• Aucun résultat trouvé

Design of reduced point charge models for proteins

N/A
N/A
Protected

Academic year: 2021

Partager "Design of reduced point charge models for proteins"

Copied!
2
0
0

Texte intégral

(1)

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal

Dépôt Institutionnel - Portail de la Recherche

researchportal.unamur.be

University of Namur

Design of reduced point charge models for proteins

Leherte, Laurence; Vercauteren, Daniel P.

Publication date:

2014

Document Version

Peer reviewed version

Link to publication

Citation for pulished version (HARVARD):

Leherte, L & Vercauteren, DP 2014, 'Design of reduced point charge models for proteins', 248th ACS National

Meeting & Exposition, San Francisco, United States, 10/08/14 - 14/08/14 pp. COMP 373.

<http://abstracts.acs.org/chem/248nm/program/view.php>

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

• You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately

and investigate your claim.

(2)

• Charges are fitted at the critical points of - the CD smoothed at 1.7 bohr2

- the PASA ED smoothed at 1.4 bohr2

vs. unsmoothed Amber99 MEPs,

considering various amino acid rotamers [8],

with constraints: total electric charge & total dipole moment.

• Side chain charges are first assigned [9,10], then backbone charges are fitted using the side chain charge values as constraints.

Fig. 3 Reduced point charge model ‘mCD’ of Hisδ.

Templates are thus obtained for each amino acid residue. A third model, ‘mCDa’, is similar to ‘mCD’ but most of the point charges are forced to be located on atoms.

Fig. 4 Reduced point charge models of three amino acid residues.

5. Application to Ubiquitin

1UBQ.pdb - 76 amino acids - 1231 atoms

Fig. 5 MEP isocontours of Ubiquitin: -0.05,+0.05 e-/bohr.

Design of reduced point charge models for proteins

Laurence Leherte, Daniel P. Vercauteren

University of Namur – Belgium

ACS San Francisco – August 2014

We report reduced point charge models (RPCMs) for proteins obtained from topological analyses of smoothed charge density (CD) and electron density (ED) distribution functions. The RPCMs differ from the well-known approximation of a single point charge per amino acid (q = 0, ± 1). The applicability of various RPCMs in approximating all-atom electrostatic properties and in molecular dynamics (MD) calculations is assessed. Applications are reported for the protein Ubiquitin.

Introduction

1. Smoothing of the electron density

with and

The smoothing factor s can be seen as the product of a diffusion coefficientDwith timet

or as an overall isotropic thermal displacement factor [3].

2. Smoothing of the Coulomb potential

The Poisson equation is applied to generate the corresponding smoothed atomic charge density (CD) distribution function, ρa,s:

3. Examples

Fig. 1 Smoothed ED (Top) and CD (Bottom) of a peptide-like molecule.

4. Location of Critical Points (CP) in ρA,s

A hierarchical merging algorithm, based on the idea of Leunget al. [7], is used to locate local extrema in ρA,s.

• At scales= 0, each atom of a molecular structure is considered as a starting point of the merging procedure. • Assincreases, each point moves along a gradient path to reach a location in the 3D space where:

These trajectories are defined by:

Unsmoothed molecular electrostatic potential (MEP). Amber99 atomic charges [4]are assigned to atoms using PDB2PQR

[5]. Smoothed MEP[6] Δ = displacement step

Method

Conclusions

( )

∑ ∑

∈ = −

=

A a i r i a A i a

e

r

5 or 3 1 , 2 , β

α

ρ

Unsmoothed molecular ED generated using the Promolecular Atomic Shell Approximation (PASA) [1]

( )

∑ ∑

∈ = −

=

A a i r s i a s A s i a

e

r

5 or 3 1 ,, , 2 , , β

α

ρ

Smoothed molecular ED (s = smoothing factor)[2]

(

)

3/2 a,i 2 3 , 8 1 1 2 s π w Z a,i a,i a s a,i ς ς α +       =

(

)

s a,i s a,i a,i , 8 1 2 ς ς β + =

s

Dt

s

B

=

∈A a a a A

q

V

R

r

r

)

(





 −

=

A a a a a s A

s

erf

q

V

2

)

(

,

R

r

R

r

r

0 , , 2

)

(

ε

ρ

as s a

V

=

r

(

)

s r a s a

e

s

q

/4 2 / 3 0 , 2

4

=

π

ε

ρ

OH NH 3+ N H N H O O N H O O

s= 0.0 bohr2 s= 1.4 bohr2 s= 1.7 bohr2

s= 0.05 bohr2 s= 1.4 bohr2 s= 1.7 bohr2 +0.0002 +0.0750e-/bohr3 -0.0002 +0.0002e-/bohr3 ) ( ) ( ) ( ) ( s s s s s s CP CP CP CP ρ ρ −∆ ∇ ∆ + ∆ − = r r -0.3538 0.0802 0.2812 -0.7885 0.7810 Hisδ mCD mCDa mPASA Glu-Phe Tyr 1. Simulation conditions Gromacs 4.5.5 [11]

Amber99SB and TIP4P-Ew force fields, PME Non-atomic point charges = virtual sites

Other force field terms are preserved  no RPCM-to-all-atom conversion is needed.

Equilibration : 30 ns Production : 10 ns NVT (vacuum), NPT (water) T = 300 (277 and 250 K) all-atom 1231 charges mCD 283 charges mPASA 100 charges mCDa 283 charges

Molecular dynamics of Ubiquitin

Phe

Vacuum

Water

All-atom mCD mCDa mPASA

0 10 20 30 0 0.1 0.2 0.3 p (r ) r (nm) 0 0.02 0.04 0.06 0.08 0 5 10 15 20 25 30 p (A n g le ) Angle (°)

• RPCMs allow the approximation of the MEP of rigid proteins. They also allow simulations of flexible structures by MD provided (i) they involve a good description of the Cb1-4energy terms, (ii) the coarse-grain level is not too reduced,i.e., a dipole

moment is preserved both on the backbone and the side chain of the residues. • Secondary structure elements are destroyed under the influence of water or at higher

temperatures. This, in combination with previous studies [12] may indicate a lowering of energy barriers (useful for conformational sampling).

• RPCMs involve modifications for the interface water structure and dynamics.

4000 8000 12000 16000 20000 14000 14400 14800 15200 15600 16000 ERPC M (k J. m o l -1) Eall-atom (kJ.mol-1) mPASA 0.62 mCDa 0.90 mCD 0.91 0 10 20 30 0 0.1 0.2 0.3 p (r ) r (nm) All-atom mCD mCDa mPASA 0.000 0.005 0.010 0 10 20 30 40 50 p (A n g le ) Angle (°)

Donor-Acceptor distance H-Donor-Acceptor angle

All-atom (300 K) mCD (300 K) mCDa (300 K) mPASA (300 K) mCD (277 K) mCD (250 K) # of H2O 358.5 546.1 505.7 329.3 482.7 450.7 % of H-bonded H2O 83 58 62 28 56 57 D (10-5cm2/s) 1.28 0.64 0.55 1.70 0.34 0.10

[1] Amatet al. J. Chem. Inf. Chem. Sci. 40 (2000) 1188; [2] Kostrowicki et al. J. Phys. Chem. 95 (1991) 4113; [3] Leherte Acta Cryst D60 (2004) 1254; [4] Duan et al. J. Comput. Chem. 24 (2003) 1999; [5] pdb2pqr.sourceforge.net; [6] Hart et al. J. Comput. Chem. 21 (2000) 531; [7] Leung et al. IEEE T. Pattern Anal. 22 (2000) 1396; [8] Simms et al. Prot. Eng. Des. Select. 21 (2008) 369, www.dynameomics.org; [9] Leherteet al. J. Chem. Theory Comput. 5 (2009) 3279; [10] Leherte et al. J. Comput.-Aided Mol. Des. 25 (2011) 913;

[11] Pronk et al. Bioinformatics 29 (2013) 845; [12] Leherteet al. J. Mol. Graphics Model. 47 (2014) 44

Fig. 2 Isocontours of the CD of Gly-Hisδ –Gly smoothed at s= 1.7 bohr2. -0.005 +0.005 e-/bohr3 0 ) ( = ∇ρCPs 2. Final snapshots at 300 K 3. Effect of temperature 4. Correlation ERPCM– Eall-atom

Fig. 6 Potential energy of the RPCM vs.

all-atom models for identical protein conformations.

5. Intra-molecular H bonds

Distance and angle distributions present the same trends both in vacuum and in water. Angle distribution is strongly affected when a RPCM is used.

Fig. 7 Distance and angle distributions of intra-molecular H-bonds calculated for solvated Ubiquitin.

6. Protein-water interface

Distance and angle distributions present trends similar to the all-atom case, except for the coarser RPCM,i.e., mPASA.

Fig. 8 Distance and angle distributions of Ubiquitin-water H-bonds. Table 1. Selected properties of water molecules located in a layer of thickness

0.35 nm surrounding Ubiquitin.

•Acceptable correlation values obtained for mCD and mCDa. •Better energy agreement for the mCDa model which allows a better representation of the Coulomb1-4energy term.

•mPASA has no such terms.

Vacuum

Water

Références

Documents relatifs

Since the frequency comb used for these experiments was already self-referenced using the standard technique of feedback to the optical pump of the gain medium [11], we were able

Dal momento che l'essenza del dibattito viene rivelata anche dalle scritture contabili patrimoniali proprie del sistema bancario, consideriamo contemporaneamente sia

In termini concreti: nei programmi e nella politica la DSC fa più spesso riferimento ai diritti umani, integra più sistematicamente i principi inerenti ai diritti umani, pone in

Le développement régional est un autre secteur im- portant dans lequel de l’argent suisse sera injecté de manière ciblée : « Selon le potentiel ou les be- soins de leur région,

Les charges fixes spécifiques sont diminuées des produits spécifiques, on obtient ainsi les charges fixes spécifiques nettes pour le spectacle. Les éléments

Ainsi, l’acquisition des compétences professionnelles 1 d’enseignements peut être perçue comme duelle ; Dupriez (2015) rappelle lui aussi que le développement professionnel ne se

Lecture : Parmi les patients utilisateurs du matériel, 86% ont progressé dans les 3 capacités sous-jacentes à la compréhension de textes, que sont la réalisation d’inférences,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des