• Aucun résultat trouvé

Stresses in first-year ice pressure ridges

N/A
N/A
Protected

Academic year: 2021

Partager "Stresses in first-year ice pressure ridges"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the Third International Offshore Mechanics and Arctic Engineering

Symposium, 3, pp. 173-177, 1984-02-12

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=b2257e68-ae69-48e1-976a-5b04f7bb97bc

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b2257e68-ae69-48e1-976a-5b04f7bb97bc

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Stresses in first-year ice pressure ridges

(2)

--

Ser

I

TH1

N21d

I

National Research

Conseil national

no*

1193

1

$

Council Canada

de recherches Canada

c.

2

BUY2

- -

I

1

STRESSES I N FIRST-YEAR ICE PRESSURE RIDGES

by

M. Sayed and R.M.W. Frederking

ANALYZED

Reprinted from

Proceedings of the Third International Offshore Mechanics

and Arctic Engineering Symposium, Volume 11 1, 1984

p. 1 7 3 - 177

DBR Paper No. 1193

Division of Building Research

Price $1

.OO

'

OTTAWA

CL3G.

RES.

(3)

Les c r s t e s d e p r e s s i o n d e l a g l a c e d e mer d e p r e r n i k e ann'ee s o n t mod'elis'ees s o u s forme de prismes bidimensionnels s e comportant s e l o n l a l o i de MohrCoulomb. La r 6 p a r t i t i o n d e s c o n t r a i n t e s p a s s i v e s e s t obtenue e n u t i l i s a n t une s o l u t i o n s i m i l a i r e e t d e s polynomes a p p r o x i m a t i f s de l a v a r i a b l e ddpendante. Ces a n a l y s e s p e r m e t t e n t d e c a l c u l e r l e s f o r c e s h o r i z o n t a l e s dans l e s c o u v e r t u r e s d e g l a c e li'ees

a

l a f o r m a t i o n d e c r L e s d e p r e s s i o n f l o t t a n t e s e t dans c e r t a i n s c a s , aux amas de g l a c e l e long d e s c b t e s .

(4)

STRESSES I N FIRST-YEAR ICE PRESSURE RIDGES

M. Sayed and R.M.W. Frederking Division of Building Research National Research Council Canada

Ottawa, Ontario, Canada

ABSTRACT

F i r s t - y e a r s e a i c e p r e s s u r e r i d g e s a r e modelled a s two-dimensional wedges of a Mohr-Coulomb m a t e r i a l a n d t h e p a s s i v e s t r e s s d i s t r i b u t i o n i s o b t a i n e d u s i n g a s i m i l a r i t y s o l u t i o n and a p p r o x i m a t e p o l y n o m i a l forms of t h e dependent v a r i a b l e . A n a l y s i s g i v e s t h e h o r i z o n t a l f o r c e s i n i c e c o v e r s a s s o c i a t e d w i t h f o r m a t i o n of f l o a t i n g p r e s s u r e r i d g e s and some c a s e s of r u b b l e p i l e - up a g a i n s t s h o r e s . INTRODUCTION I c e f l o e s d r i v e n by wind and c u r r e n t o f t e n f a i l on e n c o u n t e r i n g o t h e r i c e f l o e s o r f i x e d o b s t a c l e s , by c r u s h i n g , f l e x u r e o r b u c k l i n g , w i t h r e s u l t i n g acummulation of i c e blocks. These masses form a v a r i e t y of f e a t u r e s s u c h a s p r e s s u r e r i d g e s , p i l e - u p s on s h o r e s , and r u b b l e f i e l d s s u r r o u n d i n g o f f s h o r e s t r u c t u r e s . There have been e x t e n s i v e f i e l d , l a b o r a t o r y , and a n a l y t i c a l i n v e s t i g a t i o n s of t h e f r e q u e n c y of o c c u r r e n c e and t h e c h a r a c t e r i s t i c s of s u c h r i d g e s and p i l e u p s , and of a s s o c i a t e d l o a d s . Kovacs and Sodhi

(1)

p r e s e n t e d a comprehensive review of t h e l i t e r a t u r e on i c e r u b b l e p i l e u p s ; and a number of r e c e n t s t u d i e s were i n c l u d e d i n t h e P r o c e e d i n g s of t h e Workshop on Sea I c e R i d g i n g and P i l e u p

(2).

E a r l y i n v e s t i g a t i o n s of i c e r u b b l e f e a t u r e s and g e o m e t r i c a l models of r i d g e s were r e p o r t e d by Zubov

(1);

r e c e n t i n v e s t i g a t i o n of f i r s t - y e a r p r e s s u r e r i d g e s i n t h e B e a u f o r t Sea have been p r e s e n t e d by Tucker and Govoni

(4).

