• Aucun résultat trouvé

Role of transient creep in high temperature tensile failure of ice

N/A
N/A
Protected

Academic year: 2021

Partager "Role of transient creep in high temperature tensile failure of ice"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Scripta Metallurgica, 18, pp. 777-782, 1984

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=0af56854-5692-4a6e-ba43-39ca2b83c42e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0af56854-5692-4a6e-ba43-39ca2b83c42e

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Role of transient creep in high temperature tensile failure of ice

(2)

Ser

T-a

N21d

3 .

1240

C ,

2

National Research

Conseil national

3LDG

*

Council Canada

de recherches Canada

ROLE OF TRANSIENT CREEP I N HIGH TEMPERATURE

TENSILE FAILURE OF ICE

by

N.K. Sinha

Reprinted from

Scripta Metallurgica

Vol. 18, 1984

p. 777

-

782

DBR Paper No. 1240

Division of Building Research

(3)

ABSTRACT

The s t r e s s - s t r a i n r e l a t i o n s h i p t o f r a c t u r e f o r p o l y c r y s t a l l i n e

i c e i n t e n s i o n h a s been shown t o b e governed by e l a s t i c a n d

d e l a y e d e l a s t i c d e f o r m a t i o n w i t h n e g l i g i b l e v i s c o u s flow.

Delayed e l a s t i c i t y , a s s o c i a t e d w i t h g r a i n boundary s l i d i n g ,

d o m i n a t e s t h e d e f o r m a t i o n p r o c e s s a s t h e g r a i n s i z e d e c r e a s e s

l e a d i n g t o an a p p a r e n t t r a n s i t i o n f r o m b r i t t l e t o d u c t i l e w i t h

t h e d e c r e a s e i n g r a i n s i z e .

La r e l a t i o n contrainte-d'ef ormation jusqu'

B

r u p t u r e d e l a g l a c e

p o l y c r i s t a l l i n e e n t e n s i o n s ' e s t r'ev'el'ee d e n a t u r e 6 l a s t i q u e

i n s t a n t a n k e t

Cl

a s t i q u e d i f f'er'ee

a v e c 6coulement v i s q u e u x

n ' e g l i g e a b l e .

La d'ef o r m a t i o n 6 l a s t i q u e d i f f'er'ee associ'ee a u

g l i s s e m e n t d e s g r a i n s l e s u n s s u r

l e s

a u t r e s

e s t pr'epondkante

l o r s q u e l a t a i l l e d e s g r a i n s diminue, c o n d u i s a n t

2

une p'eriode

t r a n s i t o i r e a p p a r e n t e de l ' k t a t f r a g i l e

3

l ' g t a t d u c t i l e .

(4)

S c r i p t a

M E T A L L U K G I C A

V o l . 1 8 , p p . 7 7 7 - 7 8 2 , 1 9 8 4 P r i n t e d i n t h e U.S.A.

Pergamon P r e s s L t d . A l l r i g h t s r e s e r v e d

ROLE OF TRANSIENT CREEP I N HIGH TEMPERATURE TENSILE FAILURE OF ICE Nirmal K. S i n h a

D i v i s i o n of B u i l d i n g Research, National Research Council Canada, Ottawa, Canada, KIA OR6 ( R e c e i v e d March 1 2 , 1 9 8 4 )

( R e v i s e d May 1 5 , 1 9 8 4 ) I n t r o d u c t i o n

The e f f e c t of g r a i n s i z e on t h e s t r e n g t h of p o l y c r y s t a l l i n e i c e a t a h i g h homologous temperature of 0.96 T, (-IO°C), where T, is t h e m e l t i n g p o i n t i n Kelvin, h a s been i n v e s t i g a t e d e x p e r i m e n t a l l y by a number of i n v e s t i g a t o r s [l-61. A review o f t h e s e r e s u l t s showed t h a t a l l

