r l y s e e n i n t h e

(4)

backscattered electron image micrograph presented in figure 2 above. Variation in electron density is normally explained in terms of different chemical composition.

In plasma-sprayed chromium oxide coatings the presence of discrete impurities (mainly Zr) explains to some extent this appearance. However detailed elemental line analysis does not confirm this to be the main reason. Variations in electron density may be caused by the additives, since these are unevenly distributed in the original powder batch. This is especially pronounced for Si02. See figure 3.

However, the same crack pattern and the similar difference in grey level were later observed in the study when chromium oxide quality 106 with no extra additives was plasma sprayed. This means that the main contribution to this grey level varia- tion has to be found elsewhere.

Fig 1.

Fig 2.

Overview of the microstruc- ture of plasma sprayed chromium oxide layer.

(bar = 100 pm)

BEI-micrograph showing vari- ation in grey level related to the crack pattern.

(bar = 10 pm)

(5)

cl-168 J O U R N A L D E PHYSIQUE

F i g 3 . D i s t r i b u t i o n o f S i 0 2 i n t h e o r i g i n a l chromium o x i d e powder 1 3 6 CP a ) SEM-micrograph b ) X-ray mapping o f s i l i c o n

P h a s e s o b t a i n e d -

-

-

-

- - -

The t o t a l l y d o m i n a n t p h a s e i n a l l t h e p l a s m a s p r a y e d l a y e r s i s @ - C r 03. A l l t h e p e a k s i n t h e d i f f r a c t o g r a m s c o r r e s p o n d t o t h i s p h a s e . X-ray d i f f r a c 8 0 g r a m s t a k e n from d i f f e r e n t d e p t h s i n t h e p l a s m a s p r a y e d l a y e r s w e r e i d e n t i c a l . No s o l i d s o l u - t i o n s o f Cr 0 e x i s t . However d e t a i l e d e v a l u a t i o n r e v e a l s t h a t t h e i n t e n s i t y o f o n e p e a k I d = 2702 A ) i s t o o h i g h . Moreover t h e p e a k a t 1 . 1 8

a

i s somewhat d i s t o r t e d . T h e s e two p e a k s c o r r e s p o n d a l s o t o t h e main p e a k s o f e l e m e n t a l chromium, h k l - p l a n e s ( 1 1 0 ) and ( 2 1 1 ) . I n t h e c a s e o f powder 1 0 6 , t h e p r e s e n c e o f chromium ( 1 1 ) o x i d e was a l s o d e t e c t e d . S e e f i g u r e 4. D e c o m p o s i t i o n o f C r 2 0 j i s d i s c u s s e d by Boch e t a 1 /2/

who i n a d d i t i o n t o @.-Cr2O3 p r o p o s e Crj04.

F i g 4. P a r t s o f X-ray d i f f r a c t o g r a m s i n d i c a t i n g p r e s e n c e o f e l e m e n t a l chromium a s w e l l a s chromium ( 1 1 ) a n d chromium ( 1 1 1 ) o x i d e s . ( C u - K , r a d i a t i o n ) a ) P l a s m a - s p r a y e d 1 3 6 F b)O(-Crp03 c ) P l a s m a - s p r a y e d 1 0 6

(6)

IV

-

CONCLUSION

It has been shown that the grey level variation in plasma-sprayed chromium oxide coatings, easily seen in BEI-micrographs, arises from different oxidation states of chromium. In addition to the main phasew-Cr O3 elemental chromium and chromium (11) oxide are also present. The mixture of difqerent phases will probably enhance crack formation during cooling of the plasma-sprayed layer. The electron density variation strongly related to the crack pattern supports this. It is thus postu- lated that decomposition of&-Cr 0 - which seems inevitable due to the high tem- perature process

-

is the factor2tZat controls the microstructure developed.

Decomposition of SiOg was also observed during the plasma spraying. The SiO - contents in the coatlngs were approximately 2.0 w/o compared to 4-5 w/o in $he original powder.

The authors thank Or Michael Hatcher for revising the English text. The financial support by the National Swedish Board for Technical Devel-opment is gratefully acknowledged.

REFERENCES

/l/ Askengren, L. IVF-report LA/KF 410 (1985). (In Swedish).

/2/ Boch, P., Fauchais, P. and Borie, A. "Plasma Spraying with Chromium Oxide".

Proc. 3rd CIMTEC Conf. May 1976, p. 208.

Références

Documents relatifs

It was obtained that the oxide scales consisting mainly of wüstite FeO, magnetite Fe3O4 and hematite Fe2O3 owing to the formation of voids and cracks in the scales, especially on

ans ce travail nous avons porté l’essentiel de nos efforts sur l’étude des propriétés structurales, électroniques, magnétiques et optique des binaires à base

Measurement of Z bosons produced in association with charm jets ðZcÞ in proton-proton collisions in the forward region provides a direct probe of a potential nonperturbative

In order to understand the magnetic moment of iron in chromium alloys and its interaction with the matrix and with the magnetic moments of other iron atoms, we have measured

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In prior studies of the relationship between 2 8 U and salinity, the standard procedure has been to normalize 11 8 U concentrations of samples to a salinity of 35 and

Je ne veux pas me répéter, mais je pense que si nous en sommes là aujourd’hui, c’est justement parce que dans les abattoirs industriels et dans les

This work explores a new key-value store architecture with raw flash memory, hardware accelerators and storage-integrated network. The hardware accelerators directly manage NAND