An a n a l y t i c a l model of t h e k i n e m a t i c s of p r e s s u r e r i d g e f o r m a t i o n was developed by P a r m e r t e r and

Coon

(5).

who o b t a i n e d lower bounds f o r t h e a s s o c i a t e d f o r c e s by e q u a t i n g t h e work done by t h e advancing i c e s h e e t t o t h e i n c r e a s e i n t h e p o t e n t i a l energy of t h e r i d g e . T h i s approach h a s been a d o p t e d i n a l l s u b s e q u e n t s t u d i e s t h a t e s t i m a t e r i d g i n g o r p i l e u p f o r c e s . Some a u t h o r s have used semi-empirical f o r m u l a s of s o i l mechanics t o i n c l u d e f r i c t i o n a l f o r c e s a s w e l l . K r y

(5)

d i s c u s s e d i c e f a i l u r e modes a s s o c i a t e d w i t h r u b b l e f o r m a t i o n and t h e r e s u l t i n g f o r c e s on wide o f f s h o r e s t r u c t u r e s . M e l l o r

(2)

t r e a t e d b r a s h i c e a s a

Mohr-Coulomb m a t e r i a l and c o n s i d e r e d some s i m p l e c a s e s r e l a t e d t o p r e s s u r e , r i d g i n g .

L a b o r a t o r y e x p e r i m e n t s on model i c e r u b b l e performed by Keinonen and Nyman

(8)

and by

Prodanovic

(9)

s u g g e s t t h a t t h e bulk r u b b l e obeys t h e MohrCoulomb y i e l d c r i t e r i o n . I n o t h e r e x p e r i m e n t s by T a t i n c l a u x and Cheng

(10)

t h e r a t e e f f e c t on s h e a r r e s i s t a n c e was examined. The p r e s e n t s t u d y i s

concerned w i t h t h e development of s o l u t i o n s f o r s t r e s s d i s t r i b u t i o n s i n f i r s t - y e a r p r e s s u r e r i d g e s and some c a s e s of r u b b l e p i l e - u p . GOVERNING EQUATIONS Deformation of bulk r u b b l e d u r i n g r i d g e b u i l d i n g o r r u b b l e p i l i n g i s u s u a l l y comprised of r e l a t i v e motion and r e a r r a n g e m e n t of t h e b l o c k s , i n a d d i t i o n t o f a i l u r e of i n d i v i d u a l b l o c k s . T h i s mode of d e f o r m a t i o n i s s i m i l a r t o t h e b e h a v i o u r of g r a n u l a r m a t e r i a l s and s o i l s . Both o b s e r v a t i o n and e x p e r i m e n t a l e v i d e n c e s u g g e s t t h a t i n s i t u a t i o n s of p r e s e n t i n t e r e s t t h e r u b b l e may obey t h e MohrCoulomb y i e l d c r i t e r i o n . I n t h e f o l l o w i n g a n a l y s i s bulk r u b b l e i s c o n s i d e r e d t o b e a r i g i d - p l a s t i c continuum u n d e r g o i n g q u a s i - s t a t i c , two- d i m e n s i o n a l d e f o r m a t i o n ; t h e r e a r e no e x p e r i m e n t a l d a t a o r f i e l d o b s e r v a t i o n s of p o s s i b l e volume changes d u r i n g d e f o r m a t i o n . A p r e s s u r e - v o i d s r e l a t i o n would be r e q u i r e d i f c o m p r e s s i b l i t y were t o b e c o n s i d e r e d . The i c e b l o c k c o n c e n t r a t i o n ( o r v o i d s r a t i o ) is t h e r e f o r e assumed t o be c o n s t a n t . A s r u b b l e p i l i n g e v e n t s u s u a l l y o c c u r o v e r s h o r t p e r i o d s

(L),

t e m p e r a t u r e and i t s e f f e c t on t h e d e f o r m a t i o n p r o c e s s a r e ignored. The e q u a t i o n s of e q u i l i b r i u m a r e

a

u a T r + + 1 + 2 2 = - y s i n

e

ar r a0 r ( 2 )

where y i s t h e u n i t weight ( o r buoyancy of submerged r u b b l e ) and or, og and r r e a r e normal and s h e a r s t r e s s components, a s shown i n Fig. 1. Compressive s t r e s s e s a r e c o n s i d e r e d p o s i t i v e t h r o u g h o u t t h e p r e s e n t a n a l y s i s .