t h e s e t e s t s , however, have been a f f e c t e d by c h o i c e of improper specimen geometry, t h e p r e s e n c e of l a r g e number of i n c l u s i o n s i n t h e m a t e r i a l s and by u n d e s i r a b l e i n t e r a c t i o n between t h e t e s t i n g machine and t e s t specimens 171. Consequently i t a p p e a r s t h a t t h e dependence of s t r e n g t h on g r a i r s i z e f o r p u r e i c e i s s t i l l n o t k n w n w i t h c e r t a i n t y . The i n v e s t i g a t i o n s c a r r i e d o u t by C u r r i e r e t a l . [ l - 3 1 a r e t h e b e s t among a l l t h e s e r e p o r t s because t h e y documented t h e e x p e r i m e n t a l

c o n d i t i o n s w e l l , which o t h e r s f a i l e d t o do, and because t h e y a r e t h e o n l y p e o p l e who measured t h e specimen d e f o r m a t i o n d u r i n g t h e t e s t s .

I t w i l l be s h w n i n t h i s p a p e r t h a t t h e mechanical r e s p o n s e of t h e specimens u s e d by C u r r i e r e t a l . i s c o n s i s t e n t w i t h a p r e v i o u s l y f o r m l a t e d h i g h t e m p e r a t u r e c o n s t i t u t i v e e q u a t i o n

[8-I01 p r i m a r i l y d e s c r i b i n g t r a n s i e n t and s t e a d y - s t a t e creep. S i n c e t h i s model c o n t a i n s a number of m a t e r i a l parameters t h a t a r e r e l a t e d t o micromechanical p r o c e s s e s [91, t h e a n a l y s i s a l s o p r o v i d e s a n i n s i g h t i n t o t h e mechanics i n v o l v e d i n t e n s i l e f a i l u r e . The p a p e r i n t r o d u c e s new c o n c e p t s i n t h e mechanics of deformation and f a i l u r e t h a t c o u l d p r o v i d e f o o d f o r thought and p o s s i b l e e x p e r i m e n t a l d i r e c t i o n t o t h e i n v e s t i g a t o r s i n v o l v e d i n u n d e r s t a n d i n g t h e h i g h t e m p e r a t u r e f a i l u r e mechanisms of p o l y c r y s t a l l i n e m a t e r i a l s i n g e n e r a l .

Experimental R e s u l t s and P r e l i m i n a r y A n a l y s i s

The t e s t s r e p o r t e d by C u r r i e r e t a!. [1-31 were c a r r i e d o u t under ,a c l o s e C l o o p c o n t r o l l e d c o n s t a n t cross-hea d i placement r a t e , x, o r u n d e r a nominally c o n s t a n t s t r a i n r a t e ,

i

= j / t = 1 x LO-' i 8 , w h e r e t i s t h e e f f e c t i v e specimen l e n g t h . Under t h e s e t e s t c o n d i t i o n s , t g e t e n s i l e s t r e n g t h , o f , d e c r e a s e d w i t h t h e i n c r e a s e i n g r a i n s i z e , d ( i n t h e r a n g e o f 1.0 t o , 7.3 mm),according t o t h e Hall-Petch e x p r e s s i o n a = a + k d -112 £ 1 (1) -2 -312 where a i = 0.6 MN-• and k = 0.02 MN-m

.

-2 If E i s Young's modulus (E = 9.5 GN-m [ a ] ) , t h e n e q u a t i o n (1) g i v e s t h e e l a s t i c s t r a i n a t f r a c t u r e a s i k -112 r f ( e l a s t i c ) =

+

d = 6.3 i lo-'

+

2.1 x d-l12 ( 2 )

F i g u r e 1 shows t h a t e q u a t i o n (2) u n d e r e s t i m a t e s t h e s t r a i n a c t u a l l y measured, and t h a t t h e d e v i a t i o n i n e l a s t i c r e s p o n s e depends g r e a t l y on g r a i n s i z e . The a u t h o r s [2-31 a l s o e s t i m a t e d t h e f r a c t u r e s t r a i n a s

cf (nominal) =

b

tf (3

where tf is t h e observed f a l l u r e time, and n o t e d a l a r g e d i s c r e p a n c y between t h i s and t h e measured s t r a i n s a s shown i n Fig. 1. Consequently t h e measured s t r a i n r a t e s were n o t o n l y a b o u t one o r d e r of magnitude lower b u t v a r i e d o v e r a wide range (600%). The f o l l o w i n g a n a l y s i s w i l l show t h a t e x p e r i m e n t a l o b s e r v a t i o n s c a n b e e x p l a i n e d q u a n t i t a t i v e l y u s i n g stress r a t e d u r i n g l o a d i n g a s t h e b a s i s of a n a l y s i s .

7 7 7

0 0 3 6 - 9 7 4 8 / 8 4 $ 3 . 0 0 + . O O

(5)

TRANSIENT CREEP IN

ICE

Vol.

1 8 ,

NO.

8

Bigh Temperature Rheology of P o l y c r y s t a l s

Creep deformation i n p o l y c r y s t a l l i n e m a t e r i a l s a t high t e q e r a t u r e s c a n b e expressed phenomenologically (81 by

€ = € + E d + € " (4) v h e r e ce is t h e pure e l a s t i c deformation, e is t h e recoverable, delayed e l a s t i c s t r a i n , and $

i s t h e viscous o r permanent deformation. ( h e t e r n "viscous' w i l l b e used i n a general s e n s e t o d e s c r i b e flow l e a d i n g t o permanent deformation. The term " p l a s t i c " is avoided h e r e because i t is comaonly used t o d e s c r i b e b o t h permanent and delayed e l a s t i c deformation.)

Under c o n d i t i o n s where g r a i n boundary d i f f u s i o n a l processes d o n o t play a dominant r o l e and where t h e m i c r o s t r u c t u r e h a s not d e t e r i o r a t e d by t h e formation of i n t e r n a l voids and c r a c k s , u n i a x i a l c o n s t a n t s t r e s s c r e e p i n previoualy undeformed, pure, randomly o r i e n t e d , p o l y c r y s t a l l i n e m a t e r i a l s can be expressed i n terms of s t r e s s , a, and time, t , f o r a m a t e r i a l w i t h an average g r a i n diameter of d a t a g i v e n t e q e r a t u r e T, by 191

- .

I n t h i s equation t h e t h r e e t e r n s correspond t o t h e t h r e e s u c c e s s i v e t e r n s i n equation (4). E i s Young's modulus; aT, b, c l , n and s a r e constants; dl is t h e u n i t of g r a i n diameter; and

kv

1

is t h e viscous s t r a i n r a t e f o r u n i t s t r e s s

2 .

The constant a= is t h e i n v e r s e of r e l a x a t i o n t i m i a t temperature T i n Kelvin; n i s t h e s t r e s s exponent f o r viscous flow; and s is t h e s t r e s s exponent f o r delayed e l a s t i c i t y . Both

+

and cv. vary w i t h temperature according t o an Arrhenius

- 1

equation with t h e same a c t i v a t i o n energy, Q. Numerical values of t h e s e material c o n s t a n t s f o r i c e determined from previous c r e e p experiments [ a ] and subsequent a n a l y s i s [ 9 ] a r e given i n Table 1. Note t h a t s=l f o r i c e although i t may b e d i f f e r e n t i n o t h e r m a t e r i a l s 191.

A simple f o r m l a t i o n f o r p r e d i c t i n g s t r a i n corresponding t o a n a r b i t r a r y monotonically i n c r e a s i n g s t r e s s h i s t o r y and hence t h e s t r e s s - s t r a i n r e l a t i o n h a s been developed 1101 on t h e b a s i s of equation (5) f o r p o l y c r y s t a l l i n e m a t e r i a l s l i k e i c e , i.e., f o r s = l

.

T h i s theory h a s been t e s t e d s u c c e s s f u l l y u s i n g information obtained from u n i a x i a l unconfined compressive s t r e n g t h t e s t s on i c e i n t h e t e n p e r a t u r e range of -5 t o -30°C [ l o ] .

For l o a d i n g c o n d i t i o n s of constant s t r e s s - r a t e ,

i,

i t i s shown (10) t h a t equation (5) t a k e s t h e following form f o r t h e s t r a i n a t time t a f t e r t h e beginning of loading:

1 C1 dl Nt1

b n+l

€ = Q + -

(r)

1

Aa [ l

-

exp [ - ( a T [ ~ + l l l ~ )

I ]

+

-

v1

(5)

(6)

111 a(n+l) a

where a a

k

= NAa =

N G A ~ .

Note t h e u s e of a numerical i n t e g r a t i o n method f o r f o r m l a t i n g t h e

second, delayed e l a s t i c term. This term, however, r a p i d l y converges a s A t i s decreased [ 101.

Experimental o b s e r v a t i o n s (111 shared t h a t a c o n s t a n t cross-head displacement r a t e induces a monotonically i n c r e a s i n g s t r a i n r a t e r a t h e r t h a n t h e c o n s t a n t s t r a i n r a t e given by

k

.

This type of loading, however, g i v e s a n e a r l y l i n e a r s t r e s s r a t e during i n i t i a l l o a d i n g perfods. S t r e s s r a t e a n a l y s i s should t h e r e f o r e be a p p r o p r i a t e f o r t h e t e s t s under consideration. Also, a s w a s discussed i n [ 7 ] , i t is l e s s ambiguous because both load (and hence s t r e s s f o r t h e small

s t r a i n involved i n t h e p r e s e n t s e r i e s of t e s t s ) and time c a n b e measured a c c u r a t e l y . Moreover, i t provides an opportunity t o examine t h e a p p l i c a b i l i t y of equation (6) t o independent

experimental o b s e r v a t i o n s under a t e n s i l e mode of loading. Application of Theory

The t e s t r e s u l t s r e p o r t e d i n a t a b u l t t e d form i n [2,3] a r e presented h e r e i n Fig. 2 i n terms of average s t r e s s r a t e t o f a i l u r e , af = af

It

.

The s t r a i n a t f r a c t u r e time was c a l c u l a t e d using m a t e r i a l c o n s t a n t s i n Table 1 and equation

( 6 )

w i t h

b

=

P

f o r each t e s t and g r a i n s i z e i n Fig. 2. The r e s u l t s a r e compared with t h e measured values i n Fig. 3. The agreement between theory (open c i r c l e s ) and experiment ( s o l i d c i r c l e s ) i s considered e x c e l l e n t s i n c e no

modification was made i n e i t h e r t h e method of c a l c u l a t i o n o r t h e numerical values of t h e m a t e r i a l c o n s t a n t s determined s e v e r a l y e a r s ago [ 8 ] from c r e e p t e s t s on pure inclusion-f r e e ice. One of t h e f a c t s supporting t h e v a l i d i t y of t h e proposed model i s t h a t i t can account f o r t h e

(6)

Vol.

18,

No.

8

TRANSIENT CREEP IN ICE

It s h o u l d be n o t e d t h a t t h e p r e d i c t e d s t r a i n s a r e , i n g e n e r a l , somewhat l o w e r t h a n t h e measured v a l u e s . T h i s was a n t i c i p a t e d (71 b e c a u s e t h e deformation of t h e specimens was measured by i n s t a l l i n g gauges between t h e t o p and t h e bottom end c a p s (1-31. The measured s t r a i n s t h e r e f o r e r e p r e s e n t e d t h e sum of t h e d e f o r m a t i o n s of t h e gauge s e c t i o n and t h e c o n p l i a n t g r a i r r r e f i n e d end zones of e a c h specimen [ 2 , 3 ] i n which t h e g r a i n s were s m a l l e r t h a n t h o s e i n t h e gauge s e c t i o n . For t h e same a p p l i e d s t r e s s r a t e and l o a d i n g time i t was p r e d i c t e d i n a n independent s t u d y (121 t h a t a f i n e r g r a i n e d m a t e r i a l w i t h more grain-boundary s u r f a c e a r e a s would deform more t h a n a c o a r s e g r a i n e d one.

