• Aucun résultat trouvé

Icp-ms analyses in hydro-organic matrices: introduction device selection and operating parameters optimization

N/A
N/A
Protected

Academic year: 2021

Partager "Icp-ms analyses in hydro-organic matrices: introduction device selection and operating parameters optimization"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: cea-02489503

https://hal-cea.archives-ouvertes.fr/cea-02489503 Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Icp-ms analyses in hydro-organic matrices: introduction

device selection and operating parameters optimization

A. Leclercq, A. Nonell, C. Bresson, L. Vio, D. Vailhen, F. Chartier

To cite this version:

A. Leclercq, A. Nonell, C. Bresson, L. Vio, D. Vailhen, et al.. Icp-ms analyses in hydro-organic matrices: introduction device selection and operating parameters optimization. European Winter Conference on Plasma Spectrochemistry, Feb 2015, Munster, Germany. �cea-02489503�

(2)

ICP-MS ANALYSES IN

HYDRO-ORGANIC MATRICES:

INTRODUCTION DEVICE

SELECTION AND OPERATING

PARAMETERS OPTIMIZATION

FEBRUARY 26, 2015

European Winter Conference on Plasma Spectrochemistry

Amélie LECLERCQ1, Anthony NONELL1, Carole BRESSON1, Laurent VIO1,

Dominique VAILHEN2, Frédéric CHARTIER3 1CEA, DEN, DANS, DPC, SEARS, LANIE 2CEA, DAM, DIF, F-91297 Arpajon, France

3CEA, DEN, DANS, DPC

| PAGE 1 CEA | 10 AVRIL 2012

(3)

BACKGROUND & OBJECTIVES

21 FÉVRIER 2020 | PAGE 2

(4)

BACKGROUND & OBJECTIVES (1/5)

High precision elemental & isotopic analyses of Actinides (An) & Fission Products (FP)

by ICP-MS are required for fuel cycle characterizations & associated thematics:

Liquid-liquid extraction processes process monitoring & nuclear waste management Hyphenated separative techniques  spent nuclear fuel assay

Speciation studies  nuclear toxicology, etc. Etc.

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 3

Analysis of samples in organic matrices

www.laradioactivite.com U mines natU Chemistry / enrichment U enriched Nuclear fuel production Nuclear reactors Nuclear fuel reprocessing end waste Recycle U Pu Recycling

Nuclear applications

(5)

BACKGROUND & OBJECTIVES (2/5)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 4

Adapted experimental setup

Objectives

CHOICE OF AN APPROPRIATE ICP INTRODUCTION DEVICE & OPTIMUM

OPERATING CONDITIONS FOR VARIOUS NUCLEAR ORGANIC APPLICATIONS

Understanding organic solvents effects on ICP analytical performances Comparative studies of various introduction devices

Optimization of relevant instrumental and operating parameters

Additional constraints: radioactive samples

Nuclearized instruments Glove box

(6)

BACKGROUND & OBJECTIVES (3/5)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 5

Organic vs. aqueous matrices

Low plasma tolerance

Interferences

Low surface tension Low viscosity

High volatility

 Finer aerosol

Low density High volatility

 Higher solvent load

+ carbon constituents (C, C

2

, CN, etc.)

Sanchez R. et al., Spectro. A. Part B, 2013 ; Mora J. et al., Trac-Trends in Anal. Chem., 2003

Nebulizer Spray chamber Impact beads Liquid sample PLASMA Desolvation system Primary aerosol Secondary aerosol Tertiary aerosol Load coil AEROSOL TRANSPORT

AEROSOL GENERATION ATOMIZATION/

EXCITATION / IONIZATION Direct Injection Nebulizer RF generator DETECTION Optical emission spectrometer (OES) Mass spectrometer (MS) Through injector Torch

(7)

BACKGROUND & OBJECTIVES (4/5)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 6

Organic matrices / ICP drawbacks

21 FÉVRIER 2020

ICP OPERATING PARAMETERS

(sample introduction / plasma)

Modifications of analytical performances

 Plasma instabilities

 Sensitivity losses

 Spectral / non-spectral interferences

 Plasma switching off

 Carbon deposition ….. cone orifices clogging…

Sampling depth Plasma Sample uptake rate RF power Plasma gas flow rate

Auxiliary gas flow rate Nebulizer gas

flow rate

O2gas flow rate

Spray chamber / Condenser

Temperature

(8)

BACKGROUND & OBJECTIVES (5/5)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 7

Organic matrices / ICP drawbacks

21 FÉVRIER 2020

ICP OPERATING PARAMETERS

(sample introduction / plasma)