(5)
(6)

A t t h e s i d e s l o p e S = 0 and 9 =

-

6. Equation (13) g i v e s two v a l u e s of correspondfng t o t h e a c t i v e and p a s s i v e s t a t e s . For t h e p a s s i v e s t a t e

Approximate S o l u t i o n

Analysis i s s i m p l i f i e d by c o n s i d e r i n g t h e s t r e s s a n g l e , 6, t o be a l i n e a r f u n c t i o n of 8. T h i s

assumption was used by Nadai

(14)

f o r the a c t i v e s t a t e , and is i n r e a s o n a b l e agreement w i t h t h e numerical s o l u t i o n s of Sokolovski

(11)

and Marais

(13).

The p a s s i v e s t a t e may be somewhat d i f f e r e n t , but t h e l i n e a r d i s t r i b u t i o n s t i l l a g r e e s w i t h t h e e x a c t s o l u t i o n f o r t h e l i m i t i n g c a s e of h o r i z o n t a l s i d e s (apex a n g l e = n)

o r an i n f i n i t e s l o p e of any i n c l i n a t i o n . Thus, t h e s t r e s s a n g l e i s given by

where and $; a r e t h e v a l u e s of J, a t t h e s i d e s l o p e s . These could be determined from Eq. (12) and (141, and a1 and a;! a r e t h e a n g l e s between t h e s i d e s l o p e s and t h e v e r t i c a l d i r e c t i o n . For symmetrical wedges, only h a l f t h e wedge need be s t u d i e d and t h e v a l u e of $ a t t h e c e n t r e l i n e w i l l be R

.

Equation (15) t h e n reduces

2 t 0

The s t r e s s f u n c t i o n , S, i s approximated by a polynomial form

The c o e f f i c i e n t s So, S1,

. . .

a r e determined by s a t i s f y i n g t h e boundary c o n d i t i o n s and t h e e q u i l i b r i u m of f o r c e s on s e c t o r s of t h e wedge. Terms of o r d e r g r e a t e r t h a n

e2

a r e n e g l e c t e d . A s S = 0 a t t h e boundaries, Eq. (17) may be w r i t t e n a s

For symmetrical wedges ( a l = a 2 ) , S i s an even f u n c t i o n of 8 and Eq. (18) reduces t o

The unknown c o e f f i c i e n t , So, may be o b t a i n e d from t h e balance of v e r t i c a l f o r c e s a c t i n g on a s e c t o r of t h e wedge of r a d i u s r. T h i s c o n d i t i o n i s

S u b s t i t u t i n g Eq. (15) and (18) i n ( 8 ) and ( 3 ) , t h e c o n d i t i o n g i v e n by Eq. ( 2 0 ) , g i v e s So. The i n t e g r a t i o n i n Eq. (20) can be o b t a i n e d i n a c l o s e d form, a l b e i t a

very l e n g t h y one. It i s s i m p l e r and more p r a c t i c a l t o e v a l u a t e it numerically.

The a d d i t i o n a l term

s3e3

was i n c l u d e d i n a n e x t e n s i o n of Eq. (18) t o t e s t t h e convergence of t h e p r e s e n t s o l u t i o n f o r asymmetrical wedges. The

a d d i t i o n a l c o n d i t i o n was t h e e q u i l i b r i u m of h o r i z o n t a l f o r c e s on a s e c t o r of t h e wedge. The r e s u l t s , i n t h i s case, were alm s t i d e n t i c a l t o those o b t a i n e d by

9

n e g l e c t i n g S38

.

The p r e s e n t s o l u t i o n approximates t h e e x a c t s o l u t i o n by power s e r i e s expansion. It i m p l i e s t h a t t h e y i e l d c r i t e r i o n and s i m i l a r i t y c o n d i t i o n a r e s a t i s f i e d everywhere. The e q u i l i b r i u m of f o r c e s , however, i s only s a t i s f i e d i n a n a v e r a g e s e n s e over t h e wedge. It could be s a t i s f i e d over any a r b i t r a r y number of s m a l l e r s e c t o r s of t h e wedge by i n c l u d i n g more terms i n t h e power s e r i e s of Eq. (17).

