• Aucun résultat trouvé

Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heatexchanger/reactor

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heatexchanger/reactor"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00905419

https://hal.archives-ouvertes.fr/hal-00905419

Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified

heatexchanger/reactor

Zoé Anxionnaz-Minvielle, Michel Cabassud, Christophe Gourdon, Patrice Tochon

To cite this version:

Zoé Anxionnaz-Minvielle, Michel Cabassud, Christophe Gourdon, Patrice Tochon. Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heatex- changer/reactor. Chemical Engineering and Processing: Process Intensification, Elsevier, 2013, vol.

73, pp.67-80. �10.1016/j.cep.2013.06.012�. �hal-00905419�

(2)

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 9911

To link to this article : DOI:10.1016/j.cep.2013.06.012 URL : http://dx.doi.org/10.1016/j.cep.2013.06.012

To cite this version :

Anxionnaz-Minvielle, Zoé and Cabassud, Michel and Gourdon, Christophe and Tochon, Patrice Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heatexchanger/reactor. (2013) Chemical Engineering and Processing: Process Intensification, vol. 73 . pp. 67-80. ISSN 0255-2701

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes.diff.inp-toulouse.fr !

(3)

Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heat exchanger/reactor

Zoé Anxionnaz-Minvielle

a,

, Michel Cabassud

b

, Christophe Gourdon

b

, Patrice Tochon

a

aCEA,LITEN,LETH,17ruedesMartyrs,38054Grenoble,France

bUniversityofToulouse,LaboratoiredeGénieChimique,UMR5503,CNRS/INPT/UPS,31432Toulouse,France

Keywords:

Heatexchanger/reactor Wavychannel Corrugation Deannumber Scale-up

Processintensification

a b s t r a c t

Intheglobalcontextofprocessintensification,heatexchanger/reactorsarepromisingapparatusesto implementexothermicchemicalsyntheses.However,unlikeheatexchangeprocesses,theimplementa- tionofchemicalsynthesesrequirestocontroltheresidencetimetocompletethechemistry.Awayto combinethelaminarregime(i.e.enoughresidencetime)withaplugflowandtheintensificationofboth heatandmasstransfersisthecorrugationofthereactionpath.

Inthiswork,theexperimentalset-upisbasedonplateheatexchanger/reactortechnology.7milli- channelcorrugatedgeometriesvaryingthecorrugationangle,thecurvatureradius,thedevelopedlength, thehydraulicdiameterandtheaspectratiohavebeendesignedandexperimentallycharacterized(heat transfer,mixingtimes,pressuredrops,RTD).Theobjectivesweretoassesstheirrespectiveperformances toderivesomecorrelationsdependingonthechanneldesign.

Theresultsconfirmedthebenefitsofthereactionchannelcorrugation.Heatandmasstransfershave beenintensifiedwhilemaintainingaplugflowbehaviourintheusuallylaminarflowregime.Moreover, whateverthemeanderingchannel’scurvatureradius,theresultshighlightedtherelevanceofconsidering theDeannumberasthescale-upparameter.Thisdimensionlessnumber,morethantheReynoldsnumber, seemstogoverntheflowinthewavychannels.

1. Introduction

In the global context of process intensification, defined by StankiewiczandMoulijn[1]as“anychemicalengineeringdevelop- mentthatleadstoasubstantiallysmaller,safer,cleanerandmore energy-efficienttechnology”,heatexchanger/reactorsarepromis- ingapparatuses[2,3].Indeed,bycombiningareactorandaheat exchangerinonlyoneunittheheatgenerated (orabsorbed)by thereactionisremoved(orsupplied)muchmorerapidlythanina classicalbatchreactor.Asaconsequence,heatexchanger/reactors mayofferbettersafety(byabetterthermalcontrolofthereaction), betterselectivity(bya more controlledoperating temperature) andby-productsreduction(incaseoftemperature-dependentsec- ondaryreactionforinstance).

Themaininterestingwaystointensifyheatandmasstransfers inheatexchanger/reactorsaretoinsert3Delementslikemetal- licfoamsorfins[4–6]ortostructuretheflowpath(2Dor3D) [7–13].Suchapparatuseshavetoaddressmanypointsintermsof

Correspondingauthor.Tel.:+330438783567;fax:+330438785161.

E-mailaddress:zoe.minvielle@cea.fr(Z.Anxionnaz-Minvielle).

performances,but alsointerms ofpolyvalence (the technology shouldnotbededicatedtoonlyoneapplication),flexibility(toeas- ilyswitchfromoneflowregimetoanother),competitiveness(too complexgeometriesleadtotoohighmanufacturingandoperating costs)andscale-up(performanceshavetobemaintainedduring thescale-upprocedure).

Tooptimizetheheatexchanger/reactorperformancesvs.the investment capacity, the first step is to characterize the flow behaviourandthetransfermechanisms[8,14].Thisisoneofthe objectivesofthiswork.A2D-structuredmillimetricandmeander- ingprocesschannelisconsidered.Contrarytotheflowinastraight channel,thestreamlinesinacorrugatedflow arenotparallelto theflowaxis.Thecentrifugalforceencounteredineachbendand theimbalancebetweenthisforceandthepressuregradientgen- eratecounter-rotatingvorticesinthechannelcrosssection.W.R.

Dean[15]wasthefirsttosolvetheflowsolutioninacurvedduct.

HedefinedtheDean number,De, whichtakesinto accountthe secondaryloopsgeneratedinacorrugatedchannel:

De=Re×

r

dh

Rc (1)

0255-2701/$seefrontmatter© 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cep.2013.06.012

(4)

Fig.1.Visualizationofthesecondaryloopsinasquareductcrosssection[16].

ReistheReynoldsnumber, Re= ×u×dh

(2)

,anduarerespectivelytheflowdensity(kgm−3),viscosity(Pas) andvelocity(ms−1).dhisthechannelhydraulicdiameter(m)and Rcisthecurvatureradius(m).

AnincreaseoftheDeannumbertendstomovetheaxialvelocity peakfromthecentretotheoutwardductwall.Aboveacriticalvalue oftheDeannumber,becauseoftheflowinstability,twoadditional vorticesappear.TheyarecalledtheDeanvortices.Fig.1illustrates thisflowphenomenon.

ThecriticalDeannumberrangesbetween100and250according totheemployedDeanvorticesdetectionmethod[16–18].Down- streameachbend,theflowtendstoalaminarflowinthestraight length.Byalternatingthecorrugations,theflowinstabilitiesare reactivatedineachbendwhichpromotestheradialhomogeniza- tionofthevelocity,temperatureandmomentumfields[19].

Ontheotherhand,thisexpectedgradientshomogenizationhas tobebalancedwithapressuredropincrease.Thegoalofthiswork isthustooptimizethecorrugatedchannelgeometryinorderto intensifytheheatandmasstransferswhilegettingalowReynolds numberflow.Thislastpointisrequiredtohavereasonableresi- dencetime(tocompletethechemistry)andlowpressuredrop.

Moreover to expect a future industrialization of heat exchanger/reactor technologies,the scalabilityis anothermajor steptostudy.Indeed,duringthescale-upprocedure,eachsimil- itude law (hydrodynamics, chemistry, geometry,...) should be verifiedinordertomaintaintheperformances.Howevereachlaw ischaracterizedbyitsowninvariantparameter(time,length,...) anditisoftenimpossibletoverifytheprincipleofsimilitude:

Gmock−up=k×Gpilot,with k a constant parameter (3) Itisthusrequiredtocharacterizetheeffectofthescale-uponthe performancesofoursystem.The2ndobjectiveofthisworkisthen todeducerulesandcorrelationswhichwillbeusedtopredictthe performancesofthemeanderingchannelatapilotscale.

In the present work, a plate-type heat exchanger/reactor, includingoneprocessplateandonecoolingplate,hasbeenstud- ied.On eachplate,awavymilli-channelhasbeenmechanically etched.Thisworkaims atcharacterizingtheflowperformances in several geometries in terms of residence time distribution,

Fig.2. Viewoftheprocesschannelswithouttheutilityplate(rightside)andview oftheutilitychannels((leftside).

mixingtimes,heattransferandpressuredrops.Boththeinfluence ofthechannelgeometryandtheinfluenceofthechannelcharacter- isticsizes(hydraulicdiameterandaspectratio)havebeenstudied.

Sevengeometrieshavebeenconsideredandamock-uphasbeen builtforeachone.

2. Materialsandmethods

2.1. Experimentalmock-ups

Themock-upsaremadeofthreeplates:acoolingplatesand- wichedbetween a closing plate and a ‘process plate’ in which the reactants are flowing co-currently. The cooling plate is a 7mm thickness aluminium plate with a highthermal conduc- tivity(=247Wm−1K−1).Itisusedduringthermalexperiments andisremovedforthehydrodynamiccharacterizations.Boththe closingand‘process’platesaremadeofPolyMethylMethAcrylate (PMMA),whose thermalconductivity,coupledtoa thicknessof 20mm,islowenoughtoavoidthermallosses(l=0.19Wm−1K−1 and/e=8.5Wm−2K−1;negligibleincomparisonwiththelocal heattransfercoefficients).Thetransparencyoftheseplatesisnec- essaryinordertovisualizetheflowinthechannelduringmixing experiments.Totestvariouschanneldesigns,themock-upshaveto beeasilyandquicklyimplemented.Asaconsequence,eachplate isetchedinthelaboratorywithanumericallycontrolledmilling machine.Then,theplatesareassembledwith16clampingscrews forthethermalexperiments(seeFig.2),orchemicallybondedfor thehydrodynamictests.

Eachmock-upisconnectedtoatestbenchequippedwith2mag- neticdrivepumps(Verder,0–5and0–10Lh−1),threemassflow metres (Micromotion), a differential pressure measuring trans- ducer(Rosemount,0–5bars),12temperatureprobes(Pt100and thermocouples),twospectrophotometers(AvaSpec2048,AvaLight DHcandIn-lineflowcellsAvantes)andasyringepump.Experi- mentaldata(temperature,flowrate,pressureandabsorbance)are recordedbyanon-linedatastoragesystem.

2.2. Geometricalparametersofthewavychannels

Twomainchallengeshavetobeaddressedwhenstructuringthe wavychannels:

-Howcanaplugflowandasufficientresidencetimeforthechem- istrybecombined?

(5)

Fig.3. Schematicviewofthegeometricalparameters.

-Howcanalaminarflow(inordertogetasufficientresidencetime andlowpressuredrop)andtheintensificationofmassandheat transfersbecombined?

Inordertooptimizethegeometrywithrespecttothesecrite- ria,theinfluenceofthegeometricalparametersonresidencetime distribution,mixing,thermalperformancesandpressuredropshas beeninvestigatedinthiswork.

Thegeometricalparameterswerechosenwithregardstothose commonlystudiedintheliterature.Chengetal.[20]andFellouah etal.[16]studiedtheinfluenceofboththecurvatureradiusandthe aspectratioonthecriticalDeannumber.Theaspectratioisdefined astheratiobetweentheductheightanditswidth.Worksabout itsinfluenceonboththeNusseltnumber[21,22]andthefriction factor[23]havealsobeendone.Finallytheeffectsofcorrugation angle[24,25]andcorrugationpitch[25,26]havebeenstudied.

Fromtheseworks,fourparametersappeartobeimportant(see Fig.3):theaspectratio,a/bwithaandbrespectivelythechannel heightandwidth;thecurvatureradius,Rc;thecorrugationangle, andthestraightlength,Ldwhichcorrespondstothelengthbetween twobends.Thecorrugationpitchandthecorrugationheightboth dependonthecorrugationangleandthestraightlength.

Thevalueofthecurvatureradiusdependsonthechannelwidth asillustratedontheFig.4.

ThechannelwidthinFig.4isequalto4.02mm.Threecurvature radiusvaluescoexist.Thecurvatureradiusdefinedalongtheneu- tralaxisequals4mmwhereastheexternalcurvatureradius(Rc,e) andtheinternalcurvatureradius(Rc,i)arerespectivelyequalto6 and2mm.Theyaredefinedby:

Rc,e=Rc+b

2 (4)

and Rc,i=Rc−b

2 (5)

withbthechannelwidth.

TheDean number is defined asDe=Re×

q

dh

Rc.Asa conse- quence,three differentDeannumberscanbeconsideredinthe channel.Thelargestone,i.e.theoneresultingfromthesmallest

Fig.4.Schematicviewofthecorrugatedchannelof4.02mmwidth.

curvatureradius(theinternalcurvatureradius),willbenamedthe internalDeannumber,Dei.

In order to identifythe influenceof each parameteron the thermo-hydraulicperformances,onlyoneparametervariesfrom onemock-uptoanother.ThegeometricaldataaregiveninTable1 andFig.5illustratesthem.

Themock-up‘a’ismadeof37rowsand36180turningbends.

2rowsareillustratedinFig.5.Eachrowis90mmlong.Then,from mock-up‘b’tomock-up‘g’,onlyoneparameterchangesfroma mock-up toanother.Asaconsequencetounderstandtheinflu- enceofeachgeometricalparameter,itisimportanttocomparethe rightmock-ups.Forinstance,tostudytheinfluenceofthecurva- tureradius,onlytheperformancesofmock-ups‘d’and‘e’willbe compared.Thehydraulicdiameterofmock-up‘g’(4mm)hasbeen chosensoastohavearangeofReynoldsnumberincommonwith the2mmmock-upswithoutanymajorchangeofthepumporflow metreequipment.

