• Aucun résultat trouvé

A method for estimating the utilization of solar gain through windows

N/A
N/A
Protected

Academic year: 2021

Partager "A method for estimating the utilization of solar gain through windows"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 89, 1A, pp. 12-22, 1983

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A method for estimating the utilization of solar gain through windows

Sander, D. M.; Barakat, S. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=afe21835-251a-4420-ad8d-400692f10c00 https://publications-cnrc.canada.ca/fra/voir/objet/?id=afe21835-251a-4420-ad8d-400692f10c00

(2)

Ser

TH1

N21d

no.

1163

National Research

Conseil national

c . 2

1

Council Canada

de

recherches Canada

BLDG

A METHOD FOR ESTIMATING THE UTILIZATION OF

SOLAR GAIN THROUGH WINDOWS

by

D.M. Sander and S.A. Barakat

ANALYZED

Reprinted from

ASHRAE Transactions 1983

Vol. 89, Part 1A, p. 12

-

22

DBR Paper No. 1163

Division of Building Research

(3)

On p e u t , p a r un s i m p l e c a l c u l , e s t i m e r l 1 6 n e r g i e n'ecessaire au c h a u f f a g e d e s h a b i t a t i o n s e n f a i s a n t a p p e l b l a n o t i o n d e

f a c t e u r s s a i s o n n i e r s d ' u t i l i s a t i o n d e l ' g n e r g i e s o l a i r e d e r i v 6 s d'une s i m u l a t i o n s u r o r d l n a t e u r q u i t i e n t compte, chaque h e u r e , d e s donn'ees & t 6 o t o l o g i q u e s de cinq v i l l e s du Canada. Ces f a c t e u r s d ' u t i l i s a t i o n s o n t pr'esent'es pour d i v e r s nlveaux de s t o c k a g e thermique comme une f o n c t i o n du r a p p o r t d e s a p p o r t s s a l s o n n l e r s de c h a l e u r s o l a i r e b l a charge s a i s o n n i s r e du

bbtiment. Les courbes s o n t t r a c k s pour d e s temperatures i n t ' e r i e u t e s c o n s t a n t e s e t d e g & a r t s d e t e m p e r a t u r e d e l ' o r d r e d e 2,75OS pt. de 5;5aC'. Les dinn'ees e x p e r i m e n t a l e s , obtenues d e l ' i n s t a l l a t i o o d ' e s s a l d e c h a u f f a g e s p l a i r e p a s s i f , corrqspondent aux d o n n k ' s c s l c u l 6 e s b p a r t l r des f a c t e u r s

(4)

No.

2736

A Method for Estimating the Utilization

of Solar Gain through Windows

D.M. Sander

S.A. Barakat

ABSTRACT

The h e a t i n g energy requirements f o r houses may be e s t i m a t e d by a simple c a l c u l a t i o n u s i n g t h e concept of s e a s o n a l s o l a r u t i l i z a t i o n f a c t o r s d e r i v e d from hour-by-hour computer s i m u l a t i o n of a c t u a l weather d a t a f o r f i v e Canadian l o c a t i o n s . These u t i l i z a t i o n f a c t o r s a r e presented f o r v a r i o u s l e v e l s of thermal s t o r a g e a s a f u n c t i o n of t h e r a t i o of s e a s o n a l s o l a r g a i n t o s e a s o n a l b u i l d i n g load. Curves a r e p r e s e n t e d f o r c o n d i t i o n s of c o n s t a n t room temperature and f o r temperature swings of 2.75OC and 5.5OC. Experimental d a t a o b t a i n e d from t h e P a s s i v e S o l a r T e s t F a c i l i t y a r e shown t o agree w i t h c a l c u l a t i o n s u s i n g t h e u t i l i z a t i o n f a c t o r s .