RESULTS

Values of So a r e p r e s e n t e d i n Fig. 2 f o r symmetrical wedges and i n Fig. 3 f o r asymmetrical wedges w i t h one h o r i z o n t a l s i d e , 62 = 0 , S t r e s s

d i s t r i b u t i o n s i n wedges of any s i d e s l o p e can be o b t a i n e d , a s w e l l , from t h e p r e s e n t a n a l y s i s . A s expected, s t r e s s e s i n c r e a s e w i t h i n c r e a s i n g e q u i v a l e n t a n g l e e of i n t e r n a l f r i c t i o n , $ ' , and w i t h d e c r e a s i n g s i d e s l o p e , 6. The c a l c u l a t e d v a l u e s of S o a r e less, by 3 x , than

Lp

exact v a l u e s f o r a h o r i z o n t a l s u r f a c e

(11

-

s i n + ' ]

)

owing t o approximation of t h e e x a c t s o l u t i o n c o s i n e f u n c t i o n by a parabola. The e r r o r i s expected t o d e c r e a s e f o r s m a l l e r apex a n g l e s ( l a r g e r 6). When t h e a n a l y s i s was extended t o t h e a c t i v e s t a t e t o examine i t s accuracy, t h e r e s u l t s were i n good agreement w i t h Marais' numerical v a l u e s

(13).

The maximum e r r o r was 3% f o r h o r i z o n t a l s u r f a c e s and decreased f o r l a r g e r v a l u e s of 6.

The h o r i z o n t a l f o r c e i n t h e i c e s h e e t a d j a c e n t t o a symmetrical r u b b l e wedge ( s a i l o r k e e l ) may be determined by i n t e g r a t i n g t h e normal s t r e s s a l o n g t h e v e r t i c a l a x i s ( 8 = O),

From Eq. ( 3 t o 8, 1 9 )

where H is h e i g h t of wedge (from apex t o base, s e e F i g u r e 4a) and t h e a n g l e ,

to,

i s

1

.

The o r d e r of

2

t h e s e f o r c e s may be i l l u s t r a t e d by c o n s i d e r i n g a n example of t y p i c a l v a l u e s f o r a f i r s t - y e a r p r e s s u z e r i d g e of a symmetrical t

5

i a n g u l a r s a i l ( 6 ' = 60°, 6 = 25" and y = 6200 N/m ). The f o r c e a s s o c i a t e d w i t h k e e l formation may be t a k e n a s approximately e q u a l t o t h a t a s s o c i a t e d w i t h t h e s a i l ( s i n c e weight of t h e s a i l e q u a l s buoyancy of t h e k e e l ) . Thus, f o r a s a i l h e i g h t of 3 m t h e f o r c e i t h e i c e s h e e t d u r i n g r i d g e b u i l d i n g would be 2.34 x 10' N/m.

ksymmetrical r u b b l e f e a t u r e s , a s shown i n Fig. 4b, may have s a i l and k e e l apexes a t d i f f e r e n t v e r t i c a l

*This i s t h e v a l u e of $' f o r an i n t e r n a l f r i c t i o n a n g l e , 6 = 50" and a cohesion c o e f f i c i e n t , k = 0.15.

(7)

0 10 20 30 40 50 60 S I D E S L O P E . 8 ( d e g r e e s ) F i g u r e 2 S t r e s s c o e f f i c i e n t , So, f o r symmetrical wedges p l a n e s . The h o r i z o n t a l f o r c e i n t h e i c e s h e e t s h o u l d b e e s t i m a t e d by i n c l u d i n g t h e s h e a r s t r e s s e s on p a r t of t h e h o r i z o n t a l b a s e of t h e wedges i n a d d i t i o n t o t h e normal s t r e s s e s on t h e v e r t i c a l p l a n e s t h r o u g h t h e apexes. Note t h a t

JI

can be determined from t h e boundary v a l u e s and f i n e a r d i s t r i b u t i o n of J, g i v e n by Eq. (14) and (15). Normal and s h e a r s t r e s s e s on t h e h o r i z o n t a l b a s e of t h e wedge a r e g i v e n by 'Jx = c o s e [ l 2 s i n + ' c o s 2 ( $

+

e ) ] (23) T =

YSH

s i n $ ' s i n Z ( ~ , + 8 ) c o s e (24) The s t r e s s e s on t h e b a s e of t h e s a i l of a r i d g e would n o t b e i n e q u i l i b r i u m w i t h t h o s e on t h e b a s e of t h e k e e l i f b o t h s a i l and k e e l had a common p l a n e boundary a t t h e w a t e r l e v e l . I n s t e a d , a t w a t e r l e v e l a l a y e r of r u b b l e o r an i c e s h e e t must e x i s t t h a t h a s s t r e s s e s from t h e s a i l and k e e l a c t i n g on d i f f e r e n t s i d e s . I n t e g r a t i o n of t h e s h e a r s t r e s s e s a l o n g t h i s l a y e r g i v e s t h e same t o t a l h o r i z o n t a l f o r c e i n t h e i c e c o v e r a s t h a t p r e d i c t e d by Eq. (22).

The f o r c e o b t a i n e d from t h e p o t e n t i a l energy approach f o r a symmetrical wedge is (Kovacs and

Sodhi

(1)).

where yi and t a r e t h e u n i t weight and t h i c k n e s s of i c e b l o c k s , r e s p e c t i v e l y . The r a t i o of t h e f o r c e s

p r e d i c t e d from t h e p r e s e n t a n a l y s i s t o t h o s e from t h e p o t e n t i a l energy approach i s

T y p i c a l v a l u e s of t h e v a r i a b l e s i n Eq. ( 2 6 ) g i v e r a t i o s of t h e o r d e r of 20.

The p r e c e d i n g a n a l y s i s a p p l i e s t o newly formed, f l o a t i n g r u b b l e w i t h a wedge-shaped s a i l o r k e e l and two p l a n e , s t r e s s - f r e e s i d e s . Grounded r u b b l e , on t h e o t h e r hand, would have d i f f e r e n t boundary c o n d i t i o n s .

0 10 20 30 4 0 50 60 S I D E S L O P E , 6 ( d e g r e e s ) F i g u r e 3 S t r e s s c o e f f i c i e n t , So, f o r a s y m e t r i c a l wedges w i t h one h o r i z o n t a l s i d e ( 6 2 = 0 ) The s i m i l a r i t y s o l u t i o n c o u l d be e x t e n d e d t o t r e a t s u c h c a s e s o n l y i f t h e g r o u n d i n g s t r e s s on t h e k e e l s i d e were p r o p o r t i o n a l t o t h e d i s t a n c e from t h e apex.

Shore p i l e - u p s o c c u r r i n g above w a t e r l e v e l may c o r r e s p o n d t o t h e above a n a l y s i s i f t h e r u b b l e i s p r e s s e d a g a i n s t a n o b s t a c l e i n s u c h a way t h a t a p a s s i v e stress s t a t e e x i s t s . An i c e s h e e t o r a l a y e r of r u b b l e a d v a n c i n g on t h e s h o r e would be s u b j e c t e d t o r e s i s t a n c e due t o r u b b l e on i t s t o p s u r f a c e ( o r t h e b a s e of r u b b l e wedge) and t o t h e r e s i s t a n c e of

grounding on i t s bottom s u r f a c e . Rubble f o r c e s can be e s t i m a t e d a s f o r f l o a t i n g i c e . Ground r e s i s t a n c e may be assumed t o be e q u a l t o t h e normal f o r c e from t h e r u b b l e wedge m l t i p l i e d by a f r i c t i o n c o e f f i c i e n t between t h e s o i l and i c e . Note t h a t t h e s h e a r s t r e s s e s from t h e ground and t h e r u b b l e wedge a r e n o t i n

e q u i l i b r i u m and a c t i n a d i r e c t i o n o p p o s i t e t o t h e movement of t h e advancing i c e s h e e t . O t h e r p i l e - u p s i t u a t i o n s ( n o t c o n s i d e r e d h e r e ) may o c c u r where t h e r e a r e no v e r t i c a l o b s t a c l e s e x e r t i n g h o r i z o n t a l f o r c e on

ICE SHEET SAIL

a ) S Y M M E T R I C A L R I D G E ICE SHEET f - ---,--- !

-

'

.

.

KEEL C _ _ _ - - b l A S Y M M E T R I C A L R U B B L E F i g u r e 4 I c e r u b b l e f e a t u r e s

(8)
(9)

reprinted from

Proceedings of the Third International Offshore M a n i c s and

Arctic Engineering Symposium

-

Volume II I

Editor: V. J. Lunardini (Book No. 100173) published by

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 East 47th Street, New York, N. Y. 10017

(10)

T h i s paper,

w h i l e b e i n g d i s t r i b u t e d i n

r e p r i n t form by t h e D i v i s i o n of B u i l d i n g

Research,

remains t h e c o p y r i g h t of

t h e

o r i g i n a l p u b l i s h e r .

It should n o t be

reproduced i n whole o r i n p a r t w i t h o u t t h e

permission of t h e p u b l i s h e r .

A

l i s t

of a l l p u b l i c a t i o n s a v a i l a b l e from

t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n o f

B u i l d i n g R e s e a r c h ,

N a t i o n a l R e s e a r c h

C o u n c i l o f

C a n a d a ,

O t t a w a ,

O n t a r i o ,

KIA

0R6.

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers