• Aucun résultat trouvé

Tomographic reconstruction techniques

N/A
N/A
Protected

Academic year: 2022

Partager "Tomographic reconstruction techniques"

Copied!
38
0
0

Texte intégral

(1)

Summer school Clermont - Irène Buvat - july 2004 - 1

To m og ra ph ic re co nstru ctio n te ch niq ue s

Irène Buvat U494 INSERM, Paris

buvat@imed.jussieu.frhttp://www.guillemet.org/irene

New Technologies in Medical Imaging and Surgery New Technologies in Medical Imaging and Surgery

(2)

Summer school Clermont - Irène Buvat - july 2004 - 2

Outline

• Introduction: the issue of tomographic reconstruction

• Basics

• Tomographic reconstruction methods

• Regularization

• New challenges

• Conclusion

(3)

Summer school Clermont - Irène Buvat - july 2004 - 3

Introduction

(4)

Summer school Clermont - Irène Buvat - july 2004 - 4

What is tomography ?

! An indirect measurement of aparameter of interest, using a detectorsensitive to some sort of radiations À Algorithms to recover the cartography of the parameters the measurements

(5)

Summer school Clermont - Irène Buvat - july 2004 - 5

Direct (forward) problem

The tomographic system measures a set of “projection” data: integralsof a signal along certain specific directions.

unknown parameters measurements = projection

The mathematical formulation of the relationship between the unknownparameters and the measurements is the direct problem. direct problem

(6)

Summer school Clermont - Irène Buvat - july 2004 - 6

Inverse problem

Tomographic reconstruction is the inversion of the direct problem.

unknown parameters measurements = projections

inverse problem

Inverse problem: estimating the 3D cartography of unknownparameters from the measured data.

(7)

Summer school Clermont - Irène Buvat - july 2004 - 7

Ill-posed inverse problem

Limited spatial sampling

Ill-posed: several solutions compatible with the measurements 1 projection

projectiondirection 2 projections

Noisy Noisy measurements

No noise signal intensity

spatial direction

(8)

Summer school Clermont - Irène Buvat - july 2004 - 8

Different types of tomography

!

Transmission tomography

- External radiation source- Measurement of radiationstransmitted through the patient- Parameters related to the interactionsof radiations within the body

e.g., Computed Tomography (CT)e.g., SPECT and PET - Internal radiation source- Measurement of radiation emittedfrom the patient- Parameters related to the radiationsources within the body À Emission tomography

(9)

Summer school Clermont - Irène Buvat - july 2004 - 9

Different types of tomography

PET

SPECT CT

Optical TomographySynchrotron Tomography

(10)

Summer school Clermont - Irène Buvat - july 2004 -

B asics

(11)

Summer school Clermont - Irène Buvat - july 2004 - 11

Factorization of the reconstruction problem

3D

images from a set of 2D measurements

3D cartography of aparameter 2D projections

3D distribution

If real 3D: “Fully 3D reconstruction” 1D projections2D cartography of aparameter 2D images from a set of 1D measurements

transaxial slice

(12)

Summer school Clermont - Irène Buvat - july 2004 -

K ey notion 1: projection

p(u,q) = f(x,y)dv

-• +• Ú

u projectionq

Modelling the direct problem

u = x cosq + y sinqv = -x sinq + y cosq qx yvf(x,y)u

(13)

Summer school Clermont - Irène Buvat - july 2004 - 13

Projection: mathematical expression

u projectionq

p(u,q) = f(x,y)dv

-• +• Ú The 2D Radon transform

set of projections for q = [0, p ] = Radon transform of f(x,y)

R[ f(x,y) ] = p(u,

q

)d

q0 p

Ú

(14)

Summer school Clermont - Irène Buvat - july 2004 -

Key notion 2: sinogram

All detected signal concerning 1 slice

q q2q3 q1

t

(15)

Summer school Clermont - Irène Buvat - july 2004 - 15

Key notion 3: backprojection

f*(x,y) = p(u,q)dq0 p

Ú Tackling the inverse problem

u = x cosq + y sinqv = -x sinq + y cosq qx yvf(x,y)u u projectionq

Beware: backprojection is not the inverse of projection !

p(u,q)

(16)

Summer school Clermont - Irène Buvat - july 2004 -

Methods of tomographic reconstruction

(17)

Summer school Clermont - Irène Buvat - july 2004 - 17

Two approaches

!

Analytical approaches

- Continuous formulation- Explicit solution using inversionformulae or successive transformations- Direct calculation of the solution- Fast- Discretization for numericalimplementation only

f*(x,y) = p’(u, q ) d q

0 p

Ú

À Discrete approaches

- Discrete formulation- Resolution of a system of linearequations or probabilistic estimation- Iterative algorithms- Slow convergence- Intrinsic discretization

p

i

= S r

ij

f

jj

(18)

Summer school Clermont - Irène Buvat - july 2004 -

Analytical approach: central slice theorem

p(u,q) = f(x,y) dv-• +•

Ú

-• P(r,q) = p(u,q)e -i2pru du

Ú

+• Fourier transform

qx yvu u = x cosq + y sinqv = -x sinq + y cosqrx =rcosqry =rsinqdu.dv= dx.dy

1D FT of p with respect to u = 2D FT of f in a specific direction P(r,q) = f(x,y) e -i2p(xrx +yr

-•-• +•+•

Ú Ú

p(u,q)

P(r,q) = f(x,y) e -i2pru du.dv-• +•

-• +•

Ú Ú

P(r,q) = F(rx ,ry )

(19)

Summer school Clermont - Irène Buvat - july 2004 - 19

Analytical approach: filtered backprojection (FBP)

P(r,q) = F(rx ,ry ) f(x,y) = F(rx ,ry ) e i2p(xrx +yry ) drx .dry-• +•

-• +•

Ú Ú

= P(r,q) e i2p(xrx +yry ) drx .dry-• +•

-• +•

Ú Ú

= P(r,q)|r|e i2pru dr. dq0 p+•

Ú Ú

= p’(u,q)dq with p’(u,q)= P(r,q)|r|e i2pru dr -•

0 p

Ú

-• +•

Ú

Ramp filter qx yvu u = x cosq + y sinqrx =rcosqry =rsinqr= (rx 2 + ry 2) 1/2rdrx dry = rdrdq

(20)

Summer school Clermont - Irène Buvat - july 2004 -

Filtered backprojection: algorithm

P(r,q) 1D-FT

p’(u,q) FT -1 f(x,y)backprojection reconstructed image f(x,y)= p’(u,q)dq with p’(u,q)= P(r,q)|r|e i2pru d0 p

Ú

sinogram

p(u,q)

|r| P(r,q) filtering

Ramp filter

Ú

-• +•

(21)

Summer school Clermont - Irène Buvat - july 2004 - 21

Filtered backprojection: beyond the Ramp filter

f(x,y)= p’(u,q)dq with p’(u,q) = P(r,q)|r|e i2pru dr0 p

Ú Ú

-• +•

r

0 0.8

| r |w (r)

0 1

r | r |

0 0.8 10 |r|w(r)

high frequency amplificationnoisenoise control

loss of spatial resolution

(22)

Summer school Clermont - Irène Buvat - july 2004 -

Two approaches

!

Analytical approaches

- Continuous formulation- Explicit solution using inversionformulae or successive transformations- Direct calculation of the solution- Fast- Discretization for numericalimplementation only

f*(x,y) = p’(u, q ) d q

0 p

Ú

À Discrete approaches

- Discrete formulation- Resolution of a system of linearequations or probabilistic estimation- Iterative algorithms- Slow convergence- Intrinsic discretization

p

i

= S r

ij

f

jj

(23)

Summer school Clermont - Irène Buvat - july 2004 - 23

Discrete approach: model

p

i

f

j

r11 r14

r41 r44 p1p2p3p4 f1f2f3f4

= p = R f

f1 f2

f3 f4 p1 p2p3p4 p1 = r11 f1 + r12 f2 + r13 f3 + r14 f4p2 = r21 f1 + r22 f2 + r23 f3 + r24 f4p3 = r31 f1 + r32 f2 + r33 f3 + r34 f4p4 = r41 f1 + r42 f2 + r43 f3 + r44 f4

projector

Given p and R, estimate f

(24)

Summer school Clermont - Irène Buvat - july 2004 -

Discrete approach: calculation of R

• Geometric modelling- intersection between pixel and projection rays

f

j

p = R f R

models the direct problem

• Physics modelling- spatial resolution of the detector- physical interactions of radiations

r

ij

=1 r

i’j

=0 r

i

=0 r

i

f

j

f

j’

p

i

p

i’ parallel

p

i fan beam

spatial resolution

p

i

r

ij

≠ r

ij’

=0, f

j

f

j’

(25)

Summer school Clermont - Irène Buvat - july 2004 - 25

Two classes of discrete methods

! Algebraic methods

- Generalized inverse methods À Statistical approaches

- Bayesian estimates- Optimization of functionals

- Account for noise properties

p

i

= S r

ij

f

jj

(26)

Summer school Clermont - Irène Buvat - july 2004 -

Iterative algorithm used in discrete methods

f

0

f

1

correction p = R f

p = R f

p ^ comparison p ^ versus p

defines the iterative method:

additive if

f

n+1 =

f

n +

c

n

multiplicative if

f

n+1 =

f

n .

c

n

(27)

Summer school Clermont - Irène Buvat - july 2004 - 27

A lgebraic m ethods

Minimisation of || p - R f ||

2

p = R f

Several minimisation algorithms are possible to estimate a solution:

e.g., SIRT (Simultaneous Iterative Reconstruction Technique)Conjugate GradientART (Algrebraic Reconstruction Technique)

e.g., additive ART:

f

j n+1

= f

j n i

+ ( p - p

k i nijik

) r / S r

2

(28)

Summer school Clermont - Irène Buvat - july 2004 -

Statistical methods Probabilistic formulation (Bayes’ equation): proba ( f | p ) = proba ( p | f ) proba ( f ) / proba ( p ) p = R f

probability of obtaining fwhen p is measured likelihood of p Find a solution f maximizing proba(p|f) given a probabilistic model for prior on fprior on p

f

n+1

= f

n .

R

t

( p /p

n

)

e.g., if p follows a Poisson law: proba(p|f) =

P

exp(-pk ).pk pk/p

MLEM (Maximum Likelihood Expectation Maximisation):

and OSEM (accelerated version of MLEM) k

(29)

Summer school Clermont - Irène Buvat - july 2004 - 29

Regularization

(30)

Summer school Clermont - Irène Buvat - july 2004 -

Regularization

Set constraints on the solution f

Solution f: trade-off betw een the agreement with the observed data and the agreement with the constraints

(31)

Summer school Clermont - Irène Buvat - july 2004 - 31

Regularization for analytical methods

Filtering

f(x,y)= P(r,q)w(r)|r|e i2pru dr0 p

Ú Ú

-• +•

Ramp filterButterworth filter

(32)

Summer school Clermont - Irène Buvat - july 2004 -

Regularization for discrete methods Minimisation of || p - R f ||

2

+ l K( f )

l controls the trade-off betweenagreement with the projections and agreement with the constraints

proba ( f | p ) = proba ( p | f ) proba ( f ) / proba ( p )

prior on f, i.e. proba(f) non uniform

Examples of priors:f smoothf having discontinuities

Conjugate Gradient gives MAP-Conjugate Gradient (Maximum A Posteriori)MLEM gives MAP-EM

(33)

Summer school Clermont - Irène Buvat - july 2004 - 33

New challenges

(34)

Summer school Clermont - Irène Buvat - july 2004 -

Analytical reconstruction

• Fully 3D reconstruction for CT: - suited to the new designs of CT detectors (increased number of rows, increased gantry rotation speed, helical cone beam geometry) - real time

• Reconstruction algorithms managing source deformations (motions)

(35)

Summer school Clermont - Irène Buvat - july 2004 - 35

Iterative reconstruction: fully 3D Monte Carlo reconstruction p = R f

modelling R using numerical (Monte Carlo) simulationsof the imaging procedure in emission tomography

tissue densityand composition+cross-section tables ofradiation interaction

All propagation and detection physics can be accurately modelled3D propagation of radiation is taken into account stochastic modellingof physical interactions probability that an“event” in j be detectedin i j i

R

ij

(36)

Summer school Clermont - Irène Buvat - july 2004 -

P ending issues

• Size of the fully 3D problem: 64 projections 64 x 64, R includes 64

6

elements (256 Gigabytes)

• Time

(37)

Summer school Clermont - Irène Buvat - july 2004 - 37

Question 1

G iven 128 projections of 64 pixels by 64 pixels, you can easily create:

A. 64 sinograms with 128 rows and 128 columns

B. 128 sinogram s w ith 64 row s and 64 colum ns

C. 64 sinograms with 128 rows and 64 columns

D. 64 sinograms with 64 rows and 128 columns

E. 128 sinograms with 128 rows and 64 columns

(38)

Summer school Clermont - Irène Buvat - july 2004 -

Question 2

Iterative reconstruction:

A. Is faster than analytical reconstruction

B. Is necessarily fully 3D

C. Always involves a regularization term

D. Is based on a discrete formalism

E. Can include accurate modelling of the radiation physics

Références

Documents relatifs

For the first phantom, F3DMC yields results as good as and even better than those obtained using an alternative fully 3D reconstruction approach (MLEMC) involving the

In this paper, we investigate the value of using accurate Monte Carlo simulations to determine the 3D projector including all physical effects affecting the imaging

Le projecteur utilisé pour F3DMC a été calculé en simulant une distribution d'activité uniforme dans le fantôme.. En pratique, pour des raisons d'espace de stockage en mémoire,

For our phantom, we considered the background as a functional region with uniform activity (one single value to be estimated for the background) while all other regions

In this paper, we study the accuracy of the reconstructed images with respect to the number of simulated histories used to estimate the MC projector.. Furthermore, we

Figure 2 shows the percent errors in activity ratios with respect to the number of simulated photons simulated to calculate the system matrix for images

To tackle large dimensions, other methods have been devised that are based on a non-independent sampling: Markov chain Monte Carlo methods (MCMC).. The prototype of MCMC methods is

Application of Monte Carlo tech- niques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling... Application of Monte Carlo techniques to LCO gas