Degradation of analytical performances

 Plasma instabilities

 Sensitivity losses

 Spectral / non-spectral interferences

 Plasma switching off

 Carbon deposition ….. cone orifices clogging…

INSTRUMENTATION

INJECTOR

(9)

INTRODUCTION DEVICES

FIRST FEASIBILITY TESTS WITH APEX

21 FÉVRIER 2020 | PAGE 8

(10)

INTRODUCTION DEVICES (1/3)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 9

Constraints due to the glove boxes:

Small-sized introduction device Easy-to-use & easy maintenance

INTRODUCTION DEVICES

- Classical spray chamber

Basic configuration

Room temperature No O2 port

Low organic solvent tolerance

AcN

Lack of literature data Low plasma tolerance

(11)

INTRODUCTION DEVICES (2/3)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 10

Constraints due to the glove boxes:

Small-sized introduction device Easy-to-use & easy maintenance

INTRODUCTION DEVICES

- Classical spray chamber - Cooled (Peltier) cyclonic

spray chamber with O2

port (PC3X, ESI)

PC3X, ESI

Künnemeyer et al., EST, 2003

Gabel-Jensen et al., JAAS, 2008, 2009 Meermann et al., JAAS, 2010

Balcaen et al., Anal. Bioanal. Chem., 2007 Etc.

Intermediate organic solvent tolerance

Widely studied in the state-of-art literature

Tolerance for AcN to be confirmed

O

2

port to avoid carbon deposition

Cooling :

 solvent load

(12)

INTRODUCTION DEVICES (3/3)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 11

Constraints due to the glove boxes:

Small-sized introduction device Easy-to-use & easy maintenance

INTRODUCTION DEVICES

- Classical spray chamber - Cooled (Peltier) cyclonic

spray chamber with O2

port (PC3X, ESI)

- Desolvation system (APEX, ESI)

Less used in the state-of-art literature

for high organic solvent contents

Desolvation:  solvent load  sensitivity

No O2 port

ACM & Spiro TMD membranes available

Sacks et al., Anal. Chem., 2006

APEX, ESI

High organic solvent tolerance

Trace analyses

(13)

FIRST FEASIBILITY TESTS WITH APEX

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 12

Analysis of 100 % AcN

INTRODUCTION DEVICE

- Desolvation device (APEX, ESI)

Less studied system

Desolvation:

 solvent load

 sensitivity: trace analysis

No O

2

port

Will be nuclearized with Neptune Plus

FIRST TESTS IN “STANDARDS” CONDITIONS (Q-ICP-MS):

Different kinds of drawbacks: plasma extinction / carbon deposition

ANALYTICAL CONDITIONS

INSTRUMENTATION

Q-ICP-MS Xseries II Nebulizer PFA-ST,

100 µL min

-1 APEX (ESI),

-5 °C (multi-pass condenser) without

spray chamber heating or additional N

2

1 mm i.d. quartz injector (small orifice)

OPERATING CONDITIONS

P = 1.6 kW Nebulizer gas flow rate: 0.57 L min

-1

O

2

gas flow rate: 60 mL min

-1

Proven feasibility with

good sensitivity up to

1 hour

Design of experiment to

be considered

(14)

OPERATING PARAMETERS

MULTIPARAMETRIC & SYSTEMATIC

STUDIES FROM AQUEOUS TO

HYDRO-ORGANIC MATRICES

DESIGN OF EXPERIMENTS WITH

COOLED CYCLONIC SPRAY CHAMBER

21 FÉVRIER 2020 | PAGE 13

(15)

DESIGN OF EXPERIMENTS (1/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 14

Optimization of operating parameters with AcN

21 FÉVRIER 2020

Operating parameters

Literature discrepancy (ex. RF power)

Few statistical studies (parameters interactions)

INTRODUCTION DEVICE

- Cooled (Peltier) cyclonic spray chamber with O2port (PC3X, ESI)

Widely studied in the state-of-art literature

Tolerance for AcN to be confirmed

O

2

port to avoid carbon deposition

Cooling :

 solvent load

PC3X, ESI

DESIGN OF EXPERIMENTS (DOE)

1. Instrumental parameters hierarchy (Plackett & Burman design)  most relevant parameters for max. sensitivity / stability 2. Optimization of the main parameters (Doehlert optimization design)

 parameter relationships

Reference test in aqueous medium

Hydro-organic medium

Künnemeyer et al., EST, 2003

Gabel-Jensen et al., JAAS, 2008, 2009 Meermann et al., JAAS, 2010

Balcaen et al., Anal. Bioanal. Chem., 2007 Etc.

