• Aucun résultat trouvé

ABLATION OF SOLID HYDROGEN IN CONTACT WITH MAGNETIZED PLASMAS : CAN THE EXTERNAL MAGNETIC FIELD BE THE UPPER LIMIT OF THE SELF CONSISTENT ELECTRIC FIELD AT THE SOLID SURFACE ?

N/A
N/A
Protected

Academic year: 2021

Partager "ABLATION OF SOLID HYDROGEN IN CONTACT WITH MAGNETIZED PLASMAS : CAN THE EXTERNAL MAGNETIC FIELD BE THE UPPER LIMIT OF THE SELF CONSISTENT ELECTRIC FIELD AT THE SOLID SURFACE ?"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219198

https://hal.archives-ouvertes.fr/jpa-00219198

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ABLATION OF SOLID HYDROGEN IN CONTACT WITH MAGNETIZED PLASMAS : CAN THE EXTERNAL MAGNETIC FIELD BE THE UPPER

LIMIT OF THE SELF CONSISTENT ELECTRIC FIELD AT THE SOLID SURFACE ?

S. Mercurio

To cite this version:

S. Mercurio. ABLATION OF SOLID HYDROGEN IN CONTACT WITH MAGNETIZED PLAS-

MAS : CAN THE EXTERNAL MAGNETIC FIELD BE THE UPPER LIMIT OF THE SELF CON-

SISTENT ELECTRIC FIELD AT THE SOLID SURFACE ?. Journal de Physique Colloques, 1979,

40 (C7), pp.C7-447-C7-448. �10.1051/jphyscol:19797217�. �jpa-00219198�

(2)

JOURLVAL DE PHYSIQUE

ABLATION OF S[XID HYDROGEN

IN

CONTACT WITH MAGNETIZED PLASMAS : CAN THE EXTERNAL MAGNETIC FIELD BE THE UPPER LIMIT OF THE SELF CONSISTENT ELECTRIC FIELD AT THE SOLID SUWACE ?

S. Mercurio.

Department o f Physios, University o f Wisconsin, Madison, W I , 53706 U.S.A.

Charge c o l l e c t o r s o r "probesf1 were f i r s t cor- r e c t l y used by ~angmuir'in h i s s t u d i e s of s t e a d y a r c discharges. Later Bohm 2 extended t h e i r use t o

a r c s i n t h e presence of high magnetic f i e l d s . Probe t h e o r i e s even today, a r e q u a s i - s t e a d y - s t a t e theor- i e s . Behavior o f charge c o l l e c t o r s f a r from equi- l i b r i u m a r e o f extreme i n t e r e s t i n r e s e a r c h f i e l d s i n which s h o r t p u l s e s o f c u r r e n t a r e c o l l e c t e d .

I n t h i s n o t e t h e a b l a t i o n mechanism o f s o l i d hydrogen i n c o n t a c t w i t h magnetized plasmas i s d i s - cussed i n terms o f a t r a n s i e n t process proper t o charge c o l l e c t o r s approaching an equilibrium.

The semiempirical approach proposed s u g g e s t s a

"novel" plasma-solid boundary condition, whose con- sequences a r e a l s o found t o be i n e x c e l l e n t agree- ment with a l l experiments a v a i l a b l e t o d a t e f o r a v a r i e t y of plasma conditions.

Since s o l i d hydrogen has a very low binding energy, s a y W=0.01 eV, u s u a l l y much l e s s t h a n t h e e l e c t r o n temperature, KTe, we can s a f e l y assume t h a t t h e a b l a t i o n mechanism i s d r i v e n by t h e charge and h e a t c a r r i e d only by t h e e l e c t r o n s . The abla- t i o n f r o n t speed U, r e l a t i v e t o t h e s o l i d , j u s t ex- p r e s s e s t h e " c l o s e link" between momentum and

of r e f e r e n c e which c a r r i e s along t h e o s c i l l a t i n g Maxwell's Displacement f i e l d a s s o c i a t e d with a b l a - t i n g d i e l e c t r i c .

Taking 6 t o be equal t o one mean f r e e p a t h of t h e plasma e l e c t r o n s of average energy i n a super- dense gas o f number d e n s i t y n;, we have

6 = R = (n a o i n t ) - I (1) where aint is t h e i n t e r c e p t i o n c r o s s s e c t i o n . 3

The r e l a x a t i o n time t * i s h e r e assumed t o be t h e time t h e displacement D t a k e s t o b u i l d up and c o l l a p s e . I f t h e e l e c t r o n - s e l f - c o l l i s i o n time tee, such t h a t tee << t * << t r e c ( t h e e l e c t r o n - i o n r e - combination t i m e ) , t h e n t * w i l l i n f a c t be e x a c t l y t h e p e r i o d f o r t h e heat-cycle of t h e e l e c t r o n s which have enough energy t o reach t h e s o l i d . Since a c o l l a p s i n g time i s expected t o be much s m a l l e r than t h e charging time T , we j u s t have t * = 7 . We can e a s i l y o b t a i n T by i n t e g r a t i n g t h e following s e t o f standard equations a t any p o i n t x , with r e s p e c t t o time t . I n one dimension t h e equations r e a d

a J

ap

- + - =

a

D

a x - 4 ~ p ; D =

5

J

ax

a t

O;

-

- a

which g i v e

D(t) = D,[1-exp(-t/~)]; Dm

-

T T

-

~ / 4 ~ r a

a t 1 t = o

where J i s t h e c u r r e n t d e n s i t y , p t h e charge d e n s i t y , energy t r a n s f e r s . The l a t t e r determines t h e range 0 t h e e l e c t r i c c o n d u c t i v i t y , E t h e d i e l e c t r i c con-

?

of t h e plasma e l e c t r o n s i n t h e s o l i d ; t h e former, s t a n t . By i d e n t i f y i n g t h e i n i t i a l v a l u e of t h e t h e r e l a x a t i o n time t * f o r t h e t r a n s i t i o n between displacement c u r r e n t J (0) w i t h plasma-electron-

d

t h e i n i t i a l ( s o l i d ) and f i n a l ( f l u i d - l i k e ) s t a t e s random c u r r e n t Jr = - 1 enc ( a t t = O t h e r e i s no

-

4 e

of t h e hydrogen. The a b l a t i o n f r o n t motion w i l l s h e a t h ) , t h e n we have

be regarded h e r e a s a wave-type motion. I t w i l l T = D,/4rJd(0) = ~ , / ~ e n c

e ( 2 )

be described p r e c i s e l y a s t h e motion o f t h a t frame While Jd(0) does n o t change when B+O, t h e 30

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797217

(3)

ultimate value of D does change, because a solid tively, upon leaving the solid. If we now use the can never be in equilibrium with a plasma. For a

steady sheath to exist, the ion flow requires a

"tailf' in the electron velocity distribution and therefore a continuous flow exists across the sheath.

The self-consistent displacement field can be ob- tained from an equation for dynamic equilibrium, in which the Hall's electric field has to be taken into account, that is

-Dm/& + Eth + vB/c = u/p 'L = 0

.

(3) Where Eth= kTe/ehD,

AD

being the Debye length arid u and v two mutually perpendicular drifts across B. + We might content ourselves with assuming that the displacement will collapse when

Dm= &(B+E th ) = EB (if Eth<< B) (4) and see whether the above assumption is able to pass some (indirect) ,experimental test. Deviding

(1) by (2) we obtain an expression for the ablation speed U, suitable for comparison with experi- m e n t ~ , ~ ~ ~ ~ ~ ~ ~ . a s shown in Fig. 1, that is

noU m/Uint

- -

=

EB

We now try to test (4) more directly. For instance, solid hydrogen pellets have been observed to devi- ate from the straight path, when injected into Risg$'s Puffatron. The latter produces a rotating plasma because it has strong external field. The measured average deviation is 0.2 cm. By simply 7 using (4) to estimate the net charge on the pellet and the equation of motion for projectiles we get 0.23 cm.

We can verify that the dense ablation cloud is not so dense as to have a negligible Hall's current in the sheath, by estimating its density.

By invoking mass conservation across the disassem- bling surface layer of thickness 8, that is:

n U= V; where

I-+,

and V are the number density and

0

I-+,

the average speed of hydrogen molecules respec-

experimental values for U and V we get %$,1017ci3 to which correspond 6.1 T

toll?

1. We note, incident- ally, that by introducing (4) into the energy bal- ance we obtain V in excellent agreement with experi-

~nent.~'~ In order to convince ourselves that (4) is independent of a chosen symmetry, we notice (3) can be recovered from (D,/E+E )sin +vB/c=u/p; v/c =

th + +

uBsin8/c, for any 8, the angle between B and J r' (Gaussian units have been used throughout.)

REFERENCES

1. Langmuir, I, Science

58,

290 (1923)

2. Guthrie and Wakerling, The characteristic of electrical discharge in magnetic fields (1949) 3. Erode, R.B., Review of Modern Physics

5,

263

(1953)

4. Jorgensen, L.W. et al., Plasma Physics

g,

453 (1975)

5. Foster, C.A. et al., Nuclear Fusion

2,

1067

(1977)

6. Amenda, W. et al., Fusion Fueling Workshop, Princeton, N. J. (USA)

7. Sillesen, A. (Risa, Denmark)private communica;

tion

8. Milora, S.L. et al., ORNL TM-6496, October

Fig. 1 o Ormak; + Puffatrorif

*

ISX-A-Tokamak x Pulsator;

-

Theory

Références

Documents relatifs

To reduce the effect of other external factors influencing growth, we compared the differ- ing responses in stable carbon isotope composition and vessel anatomical characteristics

Drei der Briefe enthalten keine Anrede, trotzdem lassen sie sich verwenden, weil sich diese Schreiben an Institutionen oder bekannte Personen richten, so dass sich die soziale

Assuming that market premiums are set according to the expected value principle with varying loading factors, the optimal rein- surance parameters of this contract are obtained

Let us consider first the case of one orbital per atom. We note that if we apply the recursion method starting from an orbital /$ro) which is located on the central A or B atom,

The energy spectra, band gaps, bond indices and atomic orbital populations are calculated.. The results are sat- isfactory and the method can be easily extended to study the

The present work is only aimed at providing a rigorous derivation of the Brinkman force created by a cloud of like spherical particles — we recall that this force results from

Ayant un certain intérêt pour la nature, j’ai pu réellement m’investir dans ce travail. Je souhaite intégrer un enseignement en extérieur dans ma future pratique

Analysant le spectre d'aprks les methodes decrites dans les articles cites en reference, on trouve que la diminu- tion du champ a lieu essentiellement dans la couche de 100