INTRODUCTION

The need f o r a simple method of e s t i m a t i n g t h e h e a t i n g energy requirements of houses i s widely recognized. Such a technique could be used f o r comparing a l t e r n a t i v e s i n t h e d e s i g n p r o c e s s and f o r e v a l u a t i n g house d e s i g n s t o determine t h e i r compliance w i t h energy s t a n d a r d s . An i m p o r t a n t component would be t h e e s t i m a t i o n of t h e amount of s o l a r energy c o l l e c t e d through t h e windows s f houses and u t i l i z e d t o o f f s e t h e a t l o s s e s . It h a s been shown t h a t south-facing double- and t r i p l e - g l a z e d windows c a n be n e t s u p p l i e r s of energy d u r i n g t h e h e a t i n g s e a s o n f o r a l l l o c a t i o n s i n s o u t h e r n Canada, provided t h a t a l l of t h e s o l a r g a i n s a r e u t i 1 i z e d . l I n r e a l i t y , however, i t i s p o s s i b l e t o u s e only a f r a c t i o n of t h e s o l a r gains. The magnitude of t h i s f r a c t i o n , which w i l l be r e f e r r e d t o a s t h e u t i l i z a t i o n f a c t o r , depends upon s e v e r a l parameters i n c l u d i n g g e o g r a p h i c a l l o c a t i o n , s i z e and t y p e of g l a s s , o v e r a l l b u i l d i n g h e a t l o s s , thermal s t o r a g e p r o p e r t i e s of t h e house, and t h e allowable indoor temperature swing.

A number of methods have been developed t o e s t i m a t e t h e n e t s o l a r c o n t r i b u t i o n t o s p a c e h e a t i n g f o r d i r e c t - g a i n p a s s i v e s o l a r d e ~ i ~ n s . ~ - ~ One t h a t i s widely used i n Canada and t h e USA i s t h e s o l a r l o a d r a t i o (SLR) method developed by t h e Los Alamos S c i e n t i f i c Laboratory.

It h a s been a p p l i e d e x t e n s i v e l y t o a l l t y p e s of b u i l d i n g s , d e s p i t e t h e c a u t i o n t h a t " t h e method i s n o t a p p l i c a b l e t o t h e a n a l y s i s of low-mass sun-tempered buildings."

It was t h e o b j e c t i v e of t h e p r e s e n t s t u d y t o develop a method of q u a n t i f y i n g t h e u s e f u l s o l a r g a i n through windows t h a t would be a p p l i c a b l e t o a l l t y p e s of houses i n a l l c l i m a t i c r e g i o n s of Canada. A s t h e scope of t h e method was not t o be l i m i t e d t o passive s o l a r houses, i t was n e c e s s a r y t o c o n s i d e r s o l a r h e a t g a i n s through a l l windows ( n o t only t h o s e f a c i n g s o u t h ) a s w e l l a s houses with d i f f e r e n t amounts of thermal mass. The most i m p o r t a n t a p p l i c a t i o n , however, w i l l be t h e e v a l u a t i o n of energy c o n s ~ m p t i o n i n t h e l i g h t w e i g h t wood- frame houses p r e v a l e n t i n Canada. I n a d d i t i o n , i t was deemed d e s l r a b l e t o base t h e method on s e a s o n a l r a t h e r t h a n monthly c o n s m p t i o n t o make i t e a s i e r t o e s t i m a t e t h e s e a s o n a l h e a t i n g energy r e q u i r e d f o r a house. This s e a s o n a l approach h a s , i n f a c t , r e s u l t e d i n a c a l c u l a t i o n procedure only s l i g h t l y more d i f f i c u l t t o apply t h a n t h e d e g r e e d a y method.

This paper d e s c r i b e s t h e development of t h e method and p r e s e n t s t h e s o l a r u t i l i z a t i o n f a c t o r s f o r v a r i o u s amounts of thermal s t o r a g e and t h r e e v a l u e s of indoor temperature swing.

D.M. Sander and S.A. Barakat, D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada, Ottawa.

(5)

TBE

OTILIZAT3[0N FACTOR CONCEPT Instantaneous Heat Balance

The instantaneous (hourly) heat balance for a house is given by: h = l t

+

1,

+

lb

-

gi -gs

where

h = instantaneous heating required

It

= instantaneous heat loss due to transmission through exterior walls, windows, ceilings, etc.