The c o n s i s t e n c y between t h e e x p e r i m e n t a l o b s e r v a t i o n s and t h e t h e o r y i s f u r t h e r

i l l u s t r a t e d i n Fig. 4, which r e p r e s e n t s t h e maximm s p a n i n

trf

i n which t h e e x p e r i m e n t s were conducted. Computed r e s u l t s a r e based on e q u a t i o n (6).

D i s c u s s i o n

Measurements of t o t a l s t r a i n a l o n e d o n o t n e c e s s a r i l y l e a d t o a n u n d e r s t a n d i n g o f t h e f a c t o r s c o n t r o l l i n g t h e deformation behaviour of a m a t e r i a l . P u r e l y e m p i r i c a l c o n s t i t u t i v e r e l a t i o n s , though extremely u s e f u l from a p r a c t i c a l p o i n t of view, d o n o t n e c e s s a r i l y p r o v i d e i n f o r m a t i o n on b a s i c m a t e r i a l p r o p e r t i e s e i t h e r . Equation ( 5 ) , however e m p i r i c a l i t may appear t o be, was developed (91 by g i v i n g c o n s i d e r a t i o n t o deformation b e h a v i o u r (81 and t h e

micromechanics of deformation through s e p a r a t i n g t h e e l a s t i c , d e l a y e d e l a s t i c and v i s c o u s components. The e l a s t i c component i s a s s o c i a t e d w i t h t h e d e f o r m a t i o n of t h e l a t t i c e . It i s assumed t h a t t h e delayed e l a s t i c i t y component i s a s s o c i a t e d w i t h g r a i n boundary s l i d i n g and t h a t t h e v i s c o u s c r e e p i s l i n k e d p r i m a r i l y t o i n t r a g r a n u l a r c r e e p due t o d i s l o c a t i o n motion.

Subsequent development of e q u a t i o n ( 6 ) from (5) a l s o involved f u r t h e r c o n s i d e r a t i o n of t h e micromechanisms of deformation (101. These b a s i c s t u d i e s s t r o n g l y i n d i c a t e d t h a t experiments should b e designed n o t o n l y t o s t u d y t h e s t r e s s - s t r a i n r e l a t i o n s b u t a l s o t h e s t r e s s and s t r a i n p a t h and recovery h i s t o r y o n unloading, a s w e l l a s m i c r o s t r u c t u r a l f e a t u r e s .

F i g u r e 4 c l a r i f i e s t h i s idea. Both t h e t h e o r y and t h e experiment c o n s i s t e n t l y show a n o n l i n e a r s t r e s s - s t r a i n response f o r t h e e n t i r e d u r a t i o n of t h e t e s t . The s t r e s s - s t r a i n diagrams i n d i c a t e t h a t c o n s i d e r a b l e n o n e l a s t i c deformation o c c u r r e d b e f o r e f r a c t u r e . The t h e o r y , because of i t s t h r e e p a r t form, b r i n g s a new i n s i g h t i n t o t h e r e l a t i o n between deformation and f a i l u r e f o r t h e t e s t s under c o n s i d e r a t i o n . T h i s i s i l l u s t r a t e d i n Fig. 5 i n which t h e d e t a i l e d

c a l c u l a t i o n s c o r r e s p o n d i n g t o t h e s t r e s s - s t r a i n diagram f o r t e s t No. 54 i n Fig. 4 a r e shown. The n o w l i n e a r time dependence of t h e t o t a l s t r a i n and i t s l a r g e d e v i a t i o n from t h e nominal s t r a i n p a t h a r e p a r t i c u l a r l y n o t i c e a b l e . The t h e o r y s u g g e s t s t h a t t h e v a r i a t i o n i n t h e s t r a i n r a t e d u r i n g t h e t e s t was c a u s e d p r i m a r i l y by t h e t i m e w i s e n o n l i n e a r r e s p o n s e o f t h e d e l a y e d e l a s t i c s t r a i n . Note a l s o t h e p r i m a r i l y e l a s t i c and d e l a y e d e l a s t i c (hence r e c o v e r a b l e ) n a t u r e of t h e t o t a l s t r a i n w i t h v e r y l i t t l e c o n t r i b u t i o n from t h e v i s c o u s t e r m (i.e., permanent s t r a i n ) , e v e n a t t h e time of f r a c t u r e .

The c o n t r i b u t i o n of t h e t h r e e components o f s t r a i n t o t h e t o t a l s t r a i n a t f r a c t u r e (corresponding t o a l l t h e r e s I t s i n Fig. 3 ) a r e p r e s e n t e d i n Fig. 6.

Y

The c o n t r i b u t i o n of t h e v i s c o u s s t r a i n a t f r a c t u r e , ov, t o t h e t o t a l s t r a i n , of, d e f i n e d a s

4

= of/ zf, i s s m a l l i n a l l t h e t e s t s , i n t h e range of 4 t o 7%. T o t a l s t r a i n , t h e r e f o r e , was dominate$ by t h e e l a s t i c and d e l a y e d e l a s t i c deformation. However, t h e r e l a t i v e importance o f t h e e l a s t i c s t r a i n and t h e delayed e l a s t i c s t r a i n depends on g r a i n s i z e (Fig. 6). For l a r g e g r a i n s , e l a s t i c s t r a i n

dominates whereas t h e d e l a y e & e l a s t i c c o onent dominates f o r f i n e r g r a i n s . The cone i b u t i n o f t h e delayed e l a s t i c s t r a i n a t f r a c t u r e ,

q.

t o t h e t o t a l s t r a i n , r f , denoted by

4

(= z / s f ) , is 73% f o r t h e t e s t w i t h d = 1.0 mm, wh r e a s

f

i t i s o n l y 26% f o r t h e t e s t w i t h d = 7.3 mm. Bn g e n e r a l , i t is t h e l a r g e v a r i a t i o n of yd w i t h d t h a t d e t e r m i n e s t h e g r a i n s i z e dependence of t h e f r a c t u r e s t r a i n and hence t h e a p p a r e n t i n c r e a s e i n d u c t i l i t y w i t h d e c r e a s e i n g r a i n s i z e .

F i n a l l y , t h i s e x p l a i n s t h e observed dependence between t h e d e c r e a s e i n g r a i n s i z e and t h e r a p i d l y i n c r e a s i n g d e v i a t i o n of t h e t o t a l s t r a i n from p u r e e l a s t i c s t r a i n ( s e e Fig. 1). S nce t h e delayed e l a s t i c s t r a i n i s a s s o c i a t e d w i t h t h e g r a i n boundary s l i d i n g s t r a i n [91,

f

g i v e s a measure of t h e c o n t r i b u t i o n of t h e s l i d i n g t o t h e t o t a l s t r a i n a t f a i l u r e . T h i s b r i n g s i n i n t e r e s t i n g p o s s i b i l i t i e s of i n t r o d u c i n g t h e s u b j e c t of i n t e r g r a n u l a r f r a c t u r e and d i s c u s s i n g t h e above r e s u l t s a c c o r d i n g l y . However, t h i s i s o u t s i d e t h e s c o p e of t h i s paper.

I f a specimen i s unloaded f u l l y and i n s t a n t l y j u s t b e f o r e i t f r a c t u r e s , most o f t h e deformation w i l l be recovered. T h i s p r e d i c t i o n c a n b e i n v e s t i g a t e d r e a d i l y and d i r e c t l y by measuring t h e d e f o r m a t i o n d u r i n g l o a d i n g o f a specimen, u n d e r a s p e c i f i c stress r a t e , t o a r e q u i r e d s t r e s s l e v e l f o l l o w e d by r a p i d u n l o a d i n g t o z e r o stress. A s e r i e s of c o n s t a n t s t r e s s r a t e t e s t s , o v e r a wide r a n g e o f l o a d i n g r a t e s , h a s b e e n conducted t o examine t h e v a l i d i t y o f t h e

(7)

T R A N S I E N T CREEP I N I C E

V o l . 1 8 ,

No. 8

above h y p o t h e s i s u s i n g a 1 MN c a p a c i t y servo-hydraulic closed-loop t e s t system. T e s t procedures d e s c r i b e d i n 1131 were followed. R e s u l t s of t h e s e t e s t s w i l l be p r e s e n t e d elsewhere i n d e t a i l . An example i s s h m h e r e i n Fig. 7 t h a t i s r e l e v a n t t o t h e l o a d i n g c o n d i t i o n s shown i n Fig. 2. It i l l u s t r a t e s t h e r e s u l t s o b t a i n e d on t r a n s p a r e n t , i n c l u s i o n f r e e , t r a n s v e r s e l y i s o t r o p i c c o l u m n a r g r a i n e d S-2 i c e w i t h c o n p r e s s i v e l o a d a p p l i e d p e r p e n d i c u l a r t o t h e c o umns. The specimen was loaded t o a stress l e v e l of 1.2 W a a t a c o n s t a n t r a t e of 5 x lo-' U N i 2 8-' a t -lO°C and t h e n unloaded r a p i d l y . The a x i a l s t r a i n was measured by means of a displacement gauge mounted d i r e c t l y on t h e specimen. Note t h e monotonically i n c r e a s i n g s t r a i n r a t e d u r i n g l o a d i n g and t h e s m a l l amount of permanent deformation on unloading.

Conclusions

Experimental o b s e r v a t i o n s by C u r r i e r e t alemade on t e n s i l e s t r e n g t h and deformation of p o l y c r y s t a l l i n e i c e a t 0.96 T,have been examined on t h e b a s i s of a proposed h i g h temperature r h e o l o g i c a l model developed s p e c i f i c a l l y f o r d e s c r i b i n g t r a n s i e n t c r e e p and i t s dependence on g r a i n s i z e . The model shows t h a t t h e s t r e s s - s t r a i n r e l a t i o n s h i p is governed by e l a s t i c and delayed e l a e t i c deformation w i t h very l i t t l e permanent deformation due t o v i s c o u s flow. The apparent b r i t t l e t o d u c t i l e t r a n s i t i o n w i t h t h e d e c r e a s e i n g r a i n s i z e , a s i n d i c a t e d by t h e s t r a i n a t f r a c t u r e , is s h a m t o be t h e r e s u l t of t h e conqlementary r e l a t i o n s h i p between t h e e l a s t i c s t r a i n and t h e delayed e l a s t i c s t r a i n . Delayed e l a s t i c i t y , a s s o c i a t e d w i t h g r a i n boundary s l i d i n g , dominates t h e deformation p r o c e s s a s t h e g r a i n s i z e decreases.

Acknowledgement

The a u t h o r i s i n d e b t e d t o J.H. C u r r i e r , E.M. Schulson and W.F. St. Lawrence. It vould have been impossible t o develop t h e concept proposed i n t h i s paper without t h e a v a i l a b i l i t y o f t h e experimental d a t a o b t a i n e d by them.

T h i s paper i s a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g Research. National Research Council of Canada, and i s published w i t h t h e approval of t h e D i r e c t o r of t h e Division.

References

1. J.H. C u r r i e r and E.H. Schulson, Acta Metall. 30, 1511 (1982).

2. J.H. C u r r i e r , H.Sc. T h e s i s , 'Ihayer School of Engineering. Dartmouth College. Hanover, N.H. (1981).

3. J.H. C u r r i e r , E.M. Schulson and W.F. S t . Lawrence, US A r m y , Cold Regions Research and Engineering Laboratory, Hanover. N.H., Report 83-14 (1983).

4. J. Muguruma, J. Phys.,

D.,

Ser. 2, V.2. 1517 (1969). 5.