(16)

DESIGN OF EXPERIMENTS (2/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 15

Plackett & Burman design in aqueous medium (1/3)

21 FÉVRIER 2020

Reference test

ANALYTICAL CONDITIONS

SAMPLE

HNO32 % Gd 6,1 ppb, Sm + Nd 8,5 ppb, Eu 2,5 ppb

INSTRUMENTATION

Q-ICP-MS Xseries II Nebulizer PFA-ST PC3X (ESI)

2 mm i.d. quartz injector (standard)

SELECTED PARAMETERS

- Sample uptake rate (µL min-1)

- Spray chamber temperature (°C) - Nebulizer gas flow rate (L min-1)

- Auxiliary gas flow rate (L min-1)

- Plasma gas flow rate (L min-1)

- Sampling depth (arbitrary unit) - RF power (W)

(17)

DESIGN OF EXPERIMENTS (3/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 16

Plackett & Burman design in aqueous medium (2/3)

21 FÉVRIER 2020

Reference test

Variable Expe. X1 X2 X3 X4 X5 X6 X7 X8 N°1 1 -1 1 -1 -1 -1 1 1 N° 2 1 1 -1 1 -1 -1 -1 1 N° 3 -1 1 1 -1 1 -1 -1 -1 N° 4 1 -1 1 1 -1 1 -1 -1 N° 5 1 1 -1 1 1 -1 1 -1 N° 6 1 1 1 -1 1 1 -1 1 N° 7 -1 1 1 1 -1 1 1 -1 N° 8 -1 -1 1 1 1 -1 1 1 N° 9 -1 -1 -1 1 1 1 -1 1 N° 10 1 -1 -1 -1 1 1 1 -1 N° 11 -1 1 -1 -1 -1 1 1 1 N° 12 -1 -1 -1 -1 -1 -1 -1 -1 N° 13 (n times) 0 0 0 0 0 0 0 0 Expe. Variable -1 +1 0 Uptake 20 400 200 Temperature +2 +6 +4 Neb. gas 0.6 1.0 0.8 Aux. gas 0.7 1.1 0.9 Cool gas 15.0 16.0 15.5 Sampling depth 70 300 185 RF power 1,400 1,500 1,450 Ext. lens voltage -990 -690 -840

Relevant instrumental parameters

limits experimentally determined

(18)

DESIGN OF EXPERIMENTS (4/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 17

Plackett & Burman design in aqueous medium (3/3)

21 FÉVRIER 2020

Reference test

Absolute effect / 156Gd sensitivity Nebulizer gas flow rate

0 1 2 3

Significant effect

Non significant effect

Sampling depth Sample uptake rate Extraction lens voltage Curvature

Cool gas flow rate RF power

Auxiliary gas flow rate

4 main parameters to be optimized in aqueous medium

(19)

DESIGN OF EXPERIMENTS (5/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 18

Plackett & Burman design in hydro-organic medium (1/4)

21 FÉVRIER 2020

ANALYTICAL CONDITIONS

SAMPLE

25 % AcN / 75 % HNO32 % Gd 17 ppb, Sm + Nd 23 ppb, Eu 7 ppb

INSTRUMENTATION

Q-ICP-MS Xseries II Nebulizer PFA-ST PC3X (ESI)

2 mm i.d. quartz injector (standard)

SELECTED PARAMETERS

- Sample uptake rate (µL min-1)

- Spray chamber temperature (°C) - Nebulizer gas flow rate (L min-1)

- Auxiliary gas flow rate (L min-1)

- Plasma gas flow rate (L min-1)

- Sampling depth (arbitrary unit) - RF power (W)

- Extraction lens voltage (V)

- O2gas flow rate  fixed (10 mL min-1)

Expe. Variable -1 +1 0 Uptake 20 100 50 Temperature -3 +3 0 Neb. gas 0.6 0.9 0.8 Aux. gas 0.8 1.0 0,9 Cool gas 15.0 17.0 16.0 Sampling depth 70 300 185 RF power 1,300 1,500 1,400  solvent load

Relevant instrumental parameters limits

experimentally determined

 not an easy task

 more difficult for organic vs. aqueous

samples

 O

2

introduction fixed (plasma extinction)

(20)

DESIGN OF EXPERIMENTS (6/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 19

Plackett & Burman design in hydro-organic medium (2/4)

21 FÉVRIER 2020

Absolute effect / 156Gd sensitivity

Nebulizer gas flow rate

0 2 4 6

Significant effect

Non significant effect

Sampling depth Sample uptake rate

Curvature

Cool gas flow rate RF power

Auxiliary gas flow rate

3 main parameters to be optimized in hydro-organic medium

(21)

DESIGN OF EXPERIMENTS (7/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 20

Plackett & Burman design in hydro-organic medium (3/4)

21 FÉVRIER 2020

ANALYTICAL CONDITIONS

SAMPLE

25 % AcN / 75 % HNO32 % Gd 17 ppb, Sm + Nd 23 ppb, Eu 7 ppb

INSTRUMENTATION

Q-ICP-MS Xseries II Nebulizer PFA-ST PC3X (ESI)

1 mm i.d. quartz injector (reduced)

SELECTED PARAMETERS

- Sample uptake rate (µL min-1)

- Spray chamber temperature (°C) - Nebulizer gas flow rate (L min-1)

- Auxiliary gas flow rate (L min-1)

- Plasma gas flow rate (L min-1)

- Sampling depth (arbitrary unit) - Induced power (W)

- Extraction lens voltage (V)

- O2gas flow rate  fixed (10 mL min-1)

Expe. Variable -1 +1 0 Uptake 20 100 50 T. chamber -3 +3 0 Neb. gas 0.4 0.7 0.8 Aux. gas 0.8 1.0 0,9 Cool gas 15.0 17.0 16.0 Sampling depth 70 300 185 Power 1,300 1,500 1,400  residence time

(22)

DESIGN OF EXPERIMENTS (8/8)

21 FÉVRIER 2020 CEA | FEBRUARY 26, 2015| PAGE 21

Plackett & Burman design in hydro-organic medium (4/4)

21 FÉVRIER 2020

Absolute effect / 156Gd sensitivity

Nebulizer gas flow rate

0 2 4 6

Significant effect

Non significant effect

Sampling depth Curvature

Temperature

Cool gas flow rate Auxiliary gas flow rate

Sample uptake rate RF power

6 main parameters to be optimized in hydro-organic medium

(23)

CONCLUSIONS AND OUTLOOK

21 FÉVRIER 2020 | PAGE 22

(24)

CONCLUSIONS AND OUTLOOK

| PAGE 23 CEA | FEBRUARY 26, 2015

Objectives

Aqueous medium

- 4 main parameters to be optimized FIRST FEASIBILITY TESTS WITH APEX PLACKETT & BURMAN DOE WITH PC3X

Proven feasibility at 100 % AcN with good sensitivity in 1 hour

CHOICE OF AN APPROPRIATE ICP INTRODUCTION DEVICE & OPTIMUM

OPERATING CONDITIONS FOR VARIOUS NUCLEAR ORGANIC APPLICATIONS

Understanding organic solvents effects on ICP analytical performances Comparative studies of various introduction devices

Optimization of relevant instrumental and operating parameters

Hydro-organic medium

- 2 mm i.d. injector diameter: 3 parameters to be optimized

- 1 mm i.d. injector diameter: 6 parameters to be optimized

Outlook in hydro-organic medium

Outlook in organic medium

Doehlert optimization design

 Parameter relationships

Use of desolvation membranes:

- ACM (Actived Cooled Membrane, ESI)

- Spiro TMD (Teflon® Membrane Desolvation, ESI)

APEX: DOE ?

Other introduction devices (miniaturized systems, etc.)

(25)

21 FÉVRIER 2020 | PAGE 24

CEA | 10 AVRIL 2012

THANK YOU FOR YOUR ATTENTION

Thanks to the LANIE team:

M. AUBERT, L. BEUVIER, C. BRESSON, C. CAUSSIGNAC,

F. CHARTIER, F. GUEGUEN, H. ISNARD, M. MARIE,

A. NONELL, E. PAREDES, G. STADELMANN, L. VIO,

T. VERCOUTER,

European Winter Conference on Plasma

Spectrochemistry

February 26, 2015

DEN, DANS DPC

SEARS, LANIE

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Saclay| 91191 Gif-sur-Yvette Cedex

T. +33 (0)1 69 08 18 47 |F. +33 (0)1 69 08 94 45

Références

Documents relatifs

Concernant la fraction nanoparticulaire (Figure 91A), les résultats les plus proches des valeurs répertoriées dans la littérature sont obtenus avec le TE calculé

The third hurdle in realization of an organic laser diode is that when the opposite charges recombine in an organic semiconductor, they frequently (approximately 75% of the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We also tested a solution of Phocytan®, which contains glycerophosphate sodium and a blend of sodium chloride or glycerophosphate solutions with potassium chloride solution,

The performances of the robust blade design are compared against performances characterizing the optimal design obtained using a deterministic optimization approach.. Results show

Fais toi-même l'expérience : lance un dé 60 fois et note tes résultats ci-dessous.. Compare tes résultats avec ceux de la

L'échantillon doit être introduit dans le plasma sous une forme finement divisée, car les puissance utilisées (généralement inférieures à 2 000 watts

Après une simple dilution en milieu acide en présence de rhodium comme étalon interne, les concentrations sont mesurées selon la méthode des ajouts dosés pour le sang et l’urine