1, = instantaneous heat loss due to air change with outdoors (infiltration plus ventilation)

lb = instantaneous below-grade heat loss

gi = instantaneous heat gain from internal sources (lights, equipment, people, etc. )

gs = instantaneous solar heat gain through windws

There will be times when gains exceed losses. Under these conditions, the excess heat will be stored in the mass of the room, causing the room temperature to rise. In order to prevent it from rising above an acceptable limit, the excess heat gain must be eliminated. This may be done by closing the blinds, opening the windows, or operating a ventilating or air-conditioning system. A portion of the stored heat will become avatlable as useful heat when the room temperature drops to the thermostat setting. The remainder of the stored heat will have been wasted in the form of increased transmission heat loss through the walls owing to the rise in room air temperature.

Seasonal Heat Balance

The heat balance equation may be written for a longer time period, such as the heating season, by including a utilization factor to account for the usable portion of internal and solar gains.

where

H = total heating required for season

Lt = seasonal total of heat losses due to transmission through exterior walls, windws, ceilings, etc.

La seasonal total of heat losses due to indoor-outdoor air exchange (infiltration plus ventilation)

Lb = seasonal total belw-grade heat loss

Gi = seasonal total of heat gains from internal sources (lights., equipment, people, etc. )

Gs = seasonal total of solar heat gains through windows

n i

= utilization factor for internal gains

ns

= utilization factor for solar gains

Utilization of Internal Gains. Since, in most situations, the internal gains are small relative to the sum of loss terms (less than 25%), a utilization factor of one may be

assumed.

Utilization of Solar Gains. The solar utilization factor can be expressed as a function of two normalized parameters, namely, the "gain-load ratio" (GLR) and the "thermal mass-gain ratio" (MGR). The gain-load ratio is defined as:

GLR

-

Ir s

Lt + L a

+

Lb

-

niGi

The gain-load ratio is the ratio of the solar gain through windows to the net heating load, where the net heating load is the amount of heating energy required in the absence of solar gains to maintain the room temperature at the heating thermostat setting.

(6)

This gain-load r a t i o d i f f e r s from t h e s o l a r l o a d r a t i o (SLR) a s d e f i n e d i n Ref 2 i n t h a t t h e GLR i n c l u d e s h e a t l o s s e s through t h e windows w h i l e t h e SLR does not. Moreover, t h e GLR i n c l u d e s s o l a r g a i n s through a l l t h e windows, n o t o n l y t h o s e f a c i n g south.

For l o c a t i o n s i n s o u t h e r n Canada, a house b u i l t t o pre-1975 s t a n d a r d s would have a GLR of l e s s t h a n 0.2, w h i l e a w e l l - i n s u l a t e d p a s s i v e s o l a r house ( w i t h a south-facing window a r e a e q u a l t o 20% of t h e f l o o r a r e a ) would have a GLR on t h e o r d e r of 0.4 t o 0.6.

The thermal mass-gain r a t i o i s defined a s :

MGR =

c/zs

where

C

-

= thermal c a p a c i t y of t h e b u i l d i n g i n t e r i o r (MJ/ K)

gs = average h o u r l y s o l a r g a i n f o r s e a s o n ( W / h ) (gs = Gs/hours i n h e a t i n g season)

Thermal c a p a c i t y , C , i s c a l c u l a t e d a s t h e " e f f e c t i v e mass" of the b u i l d i n g m u l t i p l i e d by i t s s p e c i f i c h e a t . The e f f e c t i v e mass i s t h e mass a c t u a l l y a v a i l a b l e t o s t o r e h e a t from d i r e c t s o l a r g a i n s o r c l o s e c o n t a c t w i t h room a i r , s o t h a t any change i n t h e room a i r

temperature a f f e c t s t h e mass temperature. T h i s normally i n c l u d e s t h e mass i n s i d e t h e i n s u l a t i n g l a y e r of t h e w a l l s and c e i l i n g s b u t excludes t h e exposed c o n c r e t e of u n i n s u l a t e d basement w a l l s and f l o o r s .

The mass-gain r a t i o r e f l e c t s t h e thermal s t o r a g e c h a r a c t e r i s t i c s of t h e b u i l d i n g a s w e l l a s t h e a r e a , t y p e , and o r i e n t a t i o n of t h e g l a z i n g . T y p i c a l houses of l i g h t w e i g h t c o n s t r u c t i o n w i t h window a r e a s e q u a l t o 10% t o 20% of t h e f l o o r a r e a have a mass-gain r a t i o of

approximately 1 h/K. The medium and heavy c o n s t r u c t i o n s d e s c r i b e d i n Tab. I have mass-gain r a t i o s of approximately 3 and 7.5 h / ~ , r e s p e c t i v e l y . These mass-gain r a t i o s i n c r e a s e a s t h e window a r e a d e c r e a s e s and v i c e v e r s a .