B.

Michel, Can. J. Civ. Engng. 5, 285 (1978).

6. S.J. J o n e s andH.A.M. Chew, J. Glaciology. 27, p. 517 (1981). 7. N.K. Sinha, S c r i p t a Metall. 17, 1269 (1983).

8. N.K. Sinha, Experimental Mechanics, 18, 464 (1978). 9. N.K. Sinha, Phil. Mag., 40, 825 (1979).

10. N.K. Sinha, Cold Regions S c i . Technol., 8 , 25 (1983). 11. N.K. Sinha, Experimental Mechanics, 21, 209 (1981).

12. N.K. Sinha, Proc. 6 t h I n t e r n a t i o n a l Conference on P o r t and Ocean Engineering under A r c t i c Conditions, Quebec, Canada, V.1, 216 (1981).

13. N.K. Sinha, J. Mat. S c i . , 17, 785 (1982). TABLE 1

Creep Parameters f o r I c e Obtained from E a r l i e r Creep Experiments [8,9

1.

E = 9.5 G N * ~ ' ~ ; G = 3.8 G N - ~ - ~ ; Q

-

67 Wlmol c l = 9; d l

-

1 mm; s = 1; n = 3; b = 0.34; aT (T = 263 K) = 2.5 x s'l;

2.

-

1.76 x 1 0 ' ~ 8-1; al = 1 U N ~ I I - ~ , T = 263 K. 1

(8)
(9)

T R A N S I E N T CREEP I N I C E

Vol. 18,

No.

8

T I M E . I. I

FIGURE 5

GRAIN SIZE, d, rnrn

FIGURE 6

FIG. 5 Computed s t r a i n components and the t o t a l s t r a i n f o r t e s t No. 5 4

FIG. 6 Grain s i z e dependence of the contribution of e l a s t i c s t r a i n , delayed e l a s t i c s t r a i n and viscous s t r a i n t o the t o t a l s t r a i n a t fracture

2

-

-

2.5 UNLOADED IN < 0.5 r 0

-

-

2 . 0 '=

-

1.5 263 K i

-

i r - 5 x 1 0 ~ 3 ~ ~ . m ~ 2 ~ ~ i - 1 , 0 5-2 ICE

-

VI - 0 . 5 1 , I . I . : 0 0 100 200 300 100 500 TIME. t. r FIGURE 7

(10)

This paper, while being distributed in

reprint form by the Division of Building

Research, remains the copyright of the

original publisher.

It should not be

reproduced in whole or in part without the

permission of the publisher.

A

list of all publications available from

the Division may be obtained by writing to

the Publications Section, Division of

Building Research, National Research

Council of Canada, Ottawa, Ontario,

Figure

FIG.  5  Computed  s t r a i n   components  and  the  t o t a l   s t r a i n   f o r   t e s t   No

Références

Documents relatifs

1) Coverage: The coverage formulation given in our ap- proach takes into account the nature of the phenomenon based on spatial analysis of pollution data. This is not the case of

Here, using representational similarity analysis we ask which MEG oscillatory components (power and phase, across various frequency bands) correspond to low or high-level

Toute différence de pression entre l'intérieur et l'extérieur d u bâtiment en raison de la pression d u vent, de la ventilation mécanique ou en raison d u phénomène

En effet, des résistances peuvent se créer si le professionnel parle de manière inadéquate (Hétu, 2000). Émotionnelle : qui permet de ressentir les émotions de l’autre, elle permet

Comme déjà mentionné, UBIC possède cinq sites Internet. Cela lui permet d’avoir une grande visibilité sur le Web. Facebook, Instagram et LinkedIn sont les trois

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

By introducing a second subsurface H co-adsorbed with a HCOO in its bidentate state, we studied the second hydrogenation leading from formate to formic acid.. The presence of

We show that standard Finite Element Heterogeneous Multiscale Method (FE-HMM) can be used to approximate the effective behavior of solutions of the classical Helmholtz equation