• Aucun résultat trouvé

Room dynamic thermal response

N/A
N/A
Protected

Academic year: 2021

Partager "Room dynamic thermal response"

Copied!
11
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Room dynamic thermal response

Mitalas, G. P.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=d5d15bb8-5854-4555-9731-cc4e927bc9d4

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d5d15bb8-5854-4555-9731-cc4e927bc9d4

(2)

ler

'HI

N21d

I

National Research

Conseil national

,

11-89

I

#

Council Canada

de recherches Canada

2 .

2

B B s

-

ROOM DYNAMIC THERMAL RESPONSE

by

G.P. Mitalas

ANALYZED

Appeared in

Proceedings of the Fourth International Symposium on

the Use of Computers for Environmental Engineering

Related to Buildings

Tokyo, Japan, March 30

-

April 2, 1983

p. 25

-

31

Reprinted with permission

DBR Paper No. 1189

Division of Building Research

Price $1.00

OTTAWA

B I B L I O T H ~ Q U E

Rech.

Bairn.

(3)

RisuMG

C e t t e n o t e d e c r i t l e s methodes math'matiques q u ' u t i l i s e l e programme i n f ormatique "Room Thermal T r a n s f e r Functions". Ce programme permet d e c a l c u l e r d e s c o e f f i c i e n t s d e t r a n s m i s s i o n Z pour l e r e f r o i d i s s e m e n t , l e c h a u f f a g e e t l e s p r ' e d i c t i o n s d e s t e m p s r a t u r e s ambiantes d ' u n e p i k e . 1 2 programme comprend deux p a r t i e s : clans l a p r e m i k e , l e c a l c u l d e s c o e f f i c i e n t s d e t r a n s m i s s i o n Z d 5 t a i l l 5 e s t b a s 5 s u r une s ' e r i e d e 29 e q u a t i o n s du h i l a n thermique de d i v e r s e s s u r f a c e s de l a piece.

La d e u x i h e p a r t i e du programme u t i l i s e l e s c o e f f i c i e n t s calcul'es p a r l a premiere p a r t i e du programme pour g 6 n e r e r l e s

f o n c t i o n s d e t r a n s m i s s i o n d e l a p i k e pour chaque composant i n t e r v e n a n t ( p a r ex. l ' a p p o r t d e c h a l e u r s o l a i r e e t l ' a p p o r t d e c h a l e u r provenant d e s occupants). 11 permet Bgalement d e p r o d u i r e p l u s i e u r s approximations d e s f o n c t i o n s q u i s o n t r e p r b e n t ' e e s p a r u n p e t i t nombre d e c o e f f i c i e n t s d e f o n c t i o n d e t r a n s m i s s i o n Z. - - - - -

~ ~ ~ ~ ~ ~ ~ f l j ~ ~ n ~ ~ ~ ~ \ l

31

b0d4\b36

7

- - - - - P --

(4)

G . P . M i t a l a s

D i v i s i o n of B u i l d i n g R e s e a r c h , Nat ional. Kescarcll C o r ~ n c i l Canada, Ottawa

AHSTIblCT - The paper d e s c r i b e s t h e m a t h e m a t i c a l methods ~ l s e d in t h e "Room Thermal T r a n s f e r !:rl;icti.nrls" computer program. T h i s prosram c a l c u l a t e s room Z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s f o r coo l i n!;, hi?atin): and space-temps r a t ~ l r e p r e r l i c t l o n s . The program c o n s i s t s of two s e c t i o n s : i n ~ h r e f i r s t , c a l c ~ ~ l . a t i o n s of d e t a i l e d Z - t r a n s f e r f l ~ n c t i o n s a r e b a s e d on a s e t of 29 h e a t b a l a n c e t v ~ t ~ a t i o n s f o r tlio v a r l o u s room e n c l o s r ~ r e s ~ ~ r f a c e s .

The second s e c t i o r l of t h e program :lses t h e d e t a i l e d f u n c t i o n s c a l c u l a t e d by t h e f i r s t s e c t i o n

t:) ::r?rierate room t r a n s f e r f u n c t i o n s f o r e a c h e x c i t a t i o n component ( s u c h a s s o l a r h e a t g a i n and ii1?;11- z a i n rrc11n n c c ~ ~ p a n t s ) . Tt a l s o g e n e r a t e s s e v e r a l a p p r o x i m a t i o n s of t h e s e f u n c t i o n s t h a t

. ~ r ( ~ r e ! ) r e s ~ i ~ l t e i i by n s m a l l number of Z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s .