Figs. 1 t o 3 show t h e seasonal s o l a r u t i l i z a t i o n f a c t o r p l o t t e d a g a i n s t t h e GLR f o r v a r i o u s v a l u e s of MGR. Fig. 1 i s based on t h e assumption t h a t t h e room temperature i s

maintained c o n s t a n t , while Figs. 2 and 3 a r e f o r c a s e s i n which room temperature r i s e s of 2.75OC and 5.5"C, r e s p e c t i v e l y , a r e permitted. The development of t h e s e s o l a r u t i l i z a t i o n f a c t o r s w i l l be d e s c r i b e d .

DEVELOPMENT OF SOLAR UTILIZATION CURVES Computer S i m u l a t i o n

The s o l a r u t i l i z a t i o n curves shown i n Figs. 1 t o 3 were derived from a l a r g e number o f computer s i m u l a t i o n s . The computer program performed hour-by-hour c a l c u l a t i o n s , u s i n g measured weather d a t a f o r an a c t u a l y e a r , t o determine h e a t g a i n s and l o s s e s , t h e h e a t i n g energy r e q u i r e d t o m a i n t a i n room temperature a t t h e t h e r m o s t a t s e t t i n g , and t h e room

temperature r e s u l t i n g from excess h e a t g a i n s . The s o l a r r a d i a t i o n i n c i d e n t on g l a z e d s u r f a c e s

i s c a l c u l a t e d from h o u r l y v a l u e s of measured h o r i z o n t a l r a d i a t i o n u s i n g t h e c o r r e l a t i o n developed by S o l a r g a i n i s c a l c u l a t e d by a p p l y i n g t h e t r a n s m i s s i o n c h a r a c t e r i s t i c s f o r

s t a n d a r d g l a s s and t h e shading c o e f f i c i e n t of t h e a p p r o p r i a t e g l a z i n g type.6

The thermal s t o r a g e e f f e c t s a r e s i m u l a t e d according t o t h e ASHRAE thermal response

method.' The r e s p o n s e f a c t o r s g i v e n i n t h e ASHRAE Handbook, however, a r e n o t a p p r o p r i a t e f o r t h e type of c o n s t r u c t i o n used i n houses. Consequently, f o r t h i s s t u d y new v a l u e s

corresponding t o t h r e e d i f f e r e n t w e i g h t s of house c o n s t r u c t i o n ( l i g h t , medium, and heavy) were obtained u s i n g t h e room thermal response f a c t o r program. For r e f e r e n c e purposes, v e r y heavy c o n s t r u c t i o n was d e f i n e d by t h e c o e f f i c i e n t s g i v e n i n t h e ASBRAE Hafidbook. In a d d i t i o n , t h e thermal response f a c t o r s of t h e t h r e e weights of house c o n s t r u c t i o n were confirmed

e x p e r i m e n t a l l y i n t h e NRC p a s s i v e t e s t f a c i l i t y . The c o n s t r u c t i o n f e a t u r e s of e a c h house weight are d e s c r i b e d i n Tab. 1.

(7)

Houee Models

Twenty house models, each with a d i f f e r e n t l e v e l of i n s u l a t i o n s o a s t o provide a wide range of gain-load r a t i o s , were defined; t h e window a r e a was f i x e d i n order t o maintain a constant mass-gain r a t i o . Each model was simulated f o r f i v e l o c a t i o n s r e p r e s e n t i n g d i f f e r e n t Canadian c l i m a t i c regions: Vancouver (B.C.)

,

Summrland (B.C.)

,

Edmonton (Alta. )

,

Ottawa (Ont.), and Halifax (N.S.). This procedure was repeated f o r each of t h e c o n s t r u c t i o n s

described i n Tab. I, a s w e l l a s f o r an i n f i n i t e l y l i g h t c o n s t r u c t i o n e s t a b l i s h e d f o r r e f e r e n c e purposes.

A heating thermostat s e t t i n g of 21°C was assumed. A s occupant preference would determine t h e allowable r i s e i n room temperature, t h r e e d i f f e r e n t assumptions were considered, namely, a constant room temperature and two allowable r i s e s i n room temperature, one of 2.75'C and t h e o t h e r of 5.5OC. In t h i s simulation i t was a l s o assumed t h a t t h e room temperature was

prevented from r i s i n g above t h e allowable l i m i t by v e n t i l a t i o n using o u t s i d e a i r . Seasonal S o l a r U t i l i z a t i o n

The h e a t i n g season f o r a l l l o c a t i o n s was assumed t o c o n s i s t of t h e months October t o A p r i l , i n c l u s i v e . Seasonal v a l u e s of s o l a r u t i l i z a t i o n f a c t o r , gain-load r a t i o , and mass-gain r a t i o were determined f o r t h i s time period. Curves of s o l a r u t i l i z a t i o n f a c t o r a s a f u n c t i o n of GLR were obtained f o r each of l i g h t , medim, heavy, and very heavy c o n s t r u c t i o n s (MGR e q u a l t o 1.0, 2.6, 7.2, and 14.0 h/K, r e s p e c t i v e l y ) using t h e method of l e a s t squares. The d a t a

p o i n t s obtained f o r Edmonton, Ottawa, and H a l i f a x produced well-defined curves of s o l a r I u t i l i z a t i o n f a c t o r a g a i n s t GLR f o r a l l cases. The r o o t mean square (rms) e r r o r between t h e s e i d a t a p o i n t s and curve f i t i s l e s s than 0.015. Data and corresponding curve f i t s , f o r l i g h t ,

1

medium, and heavy c o n s t r u c t i o n s only, a r e i l l u s t r a t e d i n Figs. 1 t o 3. Figs. 4 t o 6 were then

obtained by i n t e r p o l a t i o n between t h e s e curves f o r o t h e r v a l u e s of MGR.

I

The s o l a r u t i l i z a t i o n f a c t o r s obtained f o r Vancouver and Summerland, B.C., a r e somewhat

lower than those f o r t h e o t h e r l o c a t i o n s . This was a t t r i b u t e d t o t h e c h a r a c t e r i s t i c of t h e c l i m a t i c p a t t e r n of t h e West Coast region. Even f o r Vancouver, however, which probably t y p i f i e s t h e extreme of t h i s type of w i n t e r weather f o r Canada, maximum e r r o r i n u t i l i z a t i o n f a c t o r i s only about 0.08. For a house with a GLR of 0.6, t h i s corresponds t o a maximum e r r o r of 5X i n e s t i m a t i n g h e a t i n g energy requirements.*

The information contained i n t h e u t i l i z a t i o n f a c t o r curves can a l s o be presented a s t h e r a t i o of purchased h e a t i n g energy t o l o a d (Purchased Heating Fraction) o r a s t h e r a t i o of s o l a r c o n t r i b u t i o n t o load (Solar Heating Fraction). Curves presenting t h e d a t a i n t h i s form a r e given i n Figs. 7 t o 9. In a d d i t i o n t o seasonal v a l u e s , c a l c u l a t i o n s can a l s o be performed using s o l a r u t i l i z a t i o n f a c t o r s on a monthly basis.8

COMPARISON WITH EXPERIMENTAL DATA

The measured energy consumption f o r t h e NRC passive t e s t u n i t s during t h e 1981-82 h e a t i n g season was compared with t h e corresponding c o n s m p t i o n c a l c u l a t e d using t h e s o l a r u t i l i z a t i o n f a c t o r concept. The NRC t e s t f a c i l i t y 9 c o n s i s t s of four two-room t e s t u n i t s and four s i n g l e - room u n i t s . Three of t h e f o u r two-room u n i t s ( U n i t s 1, 2, and 3) a r e of t h e d i r e c t - g a i n type and d i f f e r only i n t h e i r thermal mass: Unit 1 i s c l a s s i f i e d a s l i g h t , Unit 2 a s medium, and Unit 3 a s heavy c o n s t r u c t i o n ( s e e Tab. 1 ) . The s o u t h room of each u n i t h a s a south-facing window with a 2.6 m2 g l a s s area; t h e north room has a 1 m2 window facing north. The f o u r s i n g l e r o o m u n i t s have t h e same thermal mass a s Unit 1. Each u n i t h a s a 2.6 m2 window f a c i n g one of t h e c a r d i n a l d i r e c t i o n s .

The two-room u n i t s were operated i n two modes t h a t were a l t e r n a t e d every two weeks. I n t h e f i r s t mode, each u n i t was monitored a s two s e p a r a t e rooms; i n t h e second, a i r was c i r c u l a t e d between t h e south and n o r t h rooms, and t h e whole u n i t was treated a s a s i n g l e space. A l l t h e rooms were operated w i t h a n allowable indoor a i r temperature swing of 7OC. Solar g a i n values were obtained by measuring the s o l a r r a d i a t i o n on t h e v e r t i c a l s u r f a c e s . The load v a l u e s were determined by m u l t i p l y i n g t h e h e a t - l o s s c o e f f i c i e n t by t h e sum of t h e d i f f e r e n c e s between t h e h e a t i n g s e t point and t h e measured outdoor temperature.

Comparison of measured and c a l c u l a t e d energy consumptions i s presented i n Tab. 2 f o r both modes of operation. The corresponding s e a s o n a l s o l a r u t i l i z a t i o n f a c t o r s were obtained from Fig. 3 by i n t e r p o l a t i n g between t h e curves f o r t h e a p p r o p r i a t e v a l u e of t h e MGR. The

c a l c u l a t e d values show c l o s e agreement with measured r e s u l t s ; maximum d i f f e r e n c e between the c a l c u l a t e d and measured s p a c e h e a t i n g energy i s l e s s t h a n 5%.

(8)

USE AND LIMITATIONS

The use of s o l a r u t i l i z a t i o n f a c t o r c u r v e s t o e s t i m a t e t h e h e a t i n g energy requirement of houses can be summarized i n t h e f o l l o w i n g s t e p s :

-

C a l c u l a t e each of t h e l o s s and g a i n components of Eq 2.

-

C a l c u l a t e t h e GLR from Eq 3.

-

C a l c u l a t e t h e MGR from Eq 4 ( o r assume 1 f o r s t a n d a r d l i g h t w e i g h t c o n s t r u c t i o n ) .

-

Obtain t h e u t i l i z a t i o n f a c t o r corresponding t o t h e GLR and MGR by i n t e r p o l a t i o n from

Fig. 1, 2, o r 3 (depending on t h e d e s i r e d a l l o w a b l e temperature r i s e ) .

-

S u b s t i t u t e t h i s u t i l i z a t i o n f a c t o r i n Eq 2 t o o b t a i n t h e h e a t i n g energy requirement.

The u t i l i z a t i o n f a c t o r s a r e based upon a number of assumptions, some of which impose l i m i t a t i o n s o n t h e u s e of t h e f a c t o r s . They apply o n l y t o s i m p l e d i r e c t - g a i n b u i l d i n g s t h a t do n o t use n i g h t i n s u l a t i o n systems on t h e windows. They should n o t be used f o r mass-walls, a t t a c h e d sun s p a c e s , o r systems u t i l i z i n g a c t i v e thermal s t o r a g e .

I The c a l c u l a t i o n method assumes t h a t a l l o f t h e l o s s components can be o f f s e t by s o l a r

g a i n s whenever and wherever t h e l a t t e r occur. T h i s i s a v a l i d assumption f o r s m a l l open spaces o r where f o r c e d - a i r c i r c u l a t i o n i s provided; i f an a r e a (such a s a basement o r a north- f a c i n g room) i s remote from o r t h e r m a l l y s e p a r a t e d from t h e windows p r o v i d i n g t h e s o l a r g a i n s , however, t h e l o s s from such an a r e a should n o t be i n c l u d e d i n t h e "load" used t o c a l c u l a t e

t h e gain-load r a t i o . Furthermore, t h e mass i n t h i s a r e a should n o t be included i n t h e c a l c u l a t i o n s of t h e MGR. These c o n s i d e r a t i o n s a r e e s p e c i a l l y important when e s t i m a t i n g t h e energy requirements of houses w i t h zone-controlled h e a t e r s .

The accuracy of t h e h e a t i n g energy e s t i m a t e i s more dependent on t h e c a l c u l a t i o n of h e a t l o s s e s and g a i n s t h a n i t i s on t h e l i m i t a t i o n s of t h e s o l a r u t i l i z a t i o n c u r v e s themselves. Heat l o s s and g a i n c a l c u l a t i o n s must a l l o w f o r such f a c t o r s a s t h e lowering of t h e t h e r m o s t a t s e t t i n g a t n i g h t ; e x t e r i o r shading of windows by t r e e s , b u i l d i n g s , overhangs, e t c . ; u s e of b l i n d s and d r a p e s by t h e occupant; and c o r r e c t e s t i m a t i o n of a s e a s o n a l average air-change r a t e .

One should a l s o keep i n mind t h a t t h e u t i l i z a t i o n f a c t o r s permit c a l c u l a t i o n of h e a t i n g energy o n t h e assumption t h a t t h e d e s i g n e r h a s provided some means of l i m i t i n g r i s e i n room temperature. A t h i g h gain-load r a t i o s i t i s q u i t e p o s s i b l e t h a t problems w i t h i n t e r i o r comfort c o u l d a r i s e a s a r e s u l t of o v e r h e a t i n g and g l a r e .

D e s p i t e a l l t h e i n d i c a t e d l i m i t a t i o n s , t h e s o l a r u t i l i z a t i o n f a c t o r does p r o v i d e a simple method of c a l c u l a t i n g t h e c o n t r i b u t i o n of s o l a r h e a t g a i n s f o r d i r e c t - g a i n p a s s i v e s o l a r d e s i g n s a s w e l l a s f o r houses of c o n v e n t i o n a l and s u p e r i n s u l a t e d c o n s t r u c t i o n .

1

REFERENCES

1. S.A. Barakat, " S o l a r Reat Gains through Windows i n Canada" (NRCC 18674, N a t i o n a l Research Council of Canada).

2. W.O. Wray, "Design and Analysis of D i r e c t Gain S o l a r Heated Buildings" (LA-8885-MS, Los Alamos S c i e n t i f i c Laboratory).

3. E.L. Cuplinskas, " R e s i d e n t i a l P a s s i v e S o l a r Heating

-

Review of Development of Design Aids" ( r e p o r t t o M i n i s t r y of Energy, Province of O n t a r i o , Feb. 1980).

4. W.A. Monsen, S.A. K l e i n , and W.A. Beckman, " P r e d i c t i n g of D i r e c t Gain S o l a r Heating System Performance," S o l a r Energy 27: 2 (19811, pp. 143-147.

I

I

5. J. Hay, "A Study of Shortwave R a d i a t i o n of Nonhorizontal Surfaces" (Canadian Climate C e n t r e Report 79-12, Atmospheric Enviroument S e r v i c e , 1979).

6. ASERAE Handbook 1977, Fundamentals Volume, Chapter 26 (New York: American S o c i e t y of Heating, R e f r i g e r a t i n g and A i r C o n d i t i o n i n g Engineers, 1977).

(9)

7. Ibid., Chapter 22.

8. S.A. Barakat and D.M. Sander, " U t i l i z a t i o n of S o l a r Gain through Windows f o r Heating Houses" (BRN 184, D i v i s i o n of Building Research, N a t i o n a l Research Council of Canada, Ottawa).

9. S.A. Barakat, "A Canadian F a c i l i t y f o r I n v e s t i g a t i n g P a s s i v e S o l a r Heating" ( p r e s e n t e d a t I n t e r n a t i o n a l Symposim o n Experimental Research w i t h P a s s i v e S o l a r Houses, Nice, France, Dec. 1980).

TABLE 1

House Weights f o r Computer Simulation

Thermal Capacity M . J / K = ~ ~ F l o o r Area

D e s c r i p t i o n

Light 0.060 Standard frame c o n s t r u c t i o n , 12.7 mm gyproc w a l l s and c e i l i n g s , c a r p e t o v e r wooden f l o o r .

Medium 0.153 A s above, but 50.8 mm gyproc w a l l s and 25.4 mm gyproc c e i l i n g .