2.3. Experimentalcharacterizations

Themock-ups have beencharacterizedin termsof pressure drops,ResidenceTimeDistribution(RTD),thermalperformances andmixing[27].Thesecharacterizationsaimatbothstudyingthe flowbehaviouraccordingtothegeometricalparametersandcor- relatingtheperformancestoascale-upparameter.

Pressuredropsaremeasuredwithadifferentialpressuresen- sor.Itsmeasurementrangevariesfrom0to5barwithanaccuracy

Fig.5.Schematicviewof2rowsofthecorrugatedchannels.

(6)

Table1

Geometricaldataofthecorrugationparameters.

Mock-upn a/b dh,eq u Rc,i(mm) Ld(mm) Ltot(m) Vtot(cm3) Nb/L(bends/m)

a 1(2/2mm) 2 90 3,6 13,6 20

b 1(2/2mm) 2 75 0.5 6.94 5.0 20.0 90

c 1(2/2mm) 2 45 0.5 6.94 3.5 14.0 106

d 1(2/2mm) 2 45 0.5 20.28 3.5 14.0 44

e 1(2/2mm) 2 45 3 20.28 3.4 13.6 38

f 0.5(2/4mm) 2.67 45 3 20.28 3.4 27.2 38

g 1(4/4mm) 4 45 2 20.28 3.4 54.4 38

of±5%.Pressureprobesaresetattheinletandtheoutletofthe mock-upswheretemperaturesensorsarealsoconnected.Thetem- peratureis,indeed,animportantdatatoassessthefluidproperties (densityandviscosity).Theworkingfluidsaredistilledwaterand 67%w.glycerol.Fromtheexperimentallymeasuredpressuredrop, theDarcy coefficient,3, isassessed accordingtothe following expression:

= 1P

L

dh××u22

(6)

withthefluiddensity(kgm−3),uitsvelocity(ms−1);Landdh respectivelythelength(m)andthehydraulicdiameter(m)ofthe channeland1Pthepressuredrop(Pa).

Thethermalstudyisbasedonexperimentswhichaimatcool- ingthefluidflowingintheprocessplate.Processfluidisdistilled waterheatedat75Cwhereasutilityfluidisrawwateratabout 13C.Foreachexperiment,theutilityflowrateissetto100Lh−1 whereastheprocessflowratevariesfrom1to15Lh−1.Inorderto avoidtemperaturepinch,temperatureismeasuredallalongthe channel:6temperaturesensorsaresetbetweentheinletandthe outletoftheprocessplateand2temperaturesensorsaresetatthe inletandtheoutletofthecoolingplate.Thetemperatureprofileall alongtheprocesschannelshowsthatbetween40and60%ofthe totalchannellengthissufficienttoexchangetheheatduty.Asa consequence,thethermalbalanceshavebeenmadebetweenthe processchannelinletand thefirsttemperaturesensor,which is locatedonthe2ndrow(0.26mfromtheinlet).Fromthemeasured temperaturedifference,1T,theexchangedthermalpower,P(W), isassessed:

P=m˙ ×Cp×1T (7)

m˙ andCparerespectivelytheflowrate(kgs−1)andthespecificheat ofthefluid(Jkg−1K−1).

Theglobalheattransfercoefficient,U(Wm−2K−1),isthencal- culatedwith:

U= P A×1Tml

(8) 1TmlisthelogarithmicmeantemperaturedifferenceandAtheheat exchangearea.Aspreviouslydescribed,thechannelisetchedina PMMAplateandclosedwithanaluminiumplate.Asaconsequence theheatexchangeareacorrespondstotheareaincontactwiththe aluminiumplate.

TheNusseltnumberiswrittenas:

Nu=hp×dh

p

(9) dhisthechannelhydraulicdiameterandpisthefluidthermal conductivity(Wm−1K−1).hpisthelocalheattransfercoefficient oftheprocessfluid(Wm−2K−1)andisdeducedfromthefollowing equation:s

1

U×A= 1 hp×Ap

+ e + 1

hu×Au

(10)

eandarerespectivelythethicknessandthethermal conduc- tivity of thealuminium plate (Wm−1K−1).hu is thelocal heat transfercoefficientofthecoolingside.Ithasbeenassessedtobe 27kWm−2K−1inourgeometry.Thisvalueishighenoughtocon- siderthattheheattransfermechanismonthecoolingsideisnota limitingparameter.

Finally,tocompareeach geometry,theNusseltnumbersare plottedagainsttheReynoldsnumberintheresultssection.

Tocharacterizetheglobalmixinglevelofeachmock-up,the reactionofdiscolourationofaniodinesolutionwithsodiumthio- sulfateisimplementedaccordingtothefollowingreactionscheme:

I2(brown)+2Na2S2O3(colourless)→ 2NaI(colourless) +Na2S4O6(colourless)

Thiosulfateandiodineconcentrationsarerespectivelyequalto 1.4×10−2molL−1and 5×10−3molL−1.Theratioofflowratesis equalto1[28].

This homogeneous reaction is instantaneous and mixing limited. As a consequence, at steady state, by measuring the requiredlengthtocompletethediscolouringofiodine,themixing timecanbeeasilydetermined.Themixingtimesarethencompared accordingtoboththeflowregimeandthechannelgeometry.

Finally, RTD experiments have been carried out in order to characterize the hydrodynamic behaviour in each geometry. A spectro-photometrictechniquethatentailsacolouredtracerhas beenused.Twomeasuringprobesaresetupattheinletandat theoutletofthemock-up. Theacquisitiontime issetto0.12s.

Eachexperimenthasbeenperformedatroomtemperaturewith aflowrate varyingfrom5to18kgh−1 (Reynoldsnumber range from450to2500).TheNETR(NumberofEquivalentstirredTank Reactors)hasbeenassessedfromtheexperimentalRTD[29].The higherNETRis,themoretheflowbehaveslikeaplugflow,which isnecessarytoperformsafelyandefficientlychemicalsyntheses.

2.4. Numericalsimulations

Tocompletetheexperimentalresultsandunderstandtheflow mechanisms in the corrugated channel, numerical simulations havebeenimplementedwithacommercialCFDcode(Fluent).A schematicviewofthemodelledcorrugatedchannelisillustrated inFig.6.Thegreencross-sectionshavebeendefinedtovisualize theflowallalongthestraightandthecurvedlengths.

Thenumericalresultsinthecrosssectionslocateddownstream the7thbendhavebeenconsideredtoestablishthevelocitypro- filesandstudytheflowmechanisms.Thevelocityprofilesofthe Fig.6havebeenplottedversustheradialpositionupstreamthe 3rdbendandupstreamthe7thone.Theyperfectlymatchandthus demonstratethattheflowisestablishedintheportionofinterest.

A RNG (Renormalization Group) k-epsilon model has been consideredtorunthesimulationsandthemeshsizehasbeenopti- mizedto6×105cells.Abovethisvalue,thenumericallymeasured pressuredropsareindependentofthemeshsize.

(7)

Fig.6.Meshedgeometryforthenumericalsimulationsandvelocityprofilesaccordingtotheradialposition.

3. Resultsanddiscussion

Theresultsaredividedintotwosections.Thefirstoneconcerns withthe influence of thecorrugation’s geometrical parameters (curvatureradius,straightlengthandbendangle)onboththeflow behaviourand thetransfer mechanisms.It concernsthe mock- ups ‘a’, ‘b’, ‘c’,‘d’ and ‘e’. Thesecond section is about thefirst stepstowardsthescale-upofcorrugatedchannels.Theobjective istopredictthemeanderingflowbehaviourduringthescale-up procedure.Threemock-ups(mock-ups‘e’,‘f’and ‘g’)havebeen experimentallycharacterizedandcomparedforthatpurposeand theinfluenceofthehydraulicdiameterandaspectratiohasbeen investigated.

3.1. Influenceofthecorrugationgeometry 3.1.1. Pressuredrops

Foreachgeometry(frommock-up‘a’tomock-up‘e’),pressure dropsperunit oflengthversusReynoldsnumber areplottedin Fig.7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 500 1000 1500 2000 2500 3000 3500

ΔP/L (bar.m-1)

Reynolds number

Mock-up a Mock-up b Mock-up c Mock-up d Mock-up e

Fig.7. PressuredropperunitoflengthversusReynoldsnumber(waterat25C).

Thisgraphhighlightstheincreaseofpressuresdropswhenthe numberofbendsperunitoflengthincreases.Thus,asexpected, pressuredropsinmock-up‘a’arethelowestones.Thisisalsothe casewhengeometries‘d’(44bends/m)and‘c’(106bends/m)are compared.

Ifwecomparethemock-ups‘b’and‘c’,thenumberofbendsper unitoflengthisveryclose(90and106bends/m),whereasthebend angleisdifferent(75and45).Asaconsequenceanincreaseofthe bendangleseemstoincreasethepressuredrops.

Theincreaseofthecurvatureradiusalsoincreasesthepressure drops.Thisisthecasewhenmock-ups‘d’and‘e’arecompared.

Thenumberofbendsperunitoflengthisquitesimilar(44and38 bends/m)whereastheinternalcurvatureradiusincreasesfrom0.5 to3mm.

TheDarcycoefficient,whichischaracteristicofthesizeandof thegeometryofthechannel,hasbeenplottedagainsttheReynolds numberinFig.8.

Whateverthegeometry,thegraphisdividedintotwozoneson bothsidesofRe=200.BelowthisvaluetheDarcycoefficientsare

0.01 0.1 1 10

10 100 1000 10000

Darcy coefficient

Reynolds number

Mock-up a Mock-up b Mock-up c Mock-up d Mock-up e

square straight channel-experimental data

Fig.8.DarcycoefficientversusReynoldsnumber,experimentswithwaterandglyc- erol(67w%)at25C.

(8)

Table2

Comparisonbetweenliteraturedataandnumericalresultsaboutthepressuredropinasinglebendandinastraightlength(Re=686).

Theoreticalresults(literaturecorrelation)[30] Numericalresults

Bend Darcycoefficient,3 0,27

Pressuredrop,1P(Pa) 16,77 16,76

Straightlength Darcycoefficient,3 0,084

Pressuredrop,1P(Pa) 16,82 45,53

closetothecharacteristicvalueofastraightchannel.Inthisregime (viscousfluidsapplicationsforinstance),theeffectofthebendson thepressuredropsisquitenegligible.Thetransitionbeginsaround Re=200. Thismay belinkedto theformation of Dean vortices aroundDe=150[16].ThiscriticalvaluecorrespondstoaReynolds numberof130inmock-ups‘b’,‘c’and‘d’and212inmock-up‘e’.

AboveRe=200andasalreadyobservedinFig.7,themainparam- etersarethecorrugationangle(mock-up‘b’vs.mock-up‘c’),the numberofbendsperunitoflength(mock-up‘c’vs.mock-up‘d’) andthecurvatureradius(mock-up‘d’vs.mock-up‘e’).Thesethree parametersareactuallyresponsiblefortheincreaseofthecurved length/straightlengthratiowhichpromotespressuredrops.

Foreachmock-up,thestraightlengthisgiveninTable1whereas thecurvedlengthforonebendisassessedfromthefollowingequa- tion:

Lcurved=×Rc

Fromthepreviousexperimentalresults,thepressuredropof onebendhasbeendeducedforeachgeometry.Itincludesthepres- suredropduetothecurvedlengthitselfandtheoneduetothe propagationofthebendvorticesalongthedownstreamstraight length.Thesimulationresultshighlightthesetwopressuredrop componentsinTable2.

Thepressuredropassessedinabendisexactlythesamegivenby literaturecorrelationorsimulationresults(16.77Pa).Theupstream corrugationshaveactuallynoinfluenceontheconsideredbendin thesesimulationflowconditions.Theflowislaminaratthebend

inlet.Thepressuredropinthestraightlengthhasbeentheoreti- callyassessedconsideringnoupstreambend(3=0.9×64/Re).Itis 3timeslowerthaninthesimulatedstraightlengthdownstream thebend.Thishighlightsthepressuredropcomponentduetothe vorticespropagation.Fig.9illustratesthisphenomenon.

The highest intensity of the counter-rotating vortices is observed at the bend outlet (S1 onFig. 9). Then theintensity decreases all along the channel length before disappearing at S4.S5showsthattheflowbecamelaminaragainwiththeaxial velocitypeakslightlyoff-centredbecauseofthebendcentrifugal force.

Thefollowinggraph(Fig.10)showsthepressuredropperbend foreachgeometry.Ithasbeenassessedbyremovingthetheoretical pressuredropduetothestraightlengthsfromtheglobalpressure drop.Then,thisremainingpressuredrophasbeendividedbythe numberofbends.Asaconsequence,thepressuredropperbend takesintoaccountthepressuredropduetoboththecurvedlength ofthebendandthevorticespropagation.

Thepressuredropperbendishigherinthemock-up‘d’thanin themock-up‘c’whereastheoppositetrendwasobservedinFigs7 and8.Sincethegeometricalparametersofthebends(Rcand)are thesame,thecurvedlengthgeneratesthesamepressuredrop.The differencecomesactuallyfromthestraightlengthalongwhichthe vorticesarepropagated.Thislengthisindeedthreetimeshigher inthemock-up‘d’thaninthemock-up‘c’(20.28mmvs.6.94mm).

Thus,thepressuredropduetothepropagationofthebendvortices increasesthepressuredropperbendofmock-up‘d’.

Fig.9.Velocityprofilesincrosssectionofthecorrugatedchannel(mock-up‘e’).

(9)

0 500 1000 1500 2000 2500

0 5 10 15 20 25

ΔP/bend (Pa)

Flowrate (kg.h-1)

Mock-up b Mock-up c Mock-up d Mock-up e

Fig.10. Influenceofthegeometryandtheflowrateonthepressuredropofone bend(curvedlength+vorticespropagation).

Inthemock-up‘b’,thestraightlengthisequalto6.94mmbut thecorrugationangleishigherthaninthemock-up‘c’(respectively 75and45),thebendpressuredropisthushigher.

Finally,thehighestpressuredropperbendisobservedinmock- up‘e’.Thisisduetothecurvedlengthwhichisactually2.6times longerthantheoneofmock-up‘d’withthesamestraightlength.

Thisistheinfluenceoftheinternalcurvatureradius.

Finally,itcanbeestablishedthatpressuredropsinacorrugated channelaremadeofthreecomponents:thepressuredropinthe straightlengths,thepressuredropinthecurvedlengthsandthe pressuredropduetothepropagationofthevorticesdownstream eachbend.

Thestraightlengthbetweentwobends seemstobethekey parameter.Itsincreasereducesthenumberofbendsperunitof lengthandthusthetotalpressuredrop.However,whenthestraight lengthislowerthanthepropagationlength,itsincreasepromotes thepropagationofthevorticesandthusthepressuredrop.This increasesthepressure dropper benduntilreachinga maximal valuewhenthestraightlengthisequaltothepropagationone.

Thepressuredropalsodependsonthecorrugationangle.The higherthecorrugationangle,thehigherthecurvedlength,thus promotingthepressuredrops(seeEq.(6)).

Finally,thepressuredropprofilesarestronglydependenton thenumberofbendsandontheirgeometry.Thefollowingsection detailstheirinfluenceontheRTD.

3.1.2. Residencetimedistribution

TheRTDhasbeeninvestigatedforeachgeometry(mock-ups‘a’

to‘e’).Thefollowinggraph(Fig.11)illustratestheexperimental results.Thenumberofequivalentstirredtankreactors(NETR)per unitoflengthhasbeenassessedineachmock-up.

Firstofall,whateverthegeometry,theNETRishighenough (NETR>50 formock-upsfrom 3.4to5mlong)toconsiderthat theflowbehaveslikeaquasi-plugflow.Howevertheinfluenceof thewavygeometryonNETRisnotnegligible.Ashighlightedin thepressuredropstudy,themainparametersarealsothenum- berofbendperunitoflengthandtheratiobetweenthecurved lengthandthestraightone.OnFig.11,theNETRofmock-up‘c’is around2timeshigherthantheNETRofmock-up‘d’.Thebends ofthesegeometries arestrictlythesame (curvatureradiusand corrugationangle).Thus,thedifferenceliesonthestraightlength betweentwobendsandasaconsequenceonthenumberofbends perunitoflengthwhichpromotestheplugflowbehaviour.Actu- ally,theflowinstabilitiesgeneratedineachbendpromotetheradial

0 20 40 60 80 100 120 140

300 500 700 900 1100 1300 1500 1700 1900 2100

NETR / L

Reynolds number

Mock-up a Mock-up b Mock-up c Mock-up d Mock-up e

Fig.11.Numberofequivalentstirredtankreactor(NETR)perunitoflengthvs.

Reynoldsnumberforeachmock-upgeometry.

homogenizationoftheconcentrationgradientswhichreducesaxial dispersion.

Similarly,theincreaseoftheratiobetweenthecurvedlength andthestraightone,leadstoanincreaseoftheNETRperunitof length.TheNETRperunitoflengthinmock-up‘b’andmock-up‘e’

arerespectivelyhigherthaninmock-up‘c’andmock-up‘d’.This isduetotheirratiobetweenthecurvedlengthandthestraight onewhichincreaseswiththeincreaseofthebendangle(mock-up

‘b’comparedtomock-up‘c’)orthecurvatureradius(mock-up‘e’

comparedtomock-up‘d’),theothergeometricalparametersbeing keptconstant.

Theseresultsareconfirmedwiththegraphof Fig.12 which showstheinfluenceofthewavygeometryontheNETRperbend.

OnFig.12,theNETRinthemock-ups‘c’and‘d’areveryclose.

ThebendsarestrictlyidenticalandsoistheirinfluenceontheRTD measurements.Thusthisis,indeed,thebendswhichgovernthe RTDandthehigherthenumberofbendsperunitoflength,the narrowertheRTD.

ThedecreaseoftheNETR/bendbetweenmock-ups‘b’and‘c’

orbetweenmock-ups‘e’and‘d’maybeduetotwoeffects.The firstoneisthedecreaseoftheratiobetweencurvedlengthand straightlength.Thesecondonecouldbeduetotheappearanceof axialre-circulatingcellsgenerateddownstreameachbendwhen thecurvatureradiusdecreases[26,31].Thisphenomenoncreates recirculatingzonesdownstreameachbendthatcoulddisturbthe plugflowbehaviour.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

300 500 700 900 1100 1300 1500 1700 1900 2100

NETR / Number of bends

Reynolds number

Mock-up b Mock-up c Mock-up d Mock-up e

Fig.12.InfluenceoftheReynoldsnumberandthegeometryontheRTD.

(10)

0.01 0.10 1.00 10.00

100 300 500 700 900 1100 1300 1500

Mixing time (s)

Reynolds number

Mock-up 'a' Mock-up 'b' Mock-up 'c' Mock-up 'd' Mock-up 'e'

Fig.13.Mixingtimesvs.Reynoldsnumberaccordingtothecorrugationgeometry.

However,whateverthegeometry,thenumberofbendsperunit oflengthandtheNETRperbendarehighenoughtoassumeaquasi plugflowwhateverthechanneldesign.

3.1.3. Mixingperformances

Mixingperformanceshavebeenassessedbymeasuringthemix- ingtimesversustheReynoldsnumber.ResultsaregiveninFig.13.

Asexpected,thetrendisasfollows:themixingtimesaredecreasing withtheincreasingReynoldsnumber.

Whatever theReynolds number, mixing timesin themock- up‘a’,whichismadeof90mmstraightlengthsand180turning bends,arehigherthaninthecorrugatedgeometries(mock-ups‘b’

to‘e’).Moreover,theinfluenceofthegeometryisrelevantforlower Reynoldsnumber.AboveRe=700,mixingtimestendtobesimilar whateverthecorrugation(exceptformock-up‘a’).

AtaconstantReynoldsnumber,mixinginmock-up‘e’isless efficientthanintheothercorrugatedmock-upswithagaparound Re=150.Thisresult maybedue totheflowstructure which is differentinthemock-up‘e’.

Intheliterature,thecriticalDeannumber,abovewhichtheDean vorticesappear,isestimatedbetween100and250[16].Thesevor- ticespromotethehomogenizationofthetemperature,thevelocity butalsotheconcentrationgradients.Thusitcontributestoimprove themixingperformancesofthecorrugatedflow.

Inourexperiments,thegeometricalparameterwhichisdiffer- entbetweenmock-up‘d’andmock-up‘e’isthecurvatureradius (respectively1.5and4mm).Asaconsequence,whentheReynolds numberequals150,theDeannumberequals160inthemock-up

‘d’and100inthemock-up‘e’.ThusitseemsthatthecriticalDean numberhasbeenreachedinmock-up‘d’(andalsoinmock-ups

‘b’and‘c’)whichisnotthecaseformock-up‘e’.TheFig.14illus- tratesthisresultbyconsideringthemixingtimesversustheDean number.

Theseresultsconfirmtheformerhypothesissinceforaconstant Deannumber themixingperformances areequal whateverthe geometry.Thecurvatureradiuswillbethusanimportantparame- tertobeconsideredformixingapplicationsandparticularlywith viscousfluidsforwhichtheReynoldsnumbersarelow.

3.1.4. Thermalperformances

From temperature measurements, the influence of wavy geometriesonthethermalperformancesisstudied.Inthatway,an intensificationfactorisintroduced.Ittakesintoaccounttheglobal

0.01 0.10 1.00 10.00

0 200 400 600 800 1000 1200 1400 1600 1800

Mixing time (s)

Dean number

Mock-up 'b' Mock-up 'c' Mock-up 'd' Mock-up 'e'

Fig.14.Mixingtimesvs.Deannumberaccordingtothecorrugationgeometry.

heattransfercoefficient,U(Wm−2K−1)butalsothegeometrycom- pactness.Itisdefinedas:

U×A

V (Wm−3K−1)

withAtheheatexchangearea(m2)andVthevolumeoffluid(m3).

ThegraphofFig.15showstheintensificationfactorversustheflow rateforeachgeometry.

First,asobtainedduringthepressuredropandtheRTDstudies, theinfluenceofthenumberofbendsperunitoflengthisrele- vant.Theintensificationfactoralmostreachesaratioof2between geometry‘c’(106bends/m)and‘d’(44bends/m).

UnlikeRTDandpressuredropmeasurements,theinfluenceof thecorrugationangleseemsheretobenegligiblesincethecurves ofgeometries‘c’(=45)and‘b’(=75)aresuperposed.Finally, anincreaseofthecurvatureradiusfrom1.5(geometry‘d’)to4mm (geometry‘e’)leadstoadecreaseoftheintensificationfactor.Two effectsareinvolved;thedecreaseofthenumberofbendsperunit oflength(from44to38bends/m)andthedecreaseoftheDean number(foraconstantflowrate)whichleadstoadecreaseofre- circulatingcellsintensity.ThisphenomenonisillustratedinFig.16.

The effects of both thenumber of bends perunit oflength (mock-up‘c’vs.mock-up‘d’)andthecorrugationangle(mock-up

‘b’vs.mock-up‘c’)areobviouslyunchanged.However,asobserved formixingcharacterizations,theDeannumberisstilltherelevant dimensionlessnumberwhenthecurvatureradiusisconsidered.

Indeed, similar profiles are obtained for both geometries ‘d’

(Rc=1.5mm)and‘e’(Rc=4mm).

0 1000 2000 3000 4000 5000

0 2 4 6 8 10 12 14 16 18

UA/V (kW.m-3.K-1)

Process flow rate (kg.h-1)

Mock-up 'b' Mock-up 'c' Mock-up 'd' Mock-up 'e'

Fig.15.Intensificationfactorvs.flowrateaccordingtothewavygeometry.

(11)

0 5 10 15 20 25 30 35 40 45 50

0 1000 2000 3000 4000 5000 6000 7000 8000

Nusselt number

Dean number

Mock-up 'b' Mock-up 'c' Mock-up 'd' Mock-up 'e'

Fig.16.Nusseltnumbervs.Deannumberaccordingtothecorrugationgeometries.

Theresultsofthethermalcharacterizationscompletethepre- viousexperimental results. The Dean number seemsto bethe relevantparameterandthentheinfluentgeometricalparameter isthenumberofbendsperunitoflength.

3.1.5. Conclusionoftheparametricstudy

Theinfluenceofthegeometricalparametersofawavychannel onheattransfer,pressuredrops,mixingperformancesandresi- dencetimedistributionhasbeeninvestigatedinthefirstpartof thiswork.Themaingoalwastostudyandtounderstandboththe thermo-hydraulicmechanismsandtheflowbehaviourinthecor- rugatedchannelofaplateheatexchanger/reactor.Thetrendsare obviouslydifferentandthemostefficientgeometrywilldependon thechosenperformancecriteria.Actually,themostefficientmock- upsintermsofheatandmasstransfersand/ormomentumoften generatemanyflow instabilities.Asaconsequenceperformance criteriahavetobecomparedtoeachothertofindtheoptimalgeom- etry.Itwilldependonboththeend-usingspecificationsandthe aimedversatilityoftheheatexchanger/reactor.Forinstance,itis interestingtoplotthethermalperformancesvsthepumpingpower asillustratedonFig.17.

Thisgraphshowsthatforafixedpumpingpower,themock-up

‘c’isthemostefficientconcerningtheheattransfercriterion.The mock-up‘b’generatestoohighpressuredropsforanequivalent intensificationfactor(seeFig.15).

Moreover,althoughpressuredropsdecreasebetweenthemock- ups‘c’and‘d’(becauseofthedecreaseofthebendnumberper

0 1000 2000 3000 4000 5000 6000

0.00 0.05 0.10 0.15 0.20 0.25 0.30

UA/V (kW.m-3.K-1)

F.ΔP/L (W.m-1)

Mock-up 'b' Mock-up 'c' Mock-up 'd' Mock-up 'e'

Fig.17. Intensificationfactorvs.pumpingpowerperunitofcorrugatedchannel length.

0 50 100 150 200 250 300 350 400 450 500

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Number of equivalent stirred tank reactors

Flow velocity (m.s-1)

mock-up 'e'-2mm square cross section mock-up 'f'-rectangular cross section mock-up 'g'-4mm square cross section Straight duct

Fig.18.InfluenceoftheflowvelocityandthechannelsizeontheRTD.

unitoflengthfrom106to44bends/m),itdoesnotbalancethe decreaseofheattransfercoefficient.SoasillustratedinFig.17,the mock-up‘d’islessefficientthanthemock-up‘c’ifweconsiderthe intensificationfactorvs.thepumpingpower.

However,manyothercriteria,likecompactness,manufactur- ingcosts,...canbeconsidered.In thatcase, therankingof the corrugatedgeometriesmaychange.

The firstpartof this workshows that theinfluenceof each geometricalparameterdepends ontheconsideredperformance criterion. Thatis thereasonwhyanoptimizationregarding the specificationsandthetechnologyuseisrequired.Oncetheopti- mumgeometryisdefinedandtoexpectafutureindustrialization, the performance prediction during the scale-up procedure is required.Thefirststepstowardsthescale-upofcorrugatedchannel aredescribedinthefollowingpartofthispaper.

3.2. Influenceofboththehydraulicdiameterandtheaspectratio Threemock-ups(‘e’,‘f’and‘g’)areconsideredinthissection.The channelsofmock-ups‘e’and‘g’arerespectively2mmand4mm square-crosssection.Themock-up‘f’ismadeofarectangularcross sectionchannelof2mmlargeand4mmin-depth.

3.2.1. Residencetimedistribution

TheRTDhasbeenexperimentallyinvestigatedforthosethree geometries.Thefollowinggraphillustratesthenumberofequiv- alentstirredtankreactors(NETR)versustheflowvelocityineach geometry.TheRTDmeasurementshavealsobeenimplementedin arectangularcross-section(2×4mm2)straightchannel.

For each corrugated geometry, the NETR is high enough (NETR>150)toconsiderthattheflowbehaveslikeaplugflowin thecorrugatedchannelswhateverthecharacteristicsize.Thisisnot trueintherectangularcrosssectionstraightduct,sincetheNETR islessthan50.

During thescale-upprocedure, theresidence timehastobe kept constant to complete the chemistry. Since the developed lengthofthethreemock-upsisthesame,thecomparisonatacon- stantflowvelocityisofinterest.ThegraphofFig.18showsthat thehigherthehydraulicdiameter,thenarrowertheRTD.Thisis actuallytheReynoldsnumberinfluencewhichincreaseswiththe hydraulicdiameter.Thus,iftheflowvelocityisequalto0.3ms−1, theReynoldsnumberisrespectivelyof600,800and1200inthe mock-ups‘e’,‘f’and‘g’.ThefollowinggraphrepresentstheNETR versustheReynoldsnumber.

ThecomparisonbetweenFigs.18and19highlightstheinterest of considering the Reynolds number during the scale-up pro- cess.Howeverthereisstilladifferencebetweeneachgeometry,

(12)

0 50 100 150 200 250 300 350 400 450 500

500 700 900 1100 1300 1500 1700 1900 2100 2300

Number of equivalent stirred tank reactors

Reynolds number

mock-up 'e' -2mm square cross section mock-up 'f' -rectangular cross section mock-up 'g' -4mm square cross section

Fig.19.NETRvs.Reynoldsnumber.

especiallyaboveRe=1000.ThiscouldbeduetotheinternalDean numberinfluencewhichtendstoincreasewiththeincreaseofthe channelsize(becauseofboththeincreaseofthehydraulicdiam- eterandthedecreaseoftheinternalcurvatureradius).Therefore, theNETRisplottedversustheDeannumberinthefollowinggraph (Fig.20).

Thecharacteristiccurvesareverycloseeachother,highlighting therelevanceofconsideringtheinternalDeannumber.Actually, thescale-upprocessdoesnotpenalizetheplugflowcharacteris- ticswhichareevenimprovediftheflowvelocityortheReynolds numberarekeptconstant.Theperformancesaremaintainedwith theinternalDeannumberwhichisaninterestingresulttopredict theflowbehaviourduringthescale-upstep.

3.2.2. Mixingperformances

Themixingperformanceshavebeenassessedbymeasuringthe mixingtimesversustheReynoldsnumber.Theresultsaregivenin Fig.21.

Themixingtimesarequicklydecreasingwiththeincreaseof theReynoldsnumber.Themock-up‘g’ismoreeffectiveintermsof masstransferthantheotherones,thiscouldbeduetotheDean numberasobserved duringtheRTDexperiments. Ontheother hand,themixingtimesofmock-ups‘e’and‘f’arequiteclose.The internalcurvatureradiusesofthesetwogeometriesareactually similar(3mm).AsaconsequencewhentheReynoldsnumberis

0 50 100 150 200 250 300 350 400 450 500

500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Number of equivalent stirred tank reactors

Internal Dean number

mock-up 'e' - 2mm square cross section mock-up 'f' -rectangular cross section mock-up 'g' -4mm square cross section

Fig.20.NETRvs.internalDeannumber.

0 0 1 10 100

0 200 400 600 800 1000 1200 1400 1600

Mixing time (s)

Reynolds number

mock-up 'e' -2mm square cross section mock-up 'f' -rectangular cross section 'mock-up 'g' -4mm square cross section

Fig.21.Mixingtimesvs.Reynoldsnumberaccordingtothechanneldesign.

equal,theratiobetweentheDeannumbersofbothmock-ups‘e’

and‘f’isequalto:

Dee

Def

= Ree

Ref

×

s

dhe

dhf

=1×

r

2

2.67 =0.9 (11)

Thisratioiscloseto1andthatcouldbethereasonwhythecharac- teristiccurvesareveryclose.Ontheotherhand,theDeannumber ratiobetweenmock-ups‘e’and‘g’isequalto:

Dee

Deg

= Ree

Reg

×

s

dhe/Rce

dhg/Rcg

=1×

r

2/3

4/2=0.6 (12)

Deannumbersinmock-ups‘e’and‘g’arequitedifferentandthe flowmightnothavethesamebehaviour.Thisiswhatisobserved whenplottingthemixingtimesversustheDeannumberinFig.22.

Asobserved duringthe RTDexperiments,the Dean number isstill therelevant parametertopredicttheperformancesdur- ingthescale-upprocedurefrom2to4mm.However,whatever theconsideredscale-upparameter(velocity,Reynoldsnumberor Deannumber),themixingperformancesdonotdecreaseduringthe scale-upprocessandareevenimproved.Asaconclusion,bothRTD andmasstransferarenotlimitingprocessesduringthescale-up herefrom2to4mm.

0 0 1 10 100

0 200 400 600 800 1000 1200

Mixing time (s)

'Internal' Dean number

mock-up 'e'-2mm square cross section mock-up 'f'-rectangular cross section mock-up 'g'-4mm square cross section

Fig.22.Mixingtimesvs.Deannumberaccordingtothechannelcharacteristicsize.

(13)

0.01 0.1

1 10

10 100 1000 10000

Darcy coefficient

Reynolds number

mock-up 'e'-2mm square cross section mock-up 'f'-rectangular cross section mock-up 'g'-4mm square cross section rectangular straight duct

Fig.23. DarcycoefficientvsReynoldsnumber,experimentswithwaterandglycerol (67w%)at25C.

3.2.3. Pressuredrops

TheDarcycoefficient,whichischaracteristicofthesizeandof thegeometryofthechannel,hasbeenplottedagainsttheReynolds numberinFig.23.

Whateverthegeometry,thegraphisdividedintotwozones apartRe=200. Belowthis valuetheDarcy coefficientsareclose tothevaluetypicalofastraightchannel.Inthisregime(viscous fluidsapplicationsforinstance),theeffectofthebendsonthepres- suredropsisquitenegligible.However,itcanbenoticedthatthe Darcycoefficientsofthetwosquare crosssectionmock-upsare eachothercloserthanwiththerectangularcrosssectionmock- up.Asaconsequence,whentheaspectratioiskeptconstant,the DarcycoefficientcanbecorrelatedtotheReynoldsnumberinthe verylaminarregime(Re<200):

=21.3·Re−0.78 (13)

Boththerectangularcorrugatedchanneland therectangular straight oneleadtohigher pressure dropsin thelow Reynolds regime(Re<200).Sincethecorrugationshavefeweffectsonthe pressuredrop,thedifferencebetweensquareandrectangularcross sectionsmaybeduetotheaspectratioeffectwhichhasbeenstud- iedbyShah&London[32]andisillustratedinFig.24.

Shah&London[32]showedthatthefrictionfactorincreases whentheaspectratiodecreases.ThisiswhatisobservedinFig.23 belowRe=200. BeyondRe=200, thechannel characteristicsize beginstoinfluencetheDarcycoefficients.ThismaybetheDean numberinfluenceasillustratedonthegraphofFig.25.

Consideringthesquarecrosssectioncorrugatedchannels,the Darcycoefficientcurvesofbothgeometries‘e’and‘g’areveryclose eachotheraboveRe=200.InthisregimetheDeannumberisagain therelevantdimensionlessnumbergoverningtheflow.Itallows thepredictionofpressuredropsduringthescale-upprocedureand thefollowingcorrelationcanbeusedforcorrugatedmillichannels:

=3.68×Dei−0.38 (14)

Theinfluence of theaspectratio issignificant whateverthe flowregime.BelowRe=200,therectangularcrosssectiontendsto promotetheDarcycoefficientwhereasbeyondRe=200theDarcy coefficientintherectangularcrosssectionchannelislowerthanin thesquarecrosssectionchannel.Theinfluenceofthisparameter shouldbefurtherstudied.

3.2.4. Thermalperformances

The graph on Fig. 26 plots the Nusselt number versus the Reynoldsnumberobtainedineachcorrugatedgeometry.

Thisgraphhighlightstworesults.Thefirstoneistheimprove- ment of the thermal performances with the increase of the

Fig.24.Frictionfactor(equivalenttotheDarcycoefficient)vsaspectratioina laminarregime[31].

hydraulicdiameter(from2to4mm).ThismaybeduetotheDean numberinfluence.Thesecondresultistheinfluenceoftheaspect ratio.Thecrosssectionelongationfrom1to0.5seemstoimprove thethermalperformances.Thisisnotthetendencyobservedby Shah&London[32]inastraightrectangularduct(case4onFig.27).

However,unlikeShah&London[32],thepresentworkconcerns corrugatedchannelandtheaspectratioseemstohaveaninfluence ontheradialrecirculationloops.Indeed,inarectangularcrosssec- tionchannel,inadditiontothecounterrotatingvorticesclosetothe wall,additionalvorticesappearinthecrosssectionalongtheouter wall(Fellouahetal.,[16]).ThisisillustratedintheFig.28where velocityprofileshavebeenplottedupstreamabendinmock-ups

‘e’,‘f’and‘g’(Re=400).

GivenaReynoldsnumber,theadditionalvorticesobservedin therectangularcrosssectionpromotethehomogenizationoftem- peraturegradient.Thebetterheatperformancesobservedinthe mock-up ‘f’ maybe due tothis phenomenon. However further developmentsare required,particularlytodissociatetheaspect

0.01 0.1 1 10

10 100 1000 10000

Darcy coefficient

Internal Dean number

mock-up 'e' - 2mm square cross section mock-up 'f' - rectangular cross section mock-up 'g' - 4mm square cross section

Fig.25.Darcycoefficientvs.Deannumber,experimentswithwaterandglycerol (67w%)at25C.

(14)

0 5 10 15 20 25 30

0 1000 2000 3000 4000 5000 6000

Nusselt number

Reynolds number

mock-up 'e' - 2mm square cross section mock-up 'f' - rectangular cross section mock-up 'g' - 4mm square cross section

Fig.26.NusseltnumbervsReynoldsnumberaccordingtothecorrugationgeometries.

Fig.27.Nusseltnumber(constantwalltemperature)vsaspectratioinalaminar regimeandstraightduct.Mock-up‘f’configurationiscomparedwithcase4with

˛*=2b/2a=0,5(Shah&London,1978).

ratioinfluencefromtheoneoftheratiobetweencurvatureradius andhydraulicdiameter.Thesebothparametersareindeedvarying inthemock-up‘f’comparedtomock-ups‘e’and‘g’.

TheNusseltnumbervstheDeannumberhasbeenplottedfor thetwosquarecrosssectiongeometries(seeFig.29).

GivenaconstantDeannumbertheheattransferperformances areveryclosewhatever thechannel hydraulicdiameter.Unlike straight tubecorrelations ofNusseltnumber vs Reynolds num- ber,theheattransferperformancesofacorrugatedchannelseem todependontheDeannumber.Thisnoticeableresultshowsthat aslongastheDeannumberiskeptconstant,thescale-upproce- dure(herefrom2to4mmhydraulicdiameter)hasnoeffectonthe Nusseltnumber.

AsaconsequenceaNusseltnumbercorrelationhasbeenestab- lished:

Nu=0.45×De0.43i ×Pr0.33 (15)

Thiscorrelationisthefirstbrickforthepredictionofheattransfer performances during the scale-up process of corrugated milli- channels.

Fig.28.Velocityprofilesatthebendoutletinmock-ups‘e’,‘f’and‘g’(Re=400).

Références

Documents relatifs

In this study, properties of the condensate formed form pre-catalyst exhaust, namely pH and anion concentrations, were characterized with changing air-fuel ratios and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

It thus differs from the detachment length predicted by the analytical model (λ 1 ), which corresponds to the location of flow regime transition from the super- critical to

the dark matter haloes in which galaxies are embedded and their large-scale environment: the mass function of dark matter haloes is top-heavy in high-density regions, thus in

تايوتحملا سرهف يناثلا ثحبملا : كونبلا يف ةيسسؤملا ةمكوحلا موهفم 32 لولأا بلطلما : اهقيبطت في ينيساسلأا ينلعافلاو كونبلا في ةيسسؤلما ةمكولحا فيرعت 32

Die Resultate der Studie zeigen, dass trotz einem erhöhten Risiko zu psychischen Folgen eines Einsatzes Rettungshelfer Zufriedenheit und Sinn in ihrer Arbeit finden können und

Quanti fication of epidermal DR5:GFP reflux signals (Figure 2F; see Supplemental Figure 1 online) con firmed slightly reduced basipetal re flux for twd1 (Bailly et al., 2008)

When this challenge is addressed by nuclear magnetic resonance (NMR) three issues appear for distinguishing minor components from the major one: the spectral resolution, the