'Tho= i ~icrl>:i?;c.d t ~ s o of t h e d i g i t a l e l e c t r o n i c c o ~ n p u t ~ ? r i l l b.nyi~irc?ring o f f i c e s h a s p r o v i d e d t h e o p p o r t n n i Ly t o :lcvelop new and Inore powerful comput:+tion;~l methods f o r u s e w i t h t h e s e machines. Thi:; is e s p e c i a l l y t - r ~ l e i n t h e a i r - c o n d i t i o n i n g ~ l e s i g n Ir i e l i l where t h e s i m p l e m a n ~ l a l methods ( " s t t . a d y - s t a t e " load c : a l c ~ ~ l a t i o n s ) have been r e p l a c e d hy new c a l c l ~ l a t i o n p r o c e d u r e s c a p a b l e of ! ) r e d i e t i n g t h r dynamic h e a t i n g and c o o l i n g l o a d s a s w e l l a s t h e a n n u a l energy r e q u i r e m e n t . h e

mi?tliotf f o r c a l c i ~ l s t i n g dynamic h e a t i n g and c o o l i n g loar'.s i s t h e Z - t r a n s E e r f u n c t i o n method d e s c r i b e d i n t h e ASHRAE Xandbook of ~ u n d a m e n t n 1 s . l

The concept O F t h e Z-t.ransEer f u n c t i o n i s

h.?scrl 011 t h e a s s ~ l m p t i o n th a t t-he h e a t t r a n s f e r

!,recesses i n :a room can he r e p r e s e n t e d by l i n e a r a1::ehraic and rlif F e r e n t i a l e q u a t i o n s . T h i s 11rrrnits r ~ s c of tlie s t ~ p e r p o s i t i o n p r i n c i p l e , where t l i ~ d r i v i n g f11ncti.on i s r e p r e s e n t e d a s t h e sum of ;i s : ? r i c s .)f s i m p l e p u l s e s , and tlie r e s p o n s e is t h e :sun O F t h e r e s p o n s e s t o e a c h p l l l s e c o n s i d e r e d by i t s e l f . 3 - ' 3 The r e l a t i o n s h i p between a u n i t o f i n p t ~ t .and i r . 5 r e s p o n s e i n X-transform s p a c e is deF i ried hy a Z - t r a n s f e r f ~ ~ r ~ c t i o n . T f i o r r l r r t o c o r r e l a t e t h e room e x c i t a t i o n components ( s u c h a s t h e e n e r a i n p u t components oE s o l a r r a d i a t i o n , light:: and n ~ ~ t d o o r t e m p e r a t u r e ) i s i t h tht, c o o l i nz, e a c h component r e q u i r e s i t s own % - t r a n s f e r f u r i c t i o n . T h i s is h e c a u s e e a c h component h a s a d i f f e r e n t h e a t t r a n s f e r mechanism o r t,~iLry p a t h i n t o a room. A p a r t i c ~ ~ l a r room, t h c r t i l o r r ? , h a s a s many Z - t r a n s f e r f u n c t i o n s a s t h e r e :ire d i s t i n c t h e a t g a i n components. Tn a d d i t i n n , a s p e c i a l Z - t r a n s f e r f111lct t o n i s needed t o c o r r e l a t e R u n i t swing i n room a i r t e m p e r a t u r e wltli t h e c o o l i n g t h a t must be p r o v i d e d by t h e a i r c o n d i t i o n i n g u n i t ( i . e . , h e a t e x t r a c t i o n ) . A major d i f f i c u l t y i n a p p l y i n g t h e 2 - t r a n s f e r f l t n c t i o n method i s t h e d e t e r m i n a t i o n of t h e f u n c t i o n s t h e m s e l v e s f o r a s p e c i f i c room. A

computer program e n t i t l e d "Room Thermal T r a n s f e r F u n c t i o n s " (G.P. N i t a l a s ; t o be p u b l i s h e d a s a DBR Computer Program, N a t i o n a l R e s e a r c h C o u n c i l Canada, Ottawa, 1 9 8 3 ) h a s been w r i t t e n t o

c a l c u l a t e room Z - t r a n s f e r f u n c t i o n s . The p r e s e n t paper g i v e s t h e m a t h e m a t i c a l b a s i s f o r t h e s e c a l c u l a t i o n s and d e s c r i b e s a method of s i m p l i f y i n g t h e f u n c t i o n s f o r a p p l i c a t i o n t o s p e c i E i c

p r o b l e m .

IIETAILED ROOM 2-TRANSFER FUNC'PIONS P h y s i c a l Model of Room

The geometry of t h e model room i s shown i n Fig. 1 and t h e numbering s y s t e m f o r room s u r f a c e s is g i v e n i n T a b l e 1. The model i n c o r p o r a t e s most of t h e p h y s i c a l f e a t u r e s commonly found i n a n of f i c e of a m u l t i s t o r e y commercial b u i l d i n g . f.loreover, i t i n c o r p o r a t e s p r o v i s i o n s f o r

s i m u l a t i n g a c e i l i n g a i r s p a c e between t h e f a l s e c e i l i n g and t h e f l o o r s l a b above, and f o r

s i m ~ l l a t i n g a window w i t h i n t e r i o r and i n t e r p a n e s h a d i n g d e v i c e s . F o r l e s s e l a b o r a t e rooms, r e d ~ ~ n d a n t model f e a t u r e s can be d e l e t e d by a s s i g n i n g a p p r o p r i a t e d i m e n s i o n s , t h e r m a l p r o p e r t i e s o r c o e f f i c i e n t s .

The model i s d i v i d e d i n t o a f r o n t and a back s e c t i o n s o t h a t non-symmetry ( s u c h a s d i s t r i b u t i o n of s o l a r r a d i a t i o n on i n t e r i o r room s l l r f a c e s and h e a t t r a n s f e r t h r o u g h t h e window) c a n b e a c c o u n t e d

(5)

T a b l e 1 Numbering System of Room Envelope S u r f a c e s , A i r Spaces and Window Components S u r f a c e Yumber ~ l o o r s l a b , u p p e r , f r o n t s u r f a c e F l o o r s l a b , u p p e r , back s u r f a c e C e i l i n g , lower, back s u r f a c e C e i l i n g , lower, f r o n t s u r f a c e p a r t i t i o n , r i g h t , back i n t e r i o r s u r f a c e P a r t i t i o n , r i g h t , f r o n t i n t e r Lor s u r f a c e P a r t i t i o n , l e f t , back i n t e r i o r s u r f a c e P a r t i t i o n , l e f t , f r o n t i n t e r i o r s u r f a c e C o r r i d o r w a l l i n t e r i o r s u r f a c e S u r f a c e Number

rot..

I t is .as:;urnpd t h a t t h e room is s u r r o u n d e d on a11 s i d e s , o x c p p t t h e o u t s i d e a n d c o r r i d o r w a l l s ,

by s i m i l a r rooms s o t h a t t h e a v e r a g e h e a t exchange between t h e model room and t h e s u r r o u n d i n g r o o m Ls z e r o . D e s c r i p t i o n Window s y s t e m i n t e r i o r s u r f a c e E x t e r i o r w a l l , below window, i n t e r i o r s u r f a c e E x t e r i o r w a l l , above window, i n t e r i o r s u r f a c e E x t e r i o r w a l l , r i g h t of window, i n t e r i o r s u r f a c e E x t e r i o r w a l l , l e f t of window, i n t e r i o r s u r f a c e F u r n i t u r e s u r f a c e I n t e r i o r s h a d e - g l a s s pane a i r s p a c e

All f ~ l r n i t u r o i n t h e room i s modeted by a s i n z l e t h i n s l a b located c l o s e t o and p a r a l l e l t n t h e rltmr s u r f a c e . Tt ts assumed t h a t the

p r o j e c t e d a r e a oC t h e F u r n i t u r e o n t h e f l o o r i s e q u a l to h a l f of t h e t o t a l s u r f a c e af a 1 1 F u r n i t ~ i r e .

Thermal Model of Room

I

Window i n t e r i o r g l a s s pane I n t e r p a n e a i r s p a c e

The room t h e r m a l system

is

d e s c r i b e d by the

bent h a l a n c e e q u a t i o n s € o r e a c h of t h e room e n v ~ l o p e s ~ l r f a c e s . These combtoe t h e t h e r m a l e h a r a c t ~ r i s t i c s , geometry, s u r f a c e e x c i t a t i o n cornponcn t s , s u r f a c e and a i r t e m p e r a t u r e s o f t h e rrmln, and cooling p r o v i d e d by t h e a i r c o n d i t i o n i n g ~ ~ n j t ( d r r i v a t f o n o f t h e s e equations w i l l be d i s c u s s e d i n f o l l o w i n g ~ e c t i o n s ) . The set nF h e a t bnlancr* 19rlt1ations a r e r e p r e s e n t e d by t h e m a t r i x l-qllat In11, I n t e r p a n e s h a d e Window e x t e r i o r g l a s s pane C e i l i n g , u p p e r , f r o n t s u r f a c e C e i l i n g , u p p e r , back s u r f a c e C e i l i n g plenum, f r o n t , a i r s p a c e C e i l i n g plenum, b a c k , , a i r s p a c e F l o o r s l a b , lower f r o n t s u r f a c e F l o o r s l a b , lower back s u r f a c e C e i l i n g plenum e x t e r i o r w a l l , i n t e r i o r s u r f a c e C e i l i n g plenum c o r r l d o r w a l l , i n t e r i o r s u r f a c e Room a i r

w l i e r ~ the elements of

[Mj

a r e f u n c t i o n s of room d i m e n s i o n s and t h e r m 1 c h a r a c t e r i s t i c s and t h e ~ : t e m e n t s of

I G ] ~

a r e Function6 of room excitation corrrponenls, t h e p a s t history o f room envelope

s u r f a c e t e m p e r a t u r e a n d the t h e r m a l

c h a r a c t e r i s t i c s of t h e room. The s u b s c r i p t t

i n d i c a t e s time and [ X I t r e p r e s e n t s unknown room t c m p r r a t t ~ r e s and t h e h e a t e x t r a c t i o n , The s n l u t i o n of e q u a t i o n ( 1 ) i s , # O u t e r s u r f a c e s o l - a i r t e m p e r a t u r e ( 0

)

used 0,'' i n p l a c e o t back s u r f a c e t e m p e r a t u r e .

*

Corridor a t r t e m p e r a t u r e

(o,,~)

u s e d i n p l a c e of back s u r f a c e CemDerature.

**

F u r n i t u r e t e m p e r a t u r e

(oI5,.,)

used as i t s own

back s u r f a c e t e m p e r a t u r e . where, Hi = l a s t c l e m e n t of

[x]

t+d, t h e c a l c u l a t e d h e a t e x t r a c t i o n v a l u e a t t i m e t

+

d , due t o a u n i t e x c i t a t i o n p u l s e , Ei a t time t. S u b s c r i p t n i s a n i n t e k e r and A i s t i m e i n t e r v a l . The computation by e q u a t i o n ( 2 ) g e n e r a t e s a s e t of room r e s p o n s e f u n c t i o n s o f t h e form, 4 t o t a l o f 34 room t h e r m a l r e s p o n s e f u n c t i o n s are c a l c u l a t e d f o r 26 u n i t h e a t Flux p u l s e s , s i x s u r f a c e t e m p e r a t u r e p u l s e s and two c e i l f n q plenum

a l r t e m p e r a t u r e pulses. A s p e c i a l f u n c t i o n t h a t r e l a t e s a i r t e m p e r a t u r e p u l a e and room h e a t e x t r a c t i o n i s a l s o c a l c u l a t e d .

(6)
(7)

Window System The h e a t b a l a n c e e q u a t i o n s f o r t h e window s y s t e m a r e s i m p l i f i e d f o r m of e q u a t i o n ( 9 ) ; t h e r a d i a n t h e a t f l u x i s e x p r e s s e d s i m p l y a s , where g i = r a d i a t i o n h e a t t r a n s f e r c o e f f i c i e n t f o r a n a i r s p a c e e n c l o s e d by two p a r a l l e l s u r f a c e s I and j , and t h e t h e r m a l r e s i s t a n c e v a l u e s of t h e g l a s s panes and t h e s h a d e s a r e n e g l i g i b l e . Thus, t h e s l ~ r f a c e h e a t b a l a n c e s of a window pane o r a s h a d e a r e combined i n t o a s i n g l e h e a t b a l a n c e e q u a t i o n .

The h e a t exchange between t h e o u t s i d e a i r and t h e e x t e r i o r window pane i s c a l c u l a t e d b y , " i , t + R i , t = Bi @O,t

-

% , t ) ( 1 1 ) where, 0, = o u t s i d e a i r t e m p e r a t u r e

Ri

= combined o u t s i d e s u r f a c e h e a t t r a n s f e r c o e f f i c i e n t . C e i l i n g - F l o o r System The h e a t b a l a n c e e q u a t i o n s f o r t h e a i r i n t h e c e i l i n g plenum and t h e s u r f a c e s o f t h e d r o p

c e t l i n g , w a l l s and f l o o r above, which e n c l o s e t h e s p a c e , a r e a l s o s i m p l i f i e d forms of e q u a t i o n ( 9 ) . I n t h i s c a s e , t h e r a d i a n t h e a t t r a n s f e r between s u r f a c e s i s e x p r e s s e d b y , and i n t h e c a s e of t h e a i r i n t h e c e i l i n g plenum, t h e h e a t c o n d u c t i o n t e r m i s d e l e t e d b e c a u s e h e a t t r a n s f e r by c o n d u c t i o n i s not i n v o l v e d i n t h i s h e a t b a l a n c e . Room A i r The h e a t b a l a n c e f o r t h e room a i r i s 1 5 X t =

1

Ai h i (Oi,t

-

B a s t ) ( 1 3 ) i s 1 where, Ai = a r e a of room i n t e r i o r s u r f a c e i ( i n c l u d i n g f u r n i t u r e s u r f a c e ) . Tn t h i s c a s e , t h e h e a t e x t r a c t i o n ( H ~ ) r a t h e r t h a n t e m p e r a t u r e ( 0

)

is t a k e n a s t h e unknown q u a n t i t y . a , t An expanded form o f e q u a t i o n ( 1 ) i n t e r m s o f eqclatlons (6) t o (13) i s g i v e n i n Appendix A.

COMBINED ROOM Z-TRANSFEK FUNCTIONS The d e t a i l e d s e t of t r a n s f e r f u n c t i o n s K(Z) is cumbersome t o u s e f o r room a i r - c o n d i t i o n i n g load c a l c u l a t i o n s . F o r example, t h e c o o l i n g needed t o m a i n t a i n c o n s t a n t a i r t e m p e r a t u r e

( C L ~ t ) due t o d i f f u s e s o l a r r a d i a t i o n t r a n s m i t t e d throAgh t h e window ( S d S t ) can be e x p r e s s e d a s f o l l o w s u s i n g K(Z) f u n c t i o n s : where, Fd,i = r a t i o of a b s o r b e d d i f f u s e r a d i a t i o n by i n t e r i o r s u r f a c e i o v e r t h e d i f f u s e s o l a r r a d i a t i o n t r a n s m i t t e d t h r o u g h t h e window. It is assumed t h a t Fd,i is i n d e p e n d e n t of time. A s shown by e q u a t i o n (141, t h i s c a l c u l a t i o n i n v o l v e s many a r i t h m e t i c o p e r a t i o n s a n d c o e f f i c i e n t s . The number of t h e s e o p e r a t i o n s c a n be r e d u c e d by u s i n g combined Z - t r a n s f e r f u n c t i o n C(Z). F o r example, CLd,t c a n be e x p r e s s e d a s f o l l o w s :

where Yd,., i s a c o e f f i c i e n t of combined 2 - t r a n s f e r f u n c t i o n C(Z)d. The combined t r a n s f e r f u n c t i o n c a n be d e r i v e d by i n t e r c h a n g i n g t h e o r d e r of summation i n e q u a t i o p 5 ( 1 4 ) and p r e c a l c u l a t i n g t h e c o e f f i c i e n t s Yd,., = F , H i Thus, i n g e n e r a l , t h e combine$-Z-transfer f u n c t i o n f o r t h e room e x c i t a t i o n component

( s , , ~ )

i s c a l c u l a t e d by: L

C(ZIe =

I

Fe,, K(ZIi =

+

Ye,lz-l

i = l

where L is the total number of e u r f a c e excltatione

that make up the room e x c i t a t i o n component

,

and

Fe

is

a f r a c t i o n of S t h a t

e , t

appears as

suciace i

e x c i t a t i o n heat f l u x ,

('e,iI

The

F,,*

values are p a r t of t h e i n p u t d a t a to

t h e program. The ~ e l e c t i o n of Pe f a c t o r s may be q u i t e i n v o l v e d and depends on t h e ' t y p e of room

e x c i t a r i o n conponent. For exaraple, the P d , i v a l u e f o r d i f f u s e s o l a r r a d i a t i o n t r a n s m i t t e d t h r o u g h a

window may be t a k e n as t h e g e o m e t r i c long-wave radiation i n t e r c h a n g e f a c t o r s between t h e window a n d t h e o t h e r room s u r f a c e s . On t h e o t h e r hand, t h e Fo,i f a c t o r s f o r o u t s i d e a i r t e m p e r a t u r e r e s p o n s e a r e : where Ai = a r e a of o u t s i d e s u r f a c e i, a n d L = t o t a l number o f o u t s i d e s u r f a c e s u n d e r c o n s i d e r a t i o n .