Heavy 0.415 I n t e r i o r w a l l f i n i s h of 101.6 mm b r i c k , 12.7 mm, gyproc c e i l i n g , c a r p e t over wooden f l o o r .

Very Very heavy commercial o f f i c e b u i l d i n g , heavy 0.810 304.8 mm c o n c r e t e f l o o r .

(10)
(11)

1.0 0.9 0.8 0.7 0.6 F- 0.5 0.4 0.3 0.2

0 HALIFAX, OTTAWA. EDMONTON 0 HAL I FAX. OTTAWA, EDMONTON

SUMMERLAND, B.C.

A SUMMERLAND, B.C. 0.1 VANCOUVER, B.C.

0

G L R G L R

Figure 1. Seasonal solar utilization curves Figure 2. Seasonal solar utilization curves and actual data points for five and actual data points for five loca tions (constant room temperature) locations (room temperature swing =

2.75'~) 1.0 0.9 0.8 0.7 0.6 F" 0.5 F* 0.5

-

0.4 0.4

-

0.3 0.3

-

0.2 0.2

0 HAL1 FAX, OTTAWA, EDMONTON

0.1 SUMMERLAND, B.C. 0.1 VANCOUVER B.C. 0 0

-

-

-

-

l , , l # t l n ~ l ~ h . 0 0.3 0.6 0.9 1.2 1.5 0 0.3 0.6 0.9 1.2 1.5 G L R G L R

Figure 3. Seasonal solar utilization curves Figure 4. Seasonal solar utilization factor and actual data points for five (constant room temperature) locations (room temperature swing =

5. sOc)

(12)

G L R

Figure 5. Seasonal solar utilization factor Figure 6 .

0

(room temperature swing = 2.75 C)

0.3 0.6 0.9 1 . 2 1 . 5 G L R

Seasonal solar utilization factor

(room temperature swing = 5.5'~)

I

G L R G L R

Figure 7. Seasonal purchased heating fraction Figure 8. Seasonal purchased heating fraction

(13)

G L R

(14)

DISCUSSION

S.J. Treado, National Bureau of Standards, Washington, DC: Could the authors please comment on the sensitivity of the solar utilization factor calculation to the assumptions which must be made regarding heat loss due to envelope transmission, air exchange, and below-grade transmission?

D.M.

Sander: The sensitivity of the solar utilization factor to the heat loss is as shown in

the graphs of rl versus

GLR.

This is not affected by assumptions made in calculating losses.

Any errors in tze calculation of losses due to simplifying assumptions will, of course, affect the accuracy of the energy estimate using the utilization factors.

(15)

This paper, while being distributed in reprint form by the Division of Building Research, remains the copyright of the original publisher. It should not be reproduced in whole or in part without the permission of the publisher.

A list of all publications available from the Division may be obtained by writing to the Publications Section, Division of Building Research, National Research Council of Canada, Ottawa, Ontario,

Figure

Figure 3.  Seasonal solar utilization curves  Figure 4.  Seasonal solar utilization factor  and actual data points for  five  (constant room temperature)  locations (room temperature swing  =
Figure 7.  Seasonal purchased  heating  fraction  Figure  8.  Seasonal  purchased  heating  fraction  (constant room  temperature)  (room temperature swing  =  2.75  OC)

Références

Documents relatifs

Although the concept of state estimation has appeared in 1969, notably thanks to the works of Schweppe [2], this concept has been considered only for

The encapsulation at the na- noscale, which is the focus of the present review, allows tuning the properties of both the guest species that can undergo modifications of their

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE

Dans certains cas, des paires de tourbillons isolées sont également présentes, généralement près du bord amont de la cavité où il n’y a pas d’interaction entre le

Au cours de la DMLA, il y a une accumulation de fer dans les segments externes des photorécepteurs (PR), dans l’épithélium pigmentaire de la rétine (EPR) essentiellement au niveau

Distribution of tidal stresses within the radially inhomogeneous model of Enceladus For the model of the inner structure of Enceladus, somewhat arbitrary, two homogeneous layers

Interplanetary Lα photometric data collected by the UV spectrometer instrument on board Messenger in the ecliptic plane are presently analyzed (Quémerais,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des