(8)

SIMPLIFLEI) ROOM Z-TRANSFER FUNCTIONS The d e t a i l e d and combined t r a n s f e r f u n c t i o n s a r e unwieldy t o u s e i n t h e forms g i v e n by

e q u a t i o n s ( 3 ) and ( 1 6 ) . These forms t a k e a l a r g e number of c o e f f i c i e n t s t o d e f i n e K(Z) and C(Z) a n d , c o n s e q u e n t l y , r e q u i r e many n u m e r i c a l o p e r a t i o n s . A r o u t i n e h a s , t h e r e f o r e , been i n c o r p o r a t e d i n t o t h e computer program (Room Thermal T r a n s f e r F u n c t i o n s ) t o e x p r e s s C ( 2 ) a s a r a t i o of two p o l y n o m i a l s , a s w e l l a s t o g e n e r a t e a s e t of s i m p l i f i e d f u n c t i o n s of v a r y i n g a c c u r a c y f o r e a c h combined room t r a n s f e r f u n c t i o n , C(Z). I n a d d i t i o n , t h e frequency r e s p o n s e of e a c h s i m p l i f i e d f u n c t i o n i s c a l c u l a t e d i n o r d e r t o check t h e e r r o r i n t r o d u c e d by s i m p l i f i c a t i o n . The combined Z - t r a n s f e r f u n c t i o n s g i v e n by e q u a t i o n ( 1 6 ) c a n be e x p r e s s e d a s a r a t i o of two polynomials i n z - l : where p and d a r e 2 - t r a n s f e r f u n c t i o n c o e f f i c i e n t s D(2) and N(Z) C o e f f i c i e n t s The program c a l c u l a t e s t h r e e d i f f e r e n t D(Z) p o l y n o m i a l s and, c o n s e q u e n t l y , g e n e r a t e s t h r e e d i E f e r e n t forms of C(Z). The f a c t t h a t t h e room t h e r m a l r e s p o n s e t o a u n i t e x c i t a t i o n i s t h e sum of e x p o n e n t i a l ( d e c a y )

function^^'^

i s used t o c a l c u l a t e D(Z) c o e f f l c l c n t s a s f o l l o w s : Eor l a r g e v a l u e s of n,

Y

-!EL

= C R ~ ( c o n s t a n t ) n

Y.t'

= CR2 ( c o n s t a n t ) Vn where, V, = Y n

-

CR1 Yn-1 and W

-!EL

= C R ~ ( c o n s t a n t ) Wn where, W n = Vn

-

CR2 Vn-l. I n t h e c a s e of a room of l i g h t - w e i g h t c o n s t r u c t i o n , t h e t h e r m a l decay i s s o r a p i d t h a t CR (and e v e n CR ) c a n n o t be d e t e r m i n e d f o r a t i m e i n ? e r v a l of one 6our. I n t h e s e c a s e s , t h e r e f o r e , o n l y t h e a v a i l a b l e C R ' s a r e u s e d i n t h e f o l l o w i n g c a l c u l a t i o n s . Using t h e CR f a c t o r s , t h e F o l l o w i n g t h r e e p a i r s of D(Z) and N(Z) p o l y n o m i a l s a r e c a l c u l a t e d : These c a l c u l a t i o n s g e n e r a t e a s e t of e x a c t room t r a n s f e r f u n c t i o n s e x p r e s s e d a s a r a t i o of two p o l y n o m i a l s . The t r a n s f e r f u n c t i o n s c a n be s i m p l i f i e d f u r t h e r by n o t i n g t h a t N(Z) c o e f f i c i e n t s d i m i n i s h a s t h e v a l u e of n i n c r e a s e s . Thus, t h e N(Z) p o l y n o m i a l c a n be t r u n c a t e d t o r e d u c e t h e number of c o e f f i c i e n t s . To p r e s e r v e t h e s t e a d y - s t a t e r e l a t i o n of t h e o r i g i n a l f u n c t i o n , t h e c o e f f i c i e n t s of t h e d i s c a r d e d p o r t i o n of t h e N(Z) p o l y n o m i a l a r e summed u p and added t o t h e l a s t c o e f f i c i e n t i n t h e t r u n c a t e d s e r i e s . To d e t e r m i n e how t h e t r u n c a t i o n a f f e c t s t h e a c c u r a c y of room 2 - t r a n s f e r f u n c t i o n s , t h e f r e q u e n c y r e s p o n s e s of b o t h t h e e x a c t a n d t r u n c a t e d f u n c t i o n s c a n b e c a l c u l a t e d . The f r e q u e n c y r e s p o n s e c a n be c a l c u l a t e d by u s i n g t h e r e l a t i o n

,'

z - = ~ e-iwd = c o s ( w d )

-

i s i n ( w d ) ( 1 9 ) where, w

-

2 2 ,

t h e a n g u l a r v e l o c i t y of t h e s i n e

P

wave, P = p e r i o d of t h e s i n e wave, and

+

i = (-1)

.

The comparison of t h e f r e q u e n c y r e s p o n s e of t h e e x a c t and t h e t r u n c a t e d f u n c t i o n s w i l l f a c i l i t a t e s e l e c t i o n of s i m p l i f i e d room t r a n s f e r f u n c t i o n s . The f o r e g o i n g e x p l a i n s how t h e f r e q u e n c y r e s p o n s e c a n b e u s e d t o s e l e c t a s e t of s i m p l i f i e d room Z - t r a n s f e r f u n c t i o n s f o r a p a r t i c u l a r a p p l i c a t i o n t o p r o v i d e t h e d e s i r e d a c c u r a c y w i t h minimum c o m p u t a t i o n a l e f f o r t . It s h o u l d be n o t e d t h a t t h e t r a n s f e r f u n c t i o n i n t h e f o r m c a n a d e q u a t e l y c o r r e l a t e room e x c i t a t i o n and c o o l i n g l o a d f o r most p r a c t i c a l a i r - c o n d i t i o n i , n g c a l c u l a t i o n s . F o r t h i s r e a s o n , t h e 2 - t r a n s f e r f u n c t i o n s g i v e n i n t h e ASHRAE Handbook of ~ u n d m e n t a l s l a r e of t h i s s i m p l e form.

(9)

V a l i d i t y of t h e c a l c u l a t e d 2 - t r a n s f e r f u n c t i o n s is dependent on how w e l l t h e f o l l o w i n g a s s u m p t i o n s u s e d t o c o n s t r u c t t h e model r e p r e s e n t r e a l c o n d i t i o n s i n a b u i l d i n g : c o n s t a n t ( i n v a r i a b l e ) s u r f a c e c o n v e c t i o n h e a t t r a n s f e r coef F l c l e n t u , one-dimensional h e a t c o n d u c t i o n t h r o ~ ~ g h t lie e n v e l o p e (1.e.

,

t h r e e - d i m e n s i o n a l h e a t conduct Lon e f f e c t s a t c o r n e r s , beams and columns arc. n e g l e c t e d ) , ~ ~ n i f o r m h e a t f l u x and t e m p e r a t u r e s - 1 ~ the u ~ ~ r F a c e ~

O F

t h e v a r i o u s e l e m e n t s , s i m p l e p h y q i r a l and t h e r m a l model of t h e l u r n t s h i n g s , room s u r r o u n d e d by s i m i l a r rooms, u n i f o r m a i r t e m p e r a t u r e t h r o u g h o u t t h e room. A c l e a r u n d e r s t a n d i n g of t h e l i m i t a t i o n s i m p l i e d by t h e s e a s s u m p t i o n s i s , t h e r e f o r e , e s s e n t i a l when a p p l y i n g t h e room t r a n s f e r f u n c t i o n s d e r i v e d by t h e model. R e f e r e n c e s

1 ) ASHRAE Handbook 1981 Fundamentals, American

S o c i e t y of H e a t i n g R e f r i g e r a t i n g and A i r - C o n d i t i o n i n g E n g i n e e r s , I n c . , 1791 T u L l i e C i r c l e

NE,

A t l a n t a CA 30379.

2 ) Stephenson, D.G. and M i t a l a s , G.P., 1967. C o o l i n g Load C a l c u l a t i o n s by Thermal Response F a c t o r Method. NRC 9883, ASHRAE T r a n s a c t i o n s Vol. 73, I.

3 ) M i t a l a s , G.P. and Stephenson, D.G., 1967. Room Thermal Response F a c t o r s . NRC 9884, ASHRAE T r a n s a c t i o n s Vol. 73, I. 4 ) M i t a l a s , G.P. and Stephenson, D.G., 1966. F o r t r a n I V Programs t o C a l c u l a t e R a d i a n t Energy I n t e r c h a n g e F a c t o r s . DBR Computer Program 25, N a t i o n a l R e s e a r c h C o u n c i l Canada, Ottawa. 5) McAdams, W.H., 1942. Heat T r a n s m i s s i o n . '

McGraw-Ilill Rook Co.

,

New York.

6 ) M i t a l a s , G.P. and A r s e n e a u l t ,

J.G.,

1972. F o r t r a n I V Program t o C a l c u l a t e Z-Transfer F u n c t i o n s f o r C a l c u l a t i o n of T r a n s i e n t Heat T r a n s f e r through Walls and Roofs. DBR Computer Program 33, N a t i o n a l R e s e a r c h C o u n c i l Canada, Ottawa. 7 ) Stephenson, D.6. and M i t a l a s , G.P., 1971. C a l a l l a t i o n of H e a t Conduction T r a n s f e r F u n c t i o n s f o r Multi-Layer S l a b s . ASHRAE T r a n s a c t i o n s , Vol. 77, I T . 8 ) M i t a l a s , G.P., 1978. Comments on t h e

Z-

T r a n s f e r F u n c t i o n Method f o r C a l c u l a t i n g Heat T r a n s f e r i n B u i l d i n g s . NRCC 17235,

ASHRAE

T r a n s a c t i o n s , Vol. 84, I.

9 ) Korn, G.A. and Korn, T.M., 1968. M a t h e m a t i c a l Handbook f o r S c i e n t i s t s and E n g i n e e r s .

McGraw-Hill Rook Co., New York.

Appendix A M a t r i x E q u a t i o n

[MI-[XI,

= [ G ] ~ F o r c l a r i f i c a t i o n , t h e m a t r i x e q u a t i o n i s expanded u s i n g e q u a t i o n s ( 6 ) t o ( 1 3 ) . T h i s m a t r i x e q u a t i o n i s a g r o u p of f o u r d i f f e r e n t sets of e q u a t i o n s t h a t c o r r e l a t e v a r i o u s t e m p e r a t u r e s a n d h e a t e x t r a c t i o n : Rows 1 t o 15 c o r r e l a t e t e m p e r a t u r e s oP room e n c l o s u r e i n t e r i o r s u r f a c e s a n d f u r n i t u r e s u r f a c e s . Rows 16 t o 20 c o r r e l a t e t e m p e r a t u r e s o f w i n d w s y s t e m Rows 21 t o 28 c o r r e l a t e t e m p e r a t u r e s a t c e i l i n g plenum. Row 29 c o r r e l a t e s room a i r t e m p e r a t u r e , i n t e r i o r s u r f a c e t e m p e r a t u r e s and h e a t e x t r a c t i o n r e q u i r e d t o m a i n t a i n c o n s t a n t room a i r t e m p e r a t u r e . The d i a g o n a l e l e m e n t s of m a t r i x

[M]

a r e n e g a t i v e a n d a l l o t h e r e l e m e n t s a r e p o s i t i v e . Many e l e m e n t s a r e z e r o s ; t h e z e r o e l e m e n t s i n d i c a t e i n d i r e c t r e l a t i o n between t h e unknowns. F o r p r e s e n t a t i o n t h e m a t r i x

[M]

i s p a r t i t i o n e d a s f o l l o w s : where t h e v e r t i c a l and h o r i z o n t a l p a r t i t i o n l i n e s a r e between 1 5 t h and 1 6 t h

rws

a n d 1 5 t h and 1 6 t h columns, r e s p e c t i v e l y . D i a g o n a l e l e m e n t s : M115,15 =

-

+ g 1 5 , j + a15,0 + b 1 5 , ~ ) 1 5

*

E d e n o t e s

(

E g i , j

-

g i , i ) j = l

**

M12,2 t o M114,14 a r e s i m i l a r t o M 1 l , l , e x c e p t f o r M1lO,lO* A l l o t h e r e l e m e n t s of

[ M I ]

a r e r a d i a t i o n h e a t t r a n s f e r c o e f f i c i e n t s , i . e . , M l i , j = g i , j e x c e p t b ) S u b m a t r i c e s 1 ~ 2 ) and 1 ~ 3 1 A l l

[ w ]

and

[ ~ 3 ]

e l e m e n t s a r e z e r o e x c e p t :

(10)

-.

*

G 2 to G g are similar to G1.

**

G12, G 1 3 are similar to Gll.

***

G

17

to G l g and G23 and G24 are similar

(11)

T h i s paper,

w h i l e b e i n g d i s t r i b u t e d i n

r e p r i n t form by t h e D i v i s i o n of B u i l d i n g

Research,

remains t h e c o p y r i g h t of

t h e

o r i g i n a l p u b l i s h e r .

It

s h o u l d n o t be

reproduced i n whole o r i n p a r t w i t h o u t t h e

p e r m i s s i o n of t h e p u b l i s h e r .

A

l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from

t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n o f

B u i l d i n g R e s e a r c h ,

N a t i o n a l R e s e a r c h

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

K I A

0